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Abstract

The phosphoprotein gene of the paramyxoviruses encodes multiple protein products. The P, V, and W proteins are gener-
ated by transcriptional slippage. This process results in the insertion of non-templated guanosine nucleosides into the
mRNA at a conserved edit site. The P protein is an essential component of the viral RNA polymerase and is encoded by a
faithful copy of the gene in the majority of paramyxoviruses. However, in some cases, the non-essential V protein is
encoded by default and guanosines must be inserted into the mRNA in order to encode P. The number of guanosines

inserted into the P gene can be described by a probability distribution, which varies between viruses. In this article, we re-
view the nature of these distributions, which can be inferred from mRNA sequencing data, and reconstruct the evolutionary
history of cotranscriptional editing in the paramyxovirus family. Our model suggests that, throughout known history of the
family, the system has switched from a P default to a V default mode four times; complete loss of the editing system has oc-
curred twice, the canonical zinc finger domain of the V protein has been deleted or heavily mutated a further two times,
and the W protein has independently evolved a novel function three times. Finally, we review the physical mechanisms of

cotranscriptional editing via slippage of the viral RNA polymerase.
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1. Introduction

Most viruses possess genes that encode for more than one pro-
tein. When these proteins arise from translation of a common
nucleotide sequence in differing reading frames, the phenome-
non has been termed gene overlap (Barrell, Air, and Hutchison
1976) or overprinting (Keese and Gibbs 1992). In viruses, over-
printing has frequently been linked to the strong size con-
straints that exist on viral genomes (Belshaw, Pybus, and
Rambaut 2007); however, it has also been considered to confer
certain evolutionary advantages (Sabath, Wagner and Karlin
2012; Brandes and Linial 2016). Overprinting by viruses is

ubiquitous (Chirico, Vianelli, and Belshaw 2010), and it can arise
from events occurring during both gene transcription
(Brennicke, Marchfelder, and Binder 1999) and the translation of
messenger RNA (mRNA; Kozak, 2002).

At the transcriptional level, viruses may employ cotranscrip-
tional RNA editing (Cattaneo 1991), in which nucleotides that are
not directly specified by the template are inserted into the viral
mRNA during transcription (i.e. the mRNA is no longer a faithful
copy of the gene). Viral families that perform this kind of RNA edit-
ing include the Paramyxoviridae (Vidal, Curran, and Kolakofsky
1990b; Hausmann et al. 1999a), the Filoviridae (Sanchez et al. 1996;
Shabman et al. 2014), and the Potyviridae (Olspert et al. 2015;
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Rodamilans et al. 2015). Cotranscriptional RNA editing also occurs
in a variety of prokaryotes (Larsen et al. 2000; Penno et al. 2015).
The primary mechanism underpinning cotranscriptional RNA
editing is thought to be transcriptional slippage, which allows a
nucleic acid polymerase to reiteratively copy a single base
(Streisinger et al. 1966; Garcia-Diaz and Kunkel 2006).

At the translational level, non-canonical initiation, elonga-
tion, and termination events are also used as overprinting
mechanisms by numerous viral families (Maia et al. 1996; Firth
and Brierley 2012), including the Paramyxoviridae (Giorgi,
Blumberg, and Kolakofsky 1983; Curran and Kolakofsky 1988;
Latorre, Kolakofsky, and Curran 1998), the Coronaviridae, and the
Retroviridae (Brierley and Dos Ramos 2006). These events include
leaky scanning, non-AUG initiation, ribosomal shunting, and ri-
bosomal frameshifting.

In this article, we review cotranscriptional RNA editing in
the Paramyxoviridae; a family of non-segmented, negative-sense,
single-stranded RNA viruses, within the order Mononegavi rales
(Pringle 1991; Rima et al. 2018; Amarasinghe et al. 2019).
Cotranscriptional editing of the paramyxoviral phosphoprotein
gene (P gene) governs production of up to three proteins: P, V,
and W. The editing process involves insertion of one or more
non-templated guanosine nucleosides into the mRNA at a con-
served edit site (Vidal, Curran, and Kolakofsky 1990b;
Hausmann et al. 1999a), which stochastically shifts the reading
frame. As a result, the P, V, and W proteins share a common N-
terminal region (encoded by the gene sequence upstream of the
edit site), but possess distinct C-terminal regions (encoded by
the gene sequence downstream of the edit site), which allows
for differing function.

The P protein (phosphoprotein) is an essential subunit of the
viral RNA-dependent RNA-polymerase (RdRp). In contrast, the V
and W proteins are non-essential, but may serve as virulence
factors. This is quite typical for viral proteins that have arisen
by gene overprinting (Rancurel et al. 2009). While most para-
myxoviral genomes directly encode the P protein, a minority di-
rectly encode the V protein, with the virus consequently
becoming completely dependent on P gene editing for viability.

Our review begins with a discussion of virally directed RNA
synthesis in the paramyxoviruses, the overprinting of the P
gene, and the organization and function of the P, V, and W pro-
teins. We collate experimental information on the nature of the
genome (which of P or V is directly encoded?) as well as the dis-
tribution describing the number of guanosine nucleotides
inserted into the P gene, and hence the relative abundance of
mRNA encoding P, V, and W. To explain this data, we propose a
maximum parsimony model for the evolution of the editing
system. While the P protein is always produced, due to its
highly conserved and critical role in viral replication, V and W
are ‘luxury’ proteins whose functional status varies between
paramyxoviruses, and which are occasionally lost altogether
through retirement of the editing system. Novel functionality is
materialising relatively rapidly in this region of the genome,
emphasising the ongoing nature of the evolutionary process.
We conclude by reviewing what is known about transcriptional
slippage, which provides the mechanism for P gene editing, and
its connection with the genomic sequence at the edit site.

2. Paramyzxoviral RNA synthesis
and the rule of six

The Paramyxoviridae appear to infect most vertebrate species
(Table 1) and are responsible for a number of serious diseases in

both animals and humans. Type species include measles virus
(MeV; genus: Morbillivirus), mumps virus (MuV; genus:
Orthorubulavirus), Sendai virus (SeV; genus: Respirovirus), and
Hendra virus (HeV; genus: Henipavirus).

In paramyxoviruses, as for the entire order Mononegavirales,
gene transcription and genome replication are distinct pro-
cesses, and both are carried out by the viral RARP. The catalytic
subunit of the RdRP-the viral Large protein (L protein) - per-
forms the basic operation of RNA synthesis and is also responsi-
ble for mRNA capping and polyadenylation (Fearns and Plemper
2017). Although the viral and host mRNA are indistinguishable,
the strategies used by virus and host to cap and polyadenylate
mRNA are quite divergent. Polyadenylation by the paramyxovi-
ral RARP results from a transcriptional slippage mechanism, re-
sembling that used for P gene editing-the focus of this review.
Therefore it has been hypothesized that these two non-tem-
plated nucleotide insertion systems share common ancestry,
with development of a slippage prone polymerase subsequently
enabling overprinting of the P gene (Hausmann et al. 1999a).

The viral single-stranded RNA genome is bound to the nu-
cleocapsid protein, forming a helical protein-nucleic acid com-
plex which encapsulates and protects the genome (Whelan,
Barr, and Wertz 2004; Fearns and Plemper 2017; Guseva et al.
2019). The nucleocapsid acts as a template for all virally directed
RNA-synthesis. Transcription precedes genome replication,
with switching between the two processes believed to be driven
by the accumulation of the nucleocapsid protein (Plumet,
Duprex, and Gerlier 2005; Curran and Kolakofsky 2008). When
operating as a transcriptase, the RdRP sequentially transcribes
the viral genes, releasing capped and polyadenylated mono-cis-
tronic mRNA. When operating as a replicase, the conserved reg-
ulatory sequences between genes are ignored, and the RARP
produces a full length copy of the viral genome or antigenome,
simultaneously encapsidating it with the nucleocapsid protein
(Noton and Fearns 2015).

Each nucleocapsid protein binds six nucleotides of RNA
(Alayyoubi et al. 2015; Gutsche et al. 2015; Jamin and Yabukarski
2017; Webby et al. 2019), and paramyxoviral genomes always
conform to the ‘rule of six’ whereby genome length is some
multiple of six (Calain and Roux 1993; Kolakofsky et al. 1998,
2005). This is hypothesized to result from the requirement to
position the promoter sequences required for initiation of RNA
synthesis in the correct register, or phase, with respect to the
nucleocapsid protein (Le Mercier and Kolakofsky 2019).

3. Overprinting of the P gene

3.1 Cotranscriptional editing of the P gene

Cotranscriptional editing of the P gene occurs through the inser-
tion (or in certain mutants the deletion; Jacques, Hausmann,
and Kolakofsky (1994)) of m guanosines, G, into the mRNA at a
conserved edit site. A Gz, insertion (m=1, 4, 7, ...) shifts the
reading frame downstream of the edit site by —1 (or alterna-
tively 4+2). A Gsp» nucleotide insertion (m=2, 5, 8, .. ) shifts the
reading frame by —2 (or alternatively +1). A Gz insertion (m=0,
3,6, ...) leaves the reading frame unaltered.

This editing system operates in two different modes (Fig. 1).
In the P-mode, P is encoded by the unedited gene. V can be de-
rived from a single guanosine insertion G; and W can be derived
from a double insertion G,. This is the situation in MeV
(Cattaneo et al. 1989) and SeV (Vidal, Curran, and Kolakofsky
1990a). Whereas in the V-mode, V is encoded by the unedited
gene, while W can be derived from a single guanosine insertion
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Table 1. Summary of paramyxovirus taxonomy (Amarasinghe et al. 2019), including notable host species (Thibault et al. 2017).

Subfamily Genus Host species Type species
Avulavirinae Metaavulavirus Bird Avian parainfluenza virus 2 (APMV-2)
Orthoavulavirus Bird Newcastle disease virus (NDV)
Paraavulavirus Bird Avian parainfluenza virus 3 (APMV-3)
Rubulavirinae Orthorubulavirus Bat, human, pig Mumps virus (MuV)
Pararubulavirus Bat, human, pig Menangle virus (MenPV)
Orthoparamyxovirinae Aquaparamyxovirus Fish Atlantic salmon paramyxovirus (AsaPV)
Ferlavirus Reptile Fer de Lance virus (Fd1V)
Henipavirus Bat Hendra virus (HeV)
Jeilongvirus Rodent Beilong virus (BeiV)
Morbillivirus Cat, dolphin, human Measles virus (MeV)
Narmovirus Rodent Nariva virus (NarV)
Respirovirus Cow, human, rodent Sendai virus (SeV)
Salemvirus Horse Salem virus (SalV)
P-mode V-mode
Site of G insertion Site of G insertion
P§>V§>W LFrame VQ’W%P iFrame

Produced by 3 v 1
cotranscriptional 4{ | |
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Figure 1. Cotranscriptional editing of the P gene. The two observed modes of editing are depicted: these are the P- and V-modes. A single transcript can encode one of
P, V, or W depending on the number of guanosines stochastically inserted at the edit site during transcription. While the P, V, and W proteins all share a common N-

terminal region (NT), their C-terminal regions (PCT, VCT, and WCT) are distinct.

G, and P from a double insertion G,. This is the situation in MuV
(Paterson and Lamb 1990). A third edit mode (the W-mode) is
conceptually possible, but so far has not been observed.

It is generally assumed that the properties of P/V/W are de-
fined by the reading frame downstream of the edit site, and the
actual number of guanosines inserted is immaterial to function
(i.e. there is no effective difference between a V protein result-
ing from a G, insertion and a V protein resulting from a G4 inser-
tion). This is because the mRNA flanking the edit site encodes
an intrinsically disordered region of P/V/W (Habchi and Longhi
2012; Longhi et al. 2017; Guseva et al. 2019). Any extended se-
quence of G nucleotides is translated into polyglycine, and
while the conformational preferences of polyglycine are still not
entirely established (Ohnishi et al. 2006; Tran, Mao, and Pappu
2008), the homo-polymeric sequence will be disordered.
Therefore, small variations in the length of this sequence are
likely to be functionally neutral in this context.

3.2 Genome replication and the switching of P gene edit
modes

Any switch between edit modes requires a frameshift mutation
in the genome, i.e. during genome replication. This mutation
must occur at a position upstream of the edit site, but not so far
upstream that it disrupts some other function of the encoded P
protein. Due to the rule of six, any insertion or deletion (indel)
must be rapidly compensated such that the genome length
remains divisible by six. Otherwise, the replication efficiency of
the virus would be severely impacted (Calain and Roux 1993;
Skiadopoulos et al. 2003; Kolakofsky et al. 2005; Sauder et al.
2016). For example, a single nucleotide insertion upstream and
proximal to the edit site, accompanied by a single nucleotide
deletion elsewhere in the genome, would be sufficient to transit
the system from the P-mode to the V-mode. It has recently been
noted that using P gene editing as a taxonomic criterion leads to
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inconsistencies in virus classification (Rima et al. 2018). The
necessarily abrupt switching between edit modes suggests one
of the reasons why-there are viruses with very closely related
genome sequences that have adopted different edit modes
(Section 5).

A question that naturally follows is how RNA editing within
the P gene is effectively suppressed during genome replication.
Based on nucleotide sequencing, many early studies showed
that paramyxoviral genomes were homogenous in the region
surrounding the P gene edit site (Thomas, Lamb and Paterson
1988; Cattaneo et al. 1989; Ohgimoto et al. 1990; Paterson and
Lamb 1990; Southern, Precious, and Randall 1990; Takeuchi et
al. 1990; Vidal, Curran, and Kolakofsky 1990a; Horikami and
Moyer 1991). This homogeneity could result from the near com-
plete suppression of editing during viral genome replication.
Alternatively, it could also arise from extremely inefficient
copying of edited anti-genomes of non-hexamer length
(Hausmann et al. 1996). In the Ebolaviruses (family: Filoviridae),
the viral glycoprotein (GP) gene is edited in a fashion analogous
to the paramyxoviral P gene. However, in this case, there are no
strict constraints on genome length (Weik et al. 2005), and RNA
editing at the Ebolavirus GP editing site is observed to occur at
appreciable frequency during both transcription and genome
replication (Mehedi et al. 2011; Volchkova et al. 2011; Shabman
et al. 2014).

Overall, the frequency with which paramyxoviral P gene
editing occurs during genome replication remains unclear. If its
occurrence is non-trivial, then this could be plausibly linked to
the transition between edit modes that has occurred multiple
times in the evolutionary history of the family (Section 5.4).

3.3 Translational overprinting of the P gene

Remarkably, the P gene can be the locus for further overprinting
events. Operations at the translational level, including leaky
scanning (Giorgi, Blumberg, and Kolakofsky 1983; Shaffer
Bellini, and Rota 2003), non-AUG initiation (Curran and
Kolakofsky 1988; Boeck et al. 1992), and ribosomal shunting
(Latorre, Kolakofsky, and Curran 1998), facilitate production of
yet more proteins from the P gene in some paramyxoviruses.
While it is not know why the P gene has become the sole locus
for both transcriptional and translational overprinting events in
the paramyxoviruses, this probably reflects the presence of long
intrinsically disordered tracts in the P/V/W proteins (Longhi et
al. 2017; Guseva et al. 2019), placing relatively weak constraints
on nucleotide sequence evolution in this part of the genome
(Jordan et al. 2000; Rancurel et al. 2009; Kovacs et al. 2010).

4. Organization and function of the proteins
resulting from gene editing

4.1 P protein

The phosphoprotein is the largest of the three proteins resulting
from P gene editing, and has a range of functions. In complex
with the viral L protein, it forms an integral part of RARP and
enables both translocation of the RARP along its template,
(Kingston et al. 2004; Milles et al. 2018; Bruhn et al. 2019;
Sourimant et al. 2020) as well as packaging of the nascent RNA
genome by the nucleocapsid protein during replication. The
phosphoprotein is therefore essential (Curran, Boeck, and
Kolakofsky 1991) and is encoded by all paramyxoviruses.

The N-terminal region (NT) of P is shared with V and W. It is
intrinsically disordered but can undergo coupled binding and

folding to enable function. One such event involves the highly
conserved soyuzl and soyuz2 motifs (Karlin and Belshaw 2012).
These two modules, together with internally located sequences,
are involved in chaperoning viral nucleocapsid protein mono-
mers during replication by binding to the nucleocapsid protein
and blocking the non-specific packaging of cellular RNA
(Yabukarski et al. 2014; Alayyoubi et al. 2015; Guryanov et al.
2015; Milles et al. 2018). The NT is also a locus for the recruit-
ment of several host proteins, most prominently STAT1 (signal
transducer and activator of transcription 1) in the morbillivi-
ruses and henipaviruses (Ramachandran and Horvath 2009;
Harrison and Moseley 2020), through which P/V/W can act to in-
hibit STAT signalling. The functions of the N-terminal region
are likely regulated by phosphorylation (Saikia et al. 2008; Sun
et al. 2009; Sugai et al. 2012; Pickar et al. 2014; Qiu et al. 2016b;
Young et al. 2019). The N-terminal region ranges in size from
109 aa (in APMV-3) to 570 aa (in GH-M74a).

The unique C-terminal region of the phosphoprotein (PCT) is
encoded by the sequence following the edit site. It contains an
oligomerization domain (a coiled coil; Burmeister et al. (2000);
Tarbouriech et al. (2000); Communie et al. (2013a); Cox et al.
(2013); Bruhn et al. (2014); Jensen et al. (2020)) and a nucleocap-
sid/L protein binding domain (the foot domain, or X domain;
Johansson et al. (2003); Kingston et al. (2008); Yegambaram et al.
(2013); Blanchard et al. (2004)) which are connected by a highly
flexible linker (Longhi et al. 2017; Herr et al. 2019). The C-termi-
nal region of the phosphoprotein binds to both the large protein
(Bruhn et al. 2019; Abdella et al. 2020) and the nucleocapsid
(Kingston et al. 2004; Habchi et al. 2011; Communie et al. 2013b;
Bloyet et al. 2016; Du Pont et al. 2019), and mediates their en-
gagement. The C-terminal regions range in size from 229 aa (in
PIV-5) to 386 aa (in CPIV-3).

4.2 V protein

The paramyxoviral V protein is involved in evasion of the innate
immune response, and is a major determinant of viral pathoge-
nicity (Patterson et al. 2000; Devaux et al. 2008; Alamares et al.
2010; Schaap-Nutt et al. 2010; Satterfield et al. 2015). V proteins
may inhibit both induction of the cellular interferon (IFN) re-
sponse and IFN signalling through direct interactions with a
multitude of host proteins. These functions have been compre-
hensively reviewed elsewhere (Ramachandran and Horvath
2009; Audsley and Moseley 2013; Parks and Alexander-Miller
2013). V also regulates viral RNA synthesis (Horikami,
Smallwood, and Moyer 1996; Parks et al. 2006; Witko et al. 2006;
Nishio et al. 2008; Sleeman et al. 2008; Yang et al. 2015), al-
though the mechanism underpinning this remains unclear.
Although V aids viral replication, it is non-essential (Curran,
Boeck, and Kolakofsky 1991) and is encoded by most but not all
paramyxoviruses (Section 5.3). V is therefore considered a ‘lux-
ury’ protein.

The unique C-terminal region of V (VCT) contains a highly
conserved cysteine-rich zinc finger domain, which binds two
zinc ions (Liston and Briedis 1994; Li et al. 2006a; Motz et al.
2013). A p-hairpin, anchored at its start and end by zinc-coordi-
nating residues, is the only regular secondary structure within
this domain. In some paramyxoviral V proteins, the conserved
zinc finger domain immediately follows the edit site sequence.
However, in others, a linker of widely varying length and com-
position is observed (maximal length 136 aa, in CPIV-3). Overall,
V is the second largest of the P gene proteins: with VCT ranging
from 50 aa (in NiV) to 188 aa (in CPIV-3) in length.



The structural basis for V protein function has been investi-
gated in several cases, and there are crystal structures of the
full length parainfluenza virus 5 (PIV-5) V protein in complex
with host protein DDB1 (DNA damage-binding protein 1; Li et al.
(2006a)), and of the PIV-5 VCT in complex with host protein
MDAS (melanoma differentiation-associated protein 5; Motz et
al. (2013)). One general conclusion from these studies is that the
conformation of the zinc finger domain is overall malleable,
and likely partially templated by the binding partner.
Additionally, in the complex with DDB1, sequences from both
N-terminal and C-terminal regions of the V protein are involved
in binding, explaining how V protein activity sometimes arises
from the coordinated action of both regions.

It appears that the functional roles of the V protein are
evolving quite rapidly. Several observations support this.

First, some highly conserved biological functions of the V
protein differ significantly in the way they are implemented.
For example, while the vast majority of paramyxoviral V pro-
teins bind STAT family members in order to suppress IFN sig-
nalling, the suppression is achieved in extremely diverse
fashion. Morbillivirus V proteins bind STAT1 via their N terminal
region, and STAT?2 via their C-terminal region (Rothlisberger et
al. 2010; Devaux et al. 2011; Chinnakannan et al. 2014). These
binding events inhibit phosphorylation and nuclear transloca-
tion of the STATSs. In contrast, Rubulavirinae V proteins generally
bind STAT1 or STAT? via the C-terminal region alone (Nishio et
al. 2002, 2005; Pisanelli et al. 2016), and this leads to the targeted
degradation of STATs via the proteosomal pathway. This
requires the recruitment of additional host proteins, such as
DDB1 (Lin et al. 1998; Andrejeva et al. 2002), that enable the pol-
yubiquitination of STATSs.

Second, there are clear examples of species-specific adapta-
tions in V function which must have occurred relatively re-
cently in evolutionary history. Considering STAT signal
suppression by the rubulaviruses in more detail, species-spe-
cific adaptations of V protein function include (1) a gain in abil-
ity to bind and degrade STAT3 by MuV (Puri et al. 2009); (2) a loss
of ability to degrade STATs by Human parainfluenza virus 4
(HPIV-4), despite the retention of STAT1/STAT2 binding activity
(Nishio et al. 2005); (3) a complete loss of STAT binding activity
by Tioman virus (TioPV; Caignard et al. (2013)); and (4) a switch
to a mechanism involving mislocalization rather than degrada-
tion of STAT proteins by Mapuera virus (MapV; Hagmaier et al.
(2007)).

Overall we emphasize that the V protein is multifunctional
and its exact function varies across genera, and among species.
These functional adaptations likely reflect the unique selective
pressures faced by each virus, associated with its tropism. The
rapid molecular evolution of V appears to be linked to its role in
mediating binding events and is likely enabled by its high levels
of intrinsic disorder.

4.3 W protein

A third protein may also be generated by contranscriptional
editing. Unlike P and V, its unique C-terminal sequence is not
conserved across paramyxoviral genera and consequently this
protein has been assigned many names (Fontana et al. 2008) in-
cluding W (Vidal, Curran, and Kolakofsky 1990a), D (Pelet et al.
1991; Galinski et al. 1992), PD (Wells and Malur 2008), and I
(Paterson and Lamb 1990). For the purposes of this review, we
use W to denote the protein encoded by the reading frame that
encodes neither P nor V, and WCT to denote its unique C-termi-
nal sequence.
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There is evidence that W has evolved a function within
some paramyxoviral genera. In all cases, W accumulates in the
nucleus (Shaw et al. 2005; Wells and Malur 2008; Lo et al. 2009;
Karsunke et al. 2019; Yang et al. 2019). This is the situation for
Newecastle disease virus (NDV; genus: Orthoavulavirus), Hendra
and Nipah virus (HeV and NiV; genus: Henipavirus), and Human
parainfluenza virus 3 (HPIV-3; genus: Respirovirus). Nuclear lo-
calization signals can be identified in the unique region of the
W protein (WCT) in each case (Shaw et al. 2005; Wells and Malur
2008; Audsley et al. 2016a; Smith et al. 2018; Karsunke et al.
2019).

NDV sits alone, and we could not detect a homologous WCT
in any other Orthoavulavirus. A recent study showed that delet-
ing WCT impaired NDV replication in cultured cells, and this ef-
fect was relieved when the full-length W protein was supplied
in trans (Yang et al. 2019). However, no detailed function has
been assigned to this protein.

The Henipavirus W protein has the clearest functional link-
ages. The W protein influences the course of disease in animal
models (Satterfield et al. 2015, 2016), and may play a direct role
in subversion of the IFN response (Shaw et al. 2005; Ciancanelli
et al. 2009; Keiffer et al. 2020). For example, NiV W can sequester
unphosphorylated STAT proteins in the nucleus, via its N-ter-
minal STAT1 binding site and C-terminal NLS, potentially inhib-
iting IFN signalling. NiV and HeV W were also recently
discovered to modulate host gene expression by interacting
with the 14-3-3 family of regulatory proteins, an interaction that
depends upon phosphorylation of the penultimate serine resi-
due in WCT (Edwards et al. (2020); Fig. 2).

For HPIV-3, in an early study, joint interruption of the V and
W open reading frames attenuated viral replication (although
individual interruptions had no effect; Durbin et al. (1999)). In
interpreting this result, it should be noted that the V protein of
HPIV-3 is abnormal, and likely to be expressed in truncated
form (Section 5.3). A more recent study also suggests that WCT
promotes viral genome transcription and replication, and is po-
tentially also involved in the downregulation of § interferon ex-
pression (Roth et al. 2013). The C-terminal regions of HPIV-3,
bovine parainfluenza virus 3 (BPIV-3; genus: Respirovirus), and
caprine parainfluenza virus 3 (CPIV-3; genus: Respirovirus) W
proteins have strong sequence similarity which is itself sugges-
tive of shared function (Fig. 2).

For remaining paramyxoviruses, WCT may not necessarily
confer any biological function at all, and the region is often very
short (2 aa in SeV, 6 aa in MeV, 11 aa in MuV; Chinnakannan et
al. (2014); Horikami, Smallwood, and Moyer (1996); Curran,
Boeck, and Kolakofsky (1991); Paterson and Lamb (1990)).
However, the W protein could still potentially exert biological
effects through its shared N-terminal region, with synthesis
of W potentially being more rapid than the synthesis of either
PorV.

5. Evolution of the cotranscriptional gene
editing system

5.1 A maximum parsimony model for the evolution of P
gene editing

Across the Paramyxoviridae there are differences in edit mode,
with a faithful copy of the P gene encoding the P protein in
some viruses, and the V protein in others. There are also differ-
ences in edit pattern, with the relative abundances of the tran-
scripts encoding P, V, and W varying widely. Relative transcript
abundance is defined by the probability distribution p(Gy),
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Figure 2. W protein C-terminal regions (WCT). For the displayed sequences there is experimental data regarding the cellular localization or function of the W protein,
or a W protein homolog in another virus. All numbering is relative to the start of WCT. Sites are coloured by amino acid characteristic if the characteristic is 100% con-
served at the alignment position. Under the ClustalX colouring scheme hydrophobic residues are blue, positively charged residues—red, negatively charged residues—
magenta, polar residues—green, cysteine—pink, glycine—orange, proline—yellow, and aromatic residues—cyan (Larkin et al. 2007).

where m is the number of guanosines inserted. The most direct
source of information about this distribution comes from se-
quencing the mRNA produced in virally infected cells. However,
as Wignall-Fleming et al. (2019) have highlighted, if mRNA prep-
arations are contaminated with anti-genomic RNA, the results
may not faithfully reflect the actual abundance of mRNA.
Furthermore, several studies have noted that transcript abun-
dance varies with time post-infection (Kulkarni et al. 2009; Qiu
et al. 2016a). In both cases, the proportion of V and W tran-
scripts increased as the infection progressed, though neither
the mechanism nor functional implications are understood.
Finally, while mRNA abundances are generally assumed to be
related to encoded protein abundances, this may not always
hold in practice (Liu et al. 2016).

With these caveats noted, the experimentally derived proba-
bility distributions (edit patterns) for 26 paramyxoviruses are
displayed in Fig. 3. The maximum observed insert size is G4 in
NiV (Lo et al. 2009). Additional data on mRNA abundance, not
displayed in the figure, can be found in the following publica-
tions—SeV: Pelet et al. (1991); Kato et al. (1997); NiV: Kulkarni et
al. (2009); MeV: Liston and Briedis (1994); Millar et al. (2016);
Donohue et al. (2019); NDV: Mebatsion et al. (2001); Yang et al.
(2019); BeiV: Audsley et al. (2016b), TevPV: Johnson et al. (2019);
Burroughs et al. (2015); HPIV-2: Ohgimoto et al. (1990); MuV:
Takeuchi et al. (1990); CeMV: Bolt et al. (1995); PPRV: Mahapatra
et al. (2003); PDV: Blixenkrone-Moller et al. (1992); PorPV: Berg et
al. (1992).

The fundamental differences between viruses, apparent in
Fig. 3, reflect evolutionary events which have occurred through-
out the history of the family. The following events are mini-
mally required to explain the functional and evolutionary data:
(1) gain of the editing system, (2) loss of the editing system, (3)
evolution of the V protein zinc finger motif and gain of biologi-
cal function, (4) loss of the V protein zinc finger motif and asso-
ciated function, (5) switching of the edit mode and adaptation of
the edit pattern, and (6) acquisition of unique function by the W
protein. We estimated the evolutionary history of the
Paramyxoviridae and inferred the ancestral lineages where these
events occurred as follows: for each event we imputed the oc-
currence of the event onto branches such that the number of
events required to explain the states observed at the leaves in
the tree is minimized (Fig. 4). This is the maximum parsimony
model. An explicit limitation of this model is that it does not ac-
count for the full functional diversity of the V protein, which
has multiple biological activities (Section 4.2). A maximum par-
simony model for the evolution of P gene coding capacity has
previously been developed (Jordan et al. 2000), but based on a
much sparser data set.

5.2 Acquisition of the editing system and evolution of
the V protein

The P gene editing system has not been detected beyond the
Paramyxoviridae (Jordan et al. 2000; Hyndman et al. 2012).
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Figure 3. Experimentally derived frequency distributions (edit patterns) describing guanosine nucleotide insertion at the P gene edit site. To facilitate comparison, the
viruses are grouped by edit mode (P-mode or V-mode). Not included in the figure are several P-mode paramyxoviruses (CedV and HPIV-1) in which P gene editing does
not occur, and for which P protein mRNA is the sole species produced. The total proportion of transcripts encoding the three functionally distinct mRNA species is indi-
cated for each experiment. The bulk of the experimental data was obtained by cDNA sequencing, for which the number of sequenced transcripts n is specified.
Experimental data for BPIV-3 were obtained by a primer extension method acting directly on the mRNA population, and hence n is not specified. Viral genera indicated
in bottom right, see Section 8 for virus names.
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Therefore, the editing system likely came into existence only
once-in the lineage that led to the Paramyxoviridae. This event
was coupled with the origin of the V protein; the evolution of its
unique zinc binding motif; and the gain of many of its con-
served functions (Fig. 4). However, the timing of these events
cannot be resolved.

Cotranscriptional editing also occurs in the closely related
Filoviridae family, although in a different gene. This independent
adaptation of cotranscriptional editing as an overprinting
mechanism may be a consequence of having a slippage prone
polymerase, as all members of the order Mononegavirales exploit
slippage to polyadenylate their mRNA (Conzelmann 1998).

5.3 Partial or complete loss of the V protein

Under a maximum parsimony model, the V protein has been
lost entirely on two independent occasions, both associated
with the loss of the editing system (Fig. 4). The C-terminal zinc
binding domain has also been deleted, or significantly mutated,
on two further occasions.

Loss of the V protein is associated with retirement of the
cotranscriptional editing system—in lineage which lead to
Human parainfluenza virus 1 (HPIV-1; genus: Respirovirus) and
in the lineage which lead to Cedar virus (CedV; genus:
Henipavirus). As these viruses once employed the P-mode, loss
of the editing system was axiomatically coupled with loss of
both V and W protein expression. It is possible that loss of V
protein activity preceded loss of the edit system, but this is in-
determinate. Retirement of the editing system appears impossi-
ble for viruses employing the V-mode because the P protein is
essential for polymerase function.

For both HPIV-1 and CedV, the edit site is not identifiable in
the genome and edited mRNA could not be detected experimen-
tally (Matsuoka et al. 1991; Marsh et al. 2012). In HPIV-1, the con-
served V protein coding sequence is apparent in the genome;

B
23

however, there is no clear mechanism for protein production
due to the presence of multiple stop codons in the relevant
reading frame (Matsuoka et al. (1991); Fig. 5)). This suggests that
loss of V occurred quite recently in evolutionary history and
there has been insufficient time for the sequences to diverge,
creating a pseudogene. For CedV, only residual traces of the V
protein coding sequence remain (Marsh et al. 2012).

In the case of HPIV-3, the edit site is operational (Galinski et
al. 1992) and the zinc finger motif is detectable in the genome
by sequence analysis (Fig. 5). However, several stop codons be-
tween the edit site and the zinc finger prohibit production of
the full-length V protein, unless further non-canonical tran-
scriptional or translational mechanisms are invoked (Galinski
et al. 1992). There are also two mutations in positions that are
directly involved in zinc coordination (Fig. 5). This suggests the
VCT coding sequence is a pseudogene, similar to the situation
in HPIV-1. In protein-based analysis of infected cells, the full V
protein was not detected but a truncated variant which lacks
the conserved C-terminal region was (Roth et al. 2013). Overall,
current evidence suggests that the V protein of HPIV-3 is
expressed in a truncated form lacking the canonical zinc bind-
ing motif. Its functional status is unclear.

Finally, in the case of the Jeilongviruses, the V protein C-ter-
minal domain has been retained, but with mutation of several
critical residues involved in zinc coordination (Fig. 5). The C-ter-
minal region does not interact with STAT1 or STAT2 (Audsley et
al. 2016b), which is a conserved function of many other para-
myxoviral V proteins (Section 4.2). Nonetheless, the Jeilongviral
V protein has retained other functions, such as the ability to
bind and inactivate the cytoplasmic RNA sensor MDAS (Audsley
et al. 2016b). This finding in particular highlights the multi-
functional nature of the V protein, and the limitations of a no-
menclature in which its multiple functionalities are not fully
explicated.
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Figure 5. Cysteine-rich C-terminal regions of the V protein. The first amino acid in each aligned sequence is numbered relative to the start of the V protein. The size of
the linker that connects the shared N-terminal region of V to the first aligned position is indicated. The arrows at the top of the alignment indicate residues whose side
chains directly coordinate bound zinc ions, based on structural analysis of the PIV-5 V protein (Li et al. 2006a). Asterisks denote stop codons. Sites are coloured by
amino acid group if a group is at least 70% conserved at the alignment position (colour scheme indicated in Fig. 2). Among paramyxoviruses that have retained the an-
cestral V protein, the displayed region is invariant at 13 out of 59 positions across the entire group. The tree is the same as that in Fig. 4.

The loss of the edit system or loss of the full length V protein
may have implications for viral pathogenicity, although the
interactions between virus and host are extremely complex.
CedV (Marsh et al. 2012) causes no known disease, yet is very
closely related to HeV and NiV which cause severe and fre-
quently fatal disease in humans (Marsh and Wang 2012). These

viruses target the same family of cellular receptors (Laing et al.
2019) and the loss of V and W has been suggested as a contribu-
tor to attenuated virulence of CedV. Contrastingly, HPIV-1 and
HPIV-3 are a leading cause of respiratory disease in humans, de-
spite the absence or truncation of the V protein (Schomacker et
al. 2012). Of possible significance is that CedV, HPIV-1, and
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HPIV-3 all produce ‘C proteins’ from the P gene using transla-
tional overprinting mechanisms, and these C proteins have
established roles as IFN antagonists (Mathieu et al. 2012;
Schomacker et al. 2012). Hence, there could once have been par-
tial functional redundancy existing between V and C, which
allowed for the loss of the V protein while maintaining some
ability to evade the interferon system.

5.4 Switching of edit modes and adaption of edit
patterns

The P-mode was likely the edit mode of the last common ances-
tor of the Paramyxoviridae. Under a maximum parsimony model,
the editing system has switched to the V-mode four times dur-
ing evolutionary history (Fig. 4). These events occurred in the
lineages that lead to: (1) Avian paramyxovirus 11 (APMV-11; ge-
nus: Metaavulavirus), (2) the Rubulaviri nae subfamily, (3) the
Ferlaviruses, and (4) Salem virus (SalPV; genus: Salemvirus). Edit
patterns have been experimentally investigated for three of
these four clades: 10 members of the Rubulavirinae (Thomas,
Lamb and Paterson 1988; Kondo et al. 1990; Ohgimoto et al.
1990; Paterson and Lamb 1990; Southern, Precious, and Randall
1990; Takeuchi et al. 1990; Kawano et al. 1993; Bowden et al.
2001; Chua et al. 2001; Lau et al. 2010), 2 Ferlaviruses (Kurath et
al. 2004; Woo et al. 2014), and SalPV (Renshaw et al. 2000).

In general, the edit patterns of viruses that retain the ances-
tral P-mode (Fig. 3, top panel) are quite different to those of vi-
ruses that have subsequently adopted the V-mode (Fig. 3,
bottom panel). In the former, G, and G, insertions are most fre-
quently observed, while in the latter, Go and G, insertions pre-
dominate. It seems clear that edit patterns have co-evolved
with edit modes to maintain adequate production of P and V
transcripts. In two clades (within the Respirovirus and
Henipavirus genera), the edit patterns are long-tailed, and a sig-
nificant fraction of the transcripts have more than two guano-
sine nucleotides inserted.

The edit pattern of SalPV (Fig. 3, bottom panel) appears to be
an outlier (Renshaw et al. 2000). The Go-centric distribution
resembles those of viruses using the P-mode, and the relative
abundance of P transcripts is very low. Given the taxonomic po-
sition of SalPV, as the most immediate outgroup of the
Morbilliviruses (Fig. 4), it could be that this is a virus that has
switched edit mode but not yet adaptively evolved the edit
pattern.

5.5 Acquisition of unique function by the W protein

Under our model, the W protein has evolved a novel function
associated with its unique C-terminal region on three indepen-
dent occasions (Figs. 2 and 4): once for NDV (Yang et al. 2019;
Karsunke et al. 2019), once for the henipaviral clade comprised
of HeV and NiV (Shaw et al. 2005; Lo et al. 2009; Edwards et al.
2020), and once for the respiroviral clade composed of BPIV-3,
HPIV-3, and CPIV-3 (Pelet et al. 1991; Durbin et al. 1999). There
are varying levels of experimental evidence supporting the exis-
tence of a W protein function in these three clades (see Section
4.3). For the remaining paramyxoviruses, W has no known func-
tion. Rather, it is more likely that the expression of W is an inev-
itable by-product of the editing system; an evolutionary
spandrel (Gould and Lewontin 1979).

For the most part, W transcripts are produced quite rarely
(Fig. 3). However, this does not appear to be the case for two
clades where W has acquired function. Instead, the edit pattern
is long-tailed, and the total probability p(Gs. ) of producing a W

transcript ranges from 21 to 24% in HeV, NiV, BPIV-3, and HPIV-
3 (Pelet et al. 1991; Galinski et al. 1992; Lo et al. 2009), and some-
times even higher in temporal analyses (Kulkarni et al. 2009).

In contrast, production of W is not significantly elevated for
NDV (Steward et al. 1993; Mebatsion et al. 2001). The overall pro-
portion of W transcript in NDV is estimated at around 8-9%
(Steward et al. 1993; Qiu et al. 2016a; Yang et al. 2019) or as low
as 2.4% (Mebatsion et al. 2001). However, experiments studying
the effects of W protein knockout on viral replication (Yang et
al. 2019), suggest that these low transcript abundances are opti-
mal for fulfilling the unknown biological function of the NDV W
protein (Section 4.3).

6. Molecular mechanism of cotranscriptional
gene editing

In the Paramyxoviridae, cotranscriptional gene editing results
from transcriptional slippage. This same process facilitates
overprinting in other viruses (Sanchez et al. 1996; Mehedi et al.
2011; Shabman et al. 2014; Olspert et al. 2015; Rodamilans et al.
2015) and prokaryotes (Larsen et al. 2000; Mehedi et al. 2011,
Penno et al. 2015). Slippage sites can also rescue an organism
from deleterious frameshift mutations (Tamas et al. 2008).

Transcription has been extensively studied, most recently at
the single-molecule level for the RARP of bacteriophage ¢6
(Dulin et al. 2015a,b) and DNA-dependent RNA polymerases of
prokaryotes, eukaryotes, and DNA viruses (Shaevitz et al. 2003;
Skinner et al. 2004; Abbondanzieri et al. 2005; Larson et al. 2012;
Dangkulwanich et al. 2013; Douglas et al. 2020, 2019). These
studies have provided significant insights into the mechanisms
underlying transcription elongation.

In this final section, we discuss cotranscriptional editing in
the Paramyxoviridae under the framework presented in the sin-
gle-molecule literature, noting some additional complexities
that arise from the viral genome being packaged within a
nucleocapsid.

6.1 Transcription elongation and slippage

Under a simple Brownian ratchet model, transcription elonga-
tion can be modelled as a cycle involving three canonical steps
(Bar-Nahum et al. (2005); Abbondanzieri et al. (2005); Fig. 6, large
arrows). First, RNA polymerase steps forward along the tem-
plate from the pretranslocated to the posttranslocated state,
which frees the enzyme’s active site. Second, a complementary
nucleoside triphosphate (NTP) binds to the active site. Third,
the bound NTP is incorporated onto the 3’ end of the mRNA and
pyrophosphate is released, thus restoring the system to the pre-
translocated state.

Through backtracking, where the polymerase translocates
upstream along the template (Komissarova and Kashlev 1997,
Abbondanzieri et al. 2005), and hypertranslocation, where it
translocates downstream (Yarnell and Roberts 1999), the poly-
merase can arrive at a catalytically inactive state (Fig. 6). These
processes can lead to transcriptional pausing (Artsimovitch and
Landick 2000; Saba et al. 2019). In the case of paramyxoviruses,
extensive backtracking and hypertranslocation may be inhib-
ited by the presence of nucleoproteins acting as “roadblocks”,
analogous to the role played by nucleosomes in eukaryotic DNA
transcription (Nudler 2012).

Slippage involves the movement of one sequence in the
product/template hybrid relative to the other, which can lead to
imperfect basepairing. Slippage was hypothesized by
Streisinger et al. (1966) as one of the primary mechanisms of
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Figure 6. State diagrams of Brownian ratchet and slippage models. Plausible stuttering pathways for SeV (accession: AB039658; genomic position: 2783) and MuV (ac-
cession: EU884413; genomic position: 2432) are shown, with a RNA/mRNA hybrid of 7 bp in length. The figure depicts single nucleotide insertion (for SeV) or double nu-
cleotide insertion (for MuV). Insertions of other sizes may be possible and a single nucleotide insertion must certainly occur in MuV at low frequency. A nucleoprotein
protomer bound to the viral genome (top strand) is depicted by the coloured octagon. Large arrows indicate the canonical transcription elongation pathway, double-
ended triangular arrows denote equivalency between two connecting states, and unlabelled arrows describe translocation reactions. While slippage initializes in the
pre-translocated state in this diagram, the actual state where this process initializes is unknown.

indel events. The mechanism is thought to involve formation of
a nucleotide bulge near the 3’ end of the mRNA (Garcia-Diaz
and Kunkel 2006). If the bulge forms in the nascent strand, an
insertion can result, whereas a bulge in the template strand can
lead to a deletion.

Based on studies of the behaviour of dSDNA molecules under
applied force, Kiithner et al. (2007) and Neher and Gerland (2004)
hypothesize that slippage occurs in three steps (Fig. 6). First, a
bulge forms on one side of the hybrid. This initial reaction must

overcome a large Gibbs energy barrier. Second, the bulge dif-
fuses along the hybrid. Diffusion is likely to be quite rapid
(Woodson and Crothers 1987), and favoured if Watson-Crick
basepairing is maintained in the bulged hybrid. Third, the bulge
is absorbed at the other end of the hybrid. While these experi-
ments were performed using DNA/DNA hybrids, the general
model is likely to apply to all double helical nucleic acids.
However due to the differing structural and dynamic properties
of DNA/DNA, DNA/RNA and RNA/RNA hybrids (Bloomfield et al.
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2000), the propensity of a given nucleic acid sequence to slip
may be very different in each setting.

6.2 Stuttering by the paramyxoviral polymerase

Through transcriptional slippage, a single templated nucleotide
can be copied multiple times (stuttering). Stuttering is the pro-
posed mechanism of cotranscriptional editing in paramyxovi-
ruses. If correct, this model must explain many of the edit
patterns presented in Fig. 3. Some of these edit patterns are
long-tailed, with the virus producing significant numbers of
transcripts with more than seven guanosine nucleotides
inserted. Given the structural and energetic impediments to
forming large bulge loops in duplexed nucleic acids (Longfellow
et al. 1990; Turner and Mathews 2010), a model in which these
species result from the iterative formation of small bulges
appears more realistic than a model invoking the direct forma-
tion of bulges of arbitrarily large size. However, this remains an
assumption, as bulge formation at the P gene edit site has not
yet been structurally and biophysically characterized.

The two distinct modes of editing (i.e. the P-mode and the V-
mode) are encoded by quite different sequences (Fig. 7).

The edit sites among viruses employing the P-mode are con-
served. Using the PROSITE notation (Sigrist et al. 2002), the (ge-
nomic-sense) edit site motif can be described by U(3,6)-C(2,6). In
SeV, for example, the edit site sequence is UUUUUUCCcC, where
the lower case c is the stutter site i.e. the site reiteratively tran-
scribed from the template resulting in a guanosine insertion
into the mRNA (Vidal, Curran, and Kolakofsky 1990b;
Hausmann et al. 1999a,b). Under the stuttering model, nucleoti-
des are inserted as follows (Fig. 6, left hand side): (1) a 1 nt bulge
forms in the 3' mRNA of the RNA/mRNA hybrid. (2) The bulge is
free to diffuse along the hybrid. Although the bulge is thermo-
dynamically disfavoured, it can occur because of U/A and non-
canonical U/G basepairing which are maintained throughout
diffu sion. (3) In no particular order, the bulge is absorbed at the
5%nd and the lower-case c can be transcribed again. Each itera-
tion of these three steps is associated with a G; insertion.

In contrast, the edit sites across the four clades of the V-
mode group are quite distinct from one another. SalPV is anom-
alous, and its edit site sequence resembles the P-mode group
(Renshaw et al. 2000). This could explain the relatively low
amounts of P transcript produced (Fig. 3). The Ferlavirus edit site
is distinct from all other known edit sites (Kurath et al. 2004;
Woo et al. 2014) and the mechanism of guanosine insertion is
not clear. Through convergent evolution, APMV-11 and the
Rubulavirinae subfamily have similar edit sites (PROSITE: A(3,4)-
U(2)-C-U(1,2)-C(4,7); genomic-sense). In the case of MuV, the
edit site AAAUUCUCCC has been well characterized (Paterson
and Lamb 1990). Stuttering is proposed to occur in a fashion
similar to SeV, however the edit site sequence allows G, inserts
(encoding the P protein) to occur with greater frequency than G,
inserts (encoding the W protein) due to the preferential forma-
tion of a 2 nucleotide bulge (Fig. 6, right hand side). The iterative
formation, diffusion, and absorption of 1 or 2 nucleotide bulges
could account for the presence of larger insertions, which occur
at quite low frequency (Fig. 3).

In principle, transcriptional slippage could be initialized
from any one of the states available to the polymerase (back-
tracked, pre-translocated, post-translocated, or hypertranslo-
cated; Fig. 6). Because the editing process takes a finite time to
occur, editing and pausing of the polymerase must be coupled
to some extent (Vidal, Curran, and Kolakofsky 1990b; Pelet et al.
1991; Hausmann et al. 1999a). However, it is not known if
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APMV-9 2319
NDV 2277
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Figure 7. Edit site sequences in the paramyxoviruses. The sequences of the neg-
ative sense (genomic) RNA are displayed. The numbers indicate the genomic po-
sition of the first displayed nucleotide. P- and V-modes are denoted by P and V,
respectively. Nucleoprotein phases are displayed; the first nucleotide within
each nucleoprotein protomer is highlighted in black. This tree is the same as
thatin Fig. 4.

editing is associated with prolonged pausing, and the transition
of the RARP to a catalytically inactive state. There is currently
limited experimental data addressing this point. Partial substi-
tution of guanosine triphosphate (GTP) with inosine triphos-
phate (ITP), in in vitro assays of SeV transcription, significantly
enhanced P gene mRNA editing (Vidal, Curran, and Kolakofsky
1990b; Curran et al. 1993). As inosine incorporation promotes
backtracking and/or pausing in other cellular and viral RNA pol-
ymerases (Shaevitz et al. 2003; Larson et al. 2012; Schweikhard
et al. 2014; Dulin et al. 20153, 2017), the enhancement of P gene
editing could reflect an increased time for editing to occur.
However, it might also reflect the perturbation of bulge forma-
tion and diffusion at the edit site, through the substitution of G:
C with I: C pairings. Further experimental investigation of the
linkage between editing and pausing is clearly needed.



Slight variation in the edit site sequence perturbs stuttering
of the viral RdRP. For instance, when the length of the poly(A)
sequence at the SeV edit site was increased, from A(3)-G(6) to
A(8)-G(1), the average number of inserts increased dramatically
(Hausmann et al. 1999a). Similarly, when the SeV edit site se-
quence was mutated to resemble that of BPIV-3, its edit pattern
changed correspondingly (Hausmann et al. 1999b). These results
speak to the primary importance of the genome sequence in
governing polymerase stuttering. This is supported by studies
on the potyviral RNA editing site, which can be transferred to
the genome of an entirely different family of single-stranded
RNA viruses, without complete loss of function (Stewart et al.
2019).

The roles that nucleoprotein displacement and the rule of
six play during cotranscriptional editing have been investigated
(Hausmann et al. 1996; Iseni et al. 2002; Kolakofsky 2016).
Changing the nucleoprotein phase around the edit site se-
quence (of SeV) resulted in an apparent change in edit pattern
(Iseni et al. 2002). We computed the expected nucleoprotein
phase at the edit site of each virus under the rule of six model.
Although nucleoprotein displacement may play a role in edit-
ing, the nucleoprotein phase at the edit site does not appear to
be well conserved (Fig. 7).

7. Conclusion

The paramyxoviral P gene is subject to overprinting at both the
transcriptional and translational levels. Here we have reviewed
cotranscriptional editing of the P gene, which results in produc-
tion of an essential protein (P), that is absolutely required for vi-
ral replication, as well as ‘luxury’ proteins (V and W), that can
aid viral replication by interfering with host defences (Fig. 1).
Consistent with their role, the V and W proteins are undergoing
relatively rapid functional diversification. We have compiled
the genomic sequences at the P gene edit site (Fig. 7) as well as
all existing quantitative data on the gene editing that occurs
during transcription (Fig. 3).

Based on the latter data, we have constructed an evolution-
ary model which incorporates some basic notions of protein
function, and describes the minimal set of events required to
account for the observed variations in the editing process (Fig.
4). As structural and functional data on the P, V, and W proteins
continues to accumulate, it should be possible to elaborate this
model to incorporate the specific functional roles of P, V, and W.

Although transcriptional slippage provides the accepted
physical mechanism for insertion of non-templated bases into
the P gene, many aspects of this process remain ill-defined.
Slippage at the edit site depends on bulge loop formation in the
duplex RNA, however, the structural and energetic behaviour
underlying this process remains uncertain. It is also unclear
how slippage is coordinated with either canonical or non-ca-
nonical steps of the transcription elongation pathway (Fig. 6).
Better models of the slippage process would help define some
of the physical constraints that exist on the evolution of the re-
markable gene overprinting system of the paramyxoviruses.

8. Virus abbreviations

AchPV 1-2: Achimota viruses 1-2

AnaPV: Anaconda paramyxovirus
APMV: 2-13 Avian paramyxoviruses 2-13
APV A-C: Antarctic penguin viruses A-C
AsaPV: Atlantic salmon paramyxovirus
GH-M74a: Ghanaian bat henipavirus
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BeiV: Beilong virus

BPIV-3: Bovine parainfluenza virus 3
CDV: Canine distemper virus

CedV: Cedar virus

CeMV: Cetacean morbillivirus
CPIV-3: Caprine parainfluenza virus 3
FdlV: Fer de Lance virus

FeMV: Feline morbillivirus

HeV: Hendra virus

HPIV 1-4: Human parainfluenza viruses 1-4
JPV: J-virus

MenPV: Menangle virus

MeV: Measles virus

MojV: Mojiang virus

MosPV: Mossman virus

MapV: Mapuera virus

MuV: Mumps virus

NarPV: Nariva virus

NDV: Newcastle disease virus

NiV: Nipah virus

PDV: Phocine distemper virus

PIV-5: Parainfluenza virus 5

PorPV: Porcine rubulavirus

PPIV-1: Porcine parainfluenza virus 1
PPRV: Peste-des-petits-ruminants virus
RPV: Rinderpest virus

SalPV: Salem virus

SeV: Sendai virus

SosPV: Sosuga virus

SunCV: Sunshine coast virus

SV-41: Simian virus 41

TevPV: Teviot virus

ThkPV: 1-3 Tuhoko viruses 1-3
TioPV: Tioman virus

TlmPV: Tailam virus

TupPV: Tupaia virus

Algorithms and data availability

Sequences were aligned by M-Coffee (Wallace et al. 2006) and
treated with subsequent manual adjustment using AliView
(Larsson 2014). Phylogenetic tree built with BEAST 2 (Bouckaert
et al. 2019) from an alignment of the L protein, and a relaxed
clock model Drummond et al. (2006). Sequence database acces-
sion numbers, P/V/W sequences, L alignment, and BEAST 2 in-
put/output files are available at https:/github.com/
jordandouglas/ParamyxovirusSlippageEvolution.
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