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Abstract

Disturbances in the circadian pacemaker system are commonly found in individuals with depression and sleep-related
problems. We hypothesized that some of the canonical circadian clock genes would be associated with depression
accompanied by signs of disturbed sleep, early morning awakening, or daytime fatigue. We tested this hypothesis in a
population-based sample of the Health 2000 dataset from Finland, including 384 depressed individuals and 1270 controls,
all with detailed information on sleep and daytime vigilance, and analyzed this set of individuals with regard to 113 single-
nucleotide polymorphisms of 18 genes of the circadian system. We found significant association between TIMELESS variants
and depression with fatigue (D+FAT+) (rs7486220: pointwise P = 0.000099, OR = 1.66; corrected empirical P for the model of
D+FAT+ = 0.0056; haplotype ‘C-A-A-C’ of rs2291739-rs2291738-rs7486220-rs1082214: P = 0.0000075, OR = 1.72) in females,
and association to depression with early morning awakening (D+EMA+) (rs1082214: pointwise P = 0.0009, OR = 2.70;
corrected empirical P = 0.0374 for the model D+EMA+; haplotype ‘G-T’ of rs7486220 and rs1082214: P = 0.0001, OR = 3.01) in
males. There was significant interaction of gender and TIMELESS (for example with rs1082214, P = 0.000023 to D+EMA+ and
P = 0.005 to D+FAT+). We obtained supported evidence for involvement of TIMELESS in sleeping problems in an
independent set of control individuals with seasonal changes in mood, sleep duration, energy level and social activity in
females (P = 0.036, H = 0.123 for rs1082214) and with early morning awakening or fatigue in males (P = 0.038 and P = 0.0016,
respectively, for rs1082214). There was also some evidence of interaction between TIMELESS and PER1 in females to D+FAT+
as well as between TIMELESS and ARNTL, RORA or NR1D1 in males to D+EMA+. These findings support a connection between
circadian genes and gender-dependent depression and defective sleep regulation.
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Introduction

The circadian rhythm is an inherent cycle of approximately 24

hours entrained by environmental cues, particularly by light-dark

transitions [1]. A region of the brain, the suprachiasmatic nucleus

(SCN) of the anterior hypothalamus, operates as the master

biological clock [2]. Light information goes from the eye to the

SCN via the retino-hypothalamic pathway [3,4], and the neurons

within the SCN mediate a series of interlinked autoregulatory

transcriptional/translational feedback loops [5,6]. The key

transcriptional activator of the molecular clock consists of a

heterodimer between either the clock homolog protein (CLOCK,

alias bHLHe8) or the neuronal PAS domain protein 2 (NPAS2, alias

bHLHe9) and the aryl hydrocarbon receptor nuclear translocator-

like protein (ARNTL, alias BMAL1) that binds to E-box elements in

the promoter of three period (PER) and two cryptochrome (CRY)

genes, thereby activating their transcription [7,8]. A number of

other genes, such as nuclear receptor subfamily 1, group D,

member 1 (NR1D1), RAR-related orphan receptor A (RORA), and

timeless homolog (Drosophila) (TIMELESS), are involved in the

feedback loops. The central clock is a key regulator of many bodily

functions that follow a circadian rhythm, such as sleep and

wakefulness, thermoregulation, and glucose homeostasis and fat

metabolism.

Functional regulation of sleep is essential for health, and sleep is

associated with energy restoration [9]. Individuals who experience

poor sleep regulation often suffer from fatigue, increased risk of

accidents as well as poor performance and motivation [10,11].

People with major depression commonly experience changes in

sleep regulation that are seen as abnormal total sleep duration,

poor sleep efficiency, overwhelming rapid-eye-movement sleep

and early morning awakening [12,13,14]. A number of epidemi-
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ological studies have demonstrated that poor sleep often precedes

the onset of depression [15,16,17,18,19,20]. Utilizing a cohort of

18,631 same-sex twins, we recently showed that poor sleep quality

correlates with subsequent onset of depressed mood, whereas the

converse relation was not supported [21]. Poor sleep quality may

reflect a relative shortage of slow-wave sleep, which has been

considered as a predictor of recurrent depressive episodes [22].

The ever-increasing occupational and social demands of

modern life may predispose individuals to instability in their

circadian rhythm, which seems to be an intrinsic feature of mood

disorders; moreover, circadian instability disrupts hormone and

neurotransmitter release [23]. Furthermore, a disrupted circadian

rhythm can affect the sleep-wake cycle [24,25], which is one of the

early symptoms of mania [26], and disruption of circadian activity

is apparent in bipolar patients even when they are not acutely ill

[27]. The circadian pacemaker generates the sleep-wake cycle

[28], and it is the phase relationship between the sleep-wake cycle

and the circadian pacemaker during entrainment that promotes

the consolidation of sleep and wakefulness [29]. At night, the SCN

receives specific feedback from sleep stages [30], and an excess of

rapid-eye-movement sleep may result in the advanced phase

position of the circadian rhythms in depressed individuals.

A number of studies have tested variants of genes that control

the circadian system for their association with mood disorder

[31,32,33,34,35,36,37,38,39]. However, many of the findings

await replication in other samples and populations. Perhaps the

most convincing evidence so far has emerged from bipolar

disorder with some evidence of association with period homolog 3

(Drosophila) (PER3), ARNTL [36], basic helix-loop-helix family,

member e40 (BHLHE40), casein kinase 1, epsilon (CSNK1E), and

CLOCK [40]. Interestingly, Npas2 deficient mice [41] as well as

Clock mutant mice display a behavior profile similar to the manic

state in bipolar disorder [42].

A role for circadian gene dysfunction has been established

among the human sleep disorders, a subset of insomnias associated

with circadian changes in the timing of sleep in humans [43], the

most striking evidence for which is the familial advanced sleep-

phase syndrome (ASPS) in which a phosphorylation site mutation

of period homolog 2 (Drosophila) (PER2) was found to co-

segregate with the disease in one extended family [44]. PER2 has

also been reported to be associated with morning preference [45].

There is some evidence for association of PER3 [45,46,47,48] and

CSNK1E with delayed sleep phase syndrome (DSPS) [49]. In

addition to the timing of sleep phase as evidenced with ASPS and

DSPS, circadian clock genes may contribute to the duration of

sleep phase, as demonstrated with basic helix-loop-helix family,

member e41 (BHLHE41) whose amino acid changing mutation

was found to co-segregate with the short sleep phenotype in a

small nuclear family with two affected individuals [50]. Further-

more, differences in the sleep-wake structure, sleep propensity, and

cognitive performance during sleep loss between individuals have

been predicted by certain polymorphisms in PER3 [51].

Intriguingly, the mutant mouse models of many clock genes, such

as Arntl, Clock, Npas2, Cry1 and Cry2, also have alterations in sleep

duration and homeostasis [52,53,54,55].

We have previously shown that there are gender-dependent and

symptom-specific differences in the genetic background of

depression at the population level. Some of the susceptibility

genes, such as cAMP responsive element binding protein 1

(CREB1) in males, affect the core component of depressive

disorder with depressive mood and anhedonia (unrelated to sleep

disturbance), whereas others, such as tryptophan hydroxylase 2

(TPH2) or glutamate decarboxylase 1 (GAD1) in females, are more

strongly associated with mood disorder only when accompanied

with disturbed sleep [56]. We expanded this hypothesis to include

genes from the circadian system and assumed that some of the

circadian clock genes would be associated with depression

accompanied by signs of disturbed sleep, early morning awaken-

ing, or daytime fatigue. We also hypothesized that seasonal

fluctuation is common in number of the patients with mood

disorder [57], and the same genes would associate with seasonal

variations in mood and behavior.

We tested these hypotheses in a population-based sample of the

Health 2000 dataset from Finland, comprising 384 depressed

individuals and 1270 controls with detailed information on sleep,

daytime vigilance and seasonality features, and analyzed this set of

individuals with respect to 113 single-nucleotide variants from 18

genes of the circadian system.

Results

A total of 113 single-nucleotide polymorphisms (SNPs) spanning

18 genes from the circadian system were genotyped in the Health

2000 population-based sample to investigate the genetic back-

ground of depression and its characteristic symptoms related to

sleep disturbances. We first performed single-locus analyses of the

variants that surviving Hardy-Weinberg equilibrium test (n = 106).

These analyses were made separately for both genders with three

models of depression. Tables 1 and 2 show pointwise permuted P-

values from those analysis with indication if the P-value over the

model in question was ,0.05. This was followed by haplotype

association analyses (Tables 3 and 4), and by interaction analyses

(Table 5) on variants selected based on results from the single-locus

analyses. Complete data from permutation-based allelic associa-

tion analyses for depression and its subtypes, linear regression

analysis for global seasonality score (GSS), and linkage disequilib-

rium (LD) patterns for all genotyped genes are available in Tables

S1, S2, S3 and S4, respectively.

Association to Depression in Females
Single-locus analyses in cases and controls. Single-locus

analysis of females (n = 967) suggested an association (P,0.05)

between depression and depression accompanied by signs of

disturbed sleep with 14 SNPs from six circadian-related genes:

TIMELESS, ARNTL, RORA, nuclear factor, interleukin 3 regulated

(NFIL3), CSNK1E, and CRY2 (Table 1; full data available in Table

S1). The statistically strongest evidence was for the association of

TIMELESS rs7486220 with depression and fatigue (pointwise

P = 0.000099, odds ratio (OR) = 1.66). This was the only variant

that survived correction for multiple testing in females (corrected

empirical P for the model D+FAT+ = 0.0056, Bonferroni

corrected P for all models of the study = 0.033). The associated

minor allele ‘A’ of rs7486220 occurred more frequently in cases

with excessive daytime fatigue (f = 0.40 in cases with fatigue,

f = 0.32 in healthy controls). In addition, three ARNTL variants

had modest association with depression alone or depression with

fatigue, with strongest evidence being for rs969485 associated with

depression and fatigue (P = 0.026, OR = 0.70). Three RORA

variants also showed modest evidence for association with

depression alone or with fatigue, with the best evidence for an

intronic region SNP, rs4774388, that was associated with

depression and fatigue (P = 0.01, OR = 0.61). Two NFIL3

variants were modestly associated with depression and fatigue,

with best evidence for rs1619450 (P = 0.017, OR = 0.59); there was

a similar association for one CSNK1E variant, rs135745 (P = 0.015,

OR = 1.34). Finally, a CRY2 intronic variant, rs10838524, was

associated weakly with depression and early morning awakening

(P = 0.010, OR = 1.45).

Association Study of TIMELESS
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Haplotype analysis. We then tested for an association of haplotypes

comprising those variants that had shown evidence for association

in the single-locus analyses (P,0.05, see Table 1) and their

adjacent variants (Table 3). Those analyses provided further

evidence for TIMELESS. The two-SNP haplotype ‘A-A’ of

rs2291738 and rs7486220 occurred significantly more frequently

in cases with fatigue (f = 0.41 in cases, f = 0.28 in controls;

P = 0.0000077, OR = 1.81) as did haplotype ‘A-C’ of rs7486220

and rs1082214 (f = 0.44 in cases, f = 0.32 in controls,

P = 0.000021, OR = 1.65). Owing to allelic coherence of these

findings, we also tested for three-SNP and four-SNP haplotypes of

TIMELESS and found significant overall association of the

haplotype ‘C-A-A-C’ of rs2291739-rs2291738-rs7486220-

rs1082214 (f = 0.41 in cases, f = 0.29 in controls; P = 0.0000075,

OR = 1.72). The pairwise LD between these four markers was

relatively high (D’ = 0.99, 0.83, and 0.93, respectively).

The allelic haplotype ‘A-G’ of SNPs rs3897902 and rs969485 in

ARNTL also confirmed the suggestive association observed in the

single-SNP analysis with depression and fatigue (P = 0.002,

OR = 0.37, f = 0.04 in cases, f = 0.1 in controls; D’ = 0.97), as

did the haplotype ‘G-G’ of rs10838524 and rs7123390 in CRY2

with depression and early morning awakening (P = 0.003,

OR = 1.56, f = 0.55 in cases, f = 0.44 in controls; D’ = 0.88) and

haplotype ‘C-T’ of rs4774370 and rs1863270 in RORA with

depression (P = 0.002, OR = 0.61, f = 0.08 in cases, f = 0.12 in

controls, D’ = 0.16).

Association analysis for GSS. The linear regression model

in the complete sample of females and controlled for age and status

for the GSS metabolic factor 1 (GSSf1) and GSS mental factor 2

(GSSf2) indicated modest associations for three variants:

TIMELESS rs1082214 with GSSf2 (P = 0.016, H = –0.110),

NFIL3 rs813498 with GSSf1 (P = 0.008, H = –0.261), and

TIMELESS interacting protein (TIPIN) rs2063690 with GSSf2

(P = 0.005, H = –0.121) in depressed females (Table 1 and Table

S3).

Association to Depression in Males
Single-locus analyses in cases and controls. Analysis of

single SNPs in males (n = 687) yielded suggestive evidence for

association (P,0.05) between depression and depression

accompanied by signs of disturbed sleep with 14 SNPs from six

genes: ARNTL, aryl hydrocarbon receptor nuclear translocator-

like 2 (ARNTL2), RORA, NPAS2, TIPIN and period homolog 1

(Drosophila) (PER1) (Table 2; full data available in Table S2). The

strongest evidence was for a relatively rare variant rs1082214 of

TIMELESS, that associated with depression accompanied by early

morning awakening with the minor allele ‘T’ (pointwise

P = 0.0009, OR = 2.7, f = 0.15 in cases with early morning

Table 4. Haplotype association analysis of SNPs of the genes having associations of P,0.05 in the single-locus analysis in males.

Gene SNPs Haplotype
Frequency
in cases

Frequency
in controls OR P-values Phenotype

TIMELESS rs2291738- rs7486220 A-G 0.21 0.14 1.62 0.037 D+EMA+

rs7486220- rs1082214 G-T 0.16 0.06 3.01 0.0001 D+EMA+

rs2291739-rs2291738-rs7486220 C-A-G 0.16 0.08 2.20 0.006 D+EMA+

rs2291738-rs7486220-rs1082214 A-G-T 0.11 0.05 2.36 0.004 D+EMA+

rs2291739-rs2291738-rs7486220-rs1082214 C-A-G-T 0.12 0.05 2.61 0.003 D+EMA+

ARNTL rs2290036-rs1868049 C-C 0.15 0.09 1.79 0.008 D+

Odds ratio (OR).
D+EMA+, depressed patients with early morning awakening.
D+, patients with depression.
doi:10.1371/journal.pone.0009259.t004

Table 3. Haplotype association analysis of SNPs of the genes having associations of P,0.05 in the single-locus analysis in females.

Gene SNPs Haplotype
Frequency
in cases

Frequency
in controls OR P-values Phenotype

TIMELESS rs2291739- rs2291738 C-A 0.46 0.36 1.51 0.0006 D+FAT+

rs2291738- rs7486220 A-A 0.41 0.28 1.81 0.0000077 D+FAT+

rs7486220- rs1082214 A-C 0.44 0.32 1.65 0.000021 D+FAT+

rs2291739-rs2291738-rs7486220 C-A-A 0.41 0.29 0.97 0.00001 D+FAT+

rs2291738-rs7486220-rs1082214 A-A-C 0.41 0.28 1.81 0.0000067 D+FAT+

rs2291739-rs2291738-rs7486220-rs1082214 C-A-A-C 0.41 0.29 1.72 0.0000075 D+FAT+

ARNTL rs3897902-rs969485 A-G 0.04 0.1 0.37 0.002 D+FAT+

CRY2 rs10838524-rs7123390 G-G 0.55 0.44 1.56 0.003 D+EMA+

RORA rs4774370-rs1863270 C-T 0.08 0.12 0.61 0.002 D+

Odds ratio (OR).
D+FAT+, depressed patients with fatigue.
D+EMA+, depressed patients with early morning awakening.
D+, patients with depression.
doi:10.1371/journal.pone.0009259.t003
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awakening, f = 0.03 in cases without early morning awakening,

f = 0.06 in controls; corrected empirical P for the model D+EMA+
P = 0.0374, Bonferroni corrected P for all models of the

study = 0.22).

Altogether four ARNTL2 variants were associated suggestively

with depression accompanied by fatigue, with the best evidence

being for rs7304939 (P = 0.023, OR = 0.46), and one variant

rs2289709 with depression accompanied by early morning

awakening (P = 0.02, OR = 0.37) and fatigue (P = 0.014,

OR = 0.47). Three ARNTL variants showed moderate association

with depression alone or with fatigue, with best evidence for

rs2290036 and depression (P = 0.010, OR = 1.70). NPAS2

rs12712083, as well as a non-synonymous coding SNP located

on exon 5 rs2063690 of TIPIN (Ala111Gly), were associated with

depression and fatigue (P = 0.045, OR = 0.72 and P = 0.037,

OR = 1.71, respectively). Finally, RORA rs1568717 and PER1

rs885747 showed suggestive evidence for association with

depression and early morning awakening (P = 0.026, OR = 1.60,

and P = 0.040, OR = 0.66, respectively).

Haplotype analysis. The two-SNP haplotype analyses

provided further evidence for TIMELESS with evidence for

association of a relatively rare haplotype ‘G-T’ of rs7486220 and

rs1082214 with depression and early morning awakening

(P = 0.0001; OR = 3.01, f = 0.16 in cases, f = 0.06 in controls;

Table 5. Interaction analysis of TIMELESS variants with all other genotyped circadian genes.

Chr1 SNP1 Gene1 Chr2 SNP2 Gene2 P-values OR Gender Phenotype

12 rs2291739 TIMELESS 17 rs3027188 PER1 0.019 0.51 Females D+FAT+

12 rs2291739 TIMELESS 17 rs2253820 PER1 0.046 0.59 Females D+FAT+

12 rs2291739 TIMELESS 12 rs4964052 ARNTL2 0.049 0.71 Females D+FAT+

12 rs2291739 TIMELESS 12 rs922270 ARNTL2 0.05 1.65 Females D+FAT+

12 rs2291738 TIMELESS 2 rs1811399 NPAS2 0.022 1.59 Females D+FAT+

12 rs2291738 TIMELESS 22 rs7289981 CSNK1E 0.042 0.57 Females D+FAT+

12 rs7486220 TIMELESS 17 rs3027188 PER1 0.008 0.45 Females D+FAT+

12 rs7486220 TIMELESS 17 rs2253820 PER1 0.044 0.57 Females D+FAT+

12 rs1082214 TIMELESS 11 rs2290036 ARNTL 0.028 0.09 Females D+FAT+

12 rs1082214 TIMELESS 11 rs4757151 ARNTL 0.037 0.44 Females D+FAT+

12 rs1082214 TIMELESS 4 rs10462028 CLOCK 0.031 2.19 Females D+FAT+

12 rs2291739 TIMELESS 15 rs2290430 RORA 0.005 10.1 Males D+EMA+

12 rs2291739 TIMELESS 11 rs1868049 ARNTL 0.0006 4.36 Males D+EMA+

12 rs2291739 TIMELESS 11 rs4757151 ARNTL 0.002 2.31 Males D+EMA+

12 rs2291739 TIMELESS 11 rs3897902 ARNTL 0.003 4.18 Males D+EMA+

12 rs2291739 TIMELESS 11 rs3816358 ARNTL 0.019 0.40 Males D+EMA+

12 rs2291739 TIMELESS 11 rs969485 ARNTL 0.043 2.08 Males D+EMA+

12 rs2291739 TIMELESS 12 rs922270 ARNTL2 0.027 0.21 Males D+EMA+

12 rs2291738 TIMELESS 11 rs4757151 ARNTL 0.004 2.23 Males D+EMA+

12 rs2291738 TIMELESS 11 rs1868049 ARNTL 0.005 3.16 Males D+EMA+

12 rs2291738 TIMELESS 11 rs3897902 ARNTL 0.006 3.76 Males D+EMA+

12 rs2291738 TIMELESS 11 rs3816358 ARNTL 0.041 0.46 Males D+EMA+

12 rs2291738 TIMELESS 17 rs2289591 PER1 0.010 2.72 Males D+EMA+

12 rs2291738 TIMELESS 15 rs2290430 RORA 0.017 6.53 Males D+EMA+

12 rs2291738 TIMELESS 19 rs3745733 DBP 0.031 2.25 Males D+EMA+

12 rs2291738 TIMELESS 1 rs3753503 PER3 0.039 8.42 Males D+EMA+

12 rs2291738 TIMELESS 12 rs3809237 CRY1 0.045 1.75 Males D+EMA+

12 rs7486220 TIMELESS 15 rs4774370 RORA 0.003 3.12 Males D+EMA+

12 rs7486220 TIMELESS 1 rs3753503 PER3 0.031 5.18 Males D+EMA+

12 rs7486220 TIMELESS 15 rs16943429 RORA 0.038 2.16 Males D+EMA+

12 rs1082214 TIMELESS 17 rs2269457 NR1D1 0.003 3.97 Males D+EMA+

12 rs1082214 TIMELESS 15 rs2028122 RORA 0.006 0.20 Males D+EMA+

12 rs1082214 TIMELESS 15 rs3759785 TIPIN 0.020 11.56 Males D+EMA+

12 rs1082214 TIMELESS 15 rs2063690 TIPIN 0.041 3.80 Males D+EMA+

Chr: Chromosomes.
P-values and Odds ratios (OR) were generated using the logistic regression model. None of the P-values remained significant (P,0.05) when considering the number of
tests performed (408 in both genders).
D+FAT+, depressed patients with fatigue.
D+EMA+, depressed patients with early morning awakening.
doi:10.1371/journal.pone.0009259.t005
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D’ = 0.93). The haplotype ‘C-C’ of rs2290036 and rs1868049 in

ARNTL were associated with depression (P = 0.008, OR = 1.79,

f = 0.15 in cases, f = 0.09 in controls; D’ = 1.0) (Table 4).

Association analysis for GSS. The linear regression model

for the GSS factors in the complete sample of males indicated

weak association of PER1 rs885747 with GSSf1 (P = 0.022, H =

0.069) and of CRY 1 rs2287162 with GSSf2 (P = 0.0009, H = 0.082)

(Table 2 and Table S3).

Interaction Analyses
As circadian genes function coordinately in the molecular clock,

we looked for interactions of other genotyped variants of circadian

genes with TIMELESS variants that gave the strongest evidence

for association in both genders. In females with depression

accompanied by fatigue (D+FAT+), we found some evidence of

interaction between TIMELESS rs7486220 and PER1 rs3027188

(P = 0.008, OR = 0.45) (Table 5). In males with depression

accompanied by early morning awakening (D+EMA+), there

was also some evidence of interaction between TIMELESS

rs2291739 and ARNTL rs1868049 (P = 0.0006, OR = 4.36),

between TIMELESS rs7486220 and RORA rs4774370 (P = 0.003,

OR = 3.12), and between TIMELESS rs1082214 and NR1D1

rs2269457 (P = 0.003, OR = 3.97) (Table 5). However, none of the

P-values remained significant (P,0.05) when considering the

number of tests performed (46102 = 408 in both genders).

In addition, we looked for interaction of gender with variants

from TIMELESS for depression with sleep disturbances. There was

strong evidence for interaction of rs7486220 or rs1082214 to

depression with early morning awakenings (P = 0.0015 and

0.000023, respectively), as well as for depression with fatigue

(P = 0.005 for both variants).

Analyses of TIMELESS in the Second Sample Set
To further elucidate the role of TIMELESS in regulation of

mood and sleep disturbances, we analyzed the gene in another set

of individuals from the Health 2000 cohort. That sub sample was

initially collected for genome wide association study on metabolic

syndrome. We excluded all those individuals that had a diagnosis

of depression and were thus already included in the original study

samples. These ‘‘depression-free’’ samples comprised then 759

females and 753 males.

Analysis with rs1082214, the only variant from TIMELESS

available in that dataset, revealed evidence for association to

GSSf2 in females (P = 0.036, H = 0.123) (Table 6), so that the allele

‘C’ that was related to depression in females was also related to

higher level of seasonality changes in mood. Rs1082214 also

associated with early morning awakening (P = 0.038, OR = 1.52,

f = 0.09) or fatigue (P = 0.0016, OR = 1.79 f = 0.10) in males so

that the allele ‘T’’ that was related to depression and sleep

disturbances in males was also related to early morning

awakenings and fatigue in this second set of individuals.

Discussion

Here, we report evidence that genes from the circadian system

have a role in the induction of depression and its subtypes

associated with presence of early morning awakening and fatigue.

We found significant association of a common allelic variant of

TIMELESS and depression with fatigue as well as seasonal

variations in mood, sleep duration, energy level and social activity

in females. We also found suggestive association for another rare

variant of TIMELESS with depression and early morning

awakening in males, and some evidence for interaction between

TIMELESS and other circadian genes in depression and related

sleep problems. These findings support a connection between

circadian genes and gender-dependent depression and defective

sleep regulation.

The biological function of TIMELESS is essential for resetting

the biological clock. It interacts directly with the PER proteins,

and it negatively regulates the ARNTL-CLOCK and ARNTL-

NPAS2 complexes that induce the transactivation of PER1 [58].

TIMELESS is also involved in DNA damage checkpoint

responses. It interacts with CRY2 and with the cell cycle

checkpoint protein CHK1 and the ataxia-telangiectasia mutated

(ATM)–Rad3-related kinase–ATR-interacting protein (ATR–

ATRIP) complex [59], and it may be specifically required for

the ATR-CHK1 pathway in the replication checkpoint induced by

ultraviolet light in the skin and retina. Of the four TIMELESS

variants examined here, a SNP located in the 3’ untranslated

region (rs7486220) showed the strongest association with the

minor allele ‘A’, increasing the risk for depression with fatigue

1.66-fold in females. This was statistically the strongest finding of

the study (pointwise P = 0.000099) which was significant over the

model D+FAT+ (permutation-based corrected empirical

P = 0.0056) as well as over all models of the study (Bonferroni

corrected P = 0.034). However, LD between all genotyped

markers of TIMELESS was high (D’ = 0.83–0.99), and overall

the strongest evidence for association was obtained with the

haplotype ‘C-A-A-C’ of rs2291739-rs2291738-rs7486220-

rs1082214 spanning the entire gene in females (P = 0.0000075,

OR = 1.72). In males, the minor allele ‘T’ of rs1082214 in the

Table 6. Results for TIMELESS SNP rs1082214 in the second sample set.

Gene SNP Allelea

Single locus analysis permutation-based P-value
‘‘and OR (95% CIb)’’

Global Seasonality
Scorec Gender

D–EMA+ vs. D–EMA–– D–FAT+ vs. D–FAT– GSSf1 GSSf2

TIMELESS rs1082214 C/T 0.462 0.85 (0.56–1.28) 0.518 1.12 (0.80–1.57) 0.974 0.036* Female

0.038 1.52 (1.01–2.28) 0.0016 1.79 (1.25–2.57) 0.994 0.107 Male

aAllele: Major/Minor.
b95% confidence intervals for the odds ratio (OR).
cThe P-values for quantitative traits were generated using the linear regression model.
*b (Regression coefficient) = 0.123.
D-EMA+, controls with early morning awakening.
D–EMA–, controls without early morning awakening.
D-FAT+, controls with fatigue.
D–FAT–, controls without fatigue.
doi:10.1371/journal.pone.0009259.t006
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promoter region, overlapping an intronic region in the gene

encoding major intrinsic protein of lens fiber (MIP), was associated

with depression and early morning awakening (pointwise

P = 0.0009, OR = 2.7; permutation-based corrected empirical P

for the model D+EMA+ = 0.0374, Bonferroni corrected P for all

models of the study = 0.22), as was the haplotype ‘G-T’ of

rs7486220 and rs1082214 (P = 0.0001, OR = 3.01).

Thus, we obtained strong evidence of a role for TIMELESS in

the genetic background of depression with signs of sleep

disturbance in both genders, but the associated alleles were not

the same. Moreover, evidence for females was obtained for a wider

chromosomal segment than that for males, for which only one

single variant yielded statistically significant evidence for associa-

tion (P,0.001). A chicken ovalbumin upstream promoter

transcription factor (COUP-TF) binding site is located in the

promoter region of TIMELESS. The target binding sequences for

COUP-TFs are typically highly conserved and reportedly are

involved in the repression of gene expression [60] although the

natural ligand in humans is not known. COUP-TFs are classified

as members of the steroid receptor family [61], and one study has

shown that COUP-TFI plays an important role in mitigating

estrogen-responsive gene expression [62]. This molecular mech-

anism may account for the TIMELESS expression and our finding

of different susceptibility alleles in males and females.

To further elucidate the role of TIMELESS in the interplay of

depression and sleep disturbances, we examined the variant

rs1082214 in an independent set of control individuals from

Health 2000. In females, we observed that the same allelic variant

(allele ‘C’ of rs1082214) that was part of the high-risk haplotype for

depression and fatigue also associated to higher level of seasonality

changes in mood. The other allelic form of that SNP (minor allele

‘T’ of rs1082214) that had increased risk for depression with early

morning awakenings and fatigue, also associated with early

morning awakening (P = 0.038) or fatigue (P = 0.0016) in males

of the second study sample. These findings suggest that in females,

association of TIMELESS is specific to fatigue accompanying

depression (rather than to the symptoms of fatigue alone) and to

seasonal fluctuation of mood. The finding of an association

between TIMELESS and symptoms of disturbed sleep without

diagnosis of depressive disorder in males is highly intriguing and

may constitute evidence for a sub clinical form of depression not

revealed in the CIDI interview but manifested mainly by

symptoms of disturbed sleep. Possible phenotypic differences

may offer a challenge for further studies and the development of

diagnostic classification.

Earlier studies have also revealed a role for TIMELESS in

insomnia, mania [40], bipolar disorder type 1, schizophrenia, and

schizoaffective disorder [37]. The allele ‘G’ of intronic SNP

rs2291738 was associated with female depression in our study

(Table 1), and the same allele also has been found to be associated

with bipolar disorder type 1 [37]. This is particularly interesting as

bipolar disorder and depression share clinical features, such as

depressive episodes and cyclic recurrence of phases. According to

family and twin studies, they share also at least part of their genetic

background [63,64,65] and in longitudinal studies, there is a shift

from depression to bipolar disorder [66]. On this perspective it is

highly interesting that we also found an association between

TIMELESS and seasonal variations in mood, sleep duration,

energy level and social activity, representing features that are

common to both unipolar and bipolar mood disorders [67].

We found suggestive evidence for genetic interaction between

TIMELESS and a number of clock genes within the circadian

pathways. These observations imply that genetic networks that

control the circadian system are intimately involved in the

susceptibility to depression and sleep-related problems. We note,

however, that the statistical relevance for these findings was

relatively modest.

Several ARNTL variants showed modest association with

depression accompanied by fatigue in females. Out of them

rs1982350 and rs6486121 are in relatively high LD with variants

that have been related to susceptibility to hypertension and type 2

diabetes [68]; rs1982350 has also been associated with schizo-

phrenia/schizoaffective disorder and bipolar 1 disorder [37].

Rs969485, one of the markers of a haplotype previously associated

with hypertension [68], was here associated with depression and

fatigue in both genders with different alleles. Consequently, one

might hypothesize that altered levels or function of ARNTL may

contribute to hypertension and type 2 diabetes via mechanisms

related to disturbed sleep and mood. In addition, we obtained

evidence for association of the promoter and intron 1 region of

RORA with depression and sleep disturbances, and this same

region has been earlier associated with severe obesity [69]. Thus,

these findings may offer one possible molecular mechanism for the

association between metabolic syndrome and depressive disorders

in general population [70,71].

Previous studies have demonstrated important associations of

clock genes with sleep and mood disorders, as for example

between PER2 variants and familial ASPS [44,72], between PER3

variants and diurnal preference and DSPS [46,47], and between

CLOCK and mood disorders [32,33,34] and human diurnal

preference [73]. None of the variants from these genes showed

evidence for association with depression or its subtypes in the

present study, although the SNPs examined in PER3 here are

either identical or tag those genotyped in the other studies (Figure

S1). It is, however, noteworthy that our sample was small and

underpowered to detect genetic risks ,1.5 in females and ,1.8 in

males (see materials and methods). This is also the major limitation

of the current study. On the other hand, by analyzing separately

cases with sleep disturbances, we aimed at diminish genetic

heterogeneity of our sample that was originally derived by careful

ascertainment from the relatively homogeneous population of

Finland, as reflected in genetic terms by extended LD patterns as

compared to other populations [74]. Another clear limitation is the

problem of multiple testing that may lead to spurious P-values and

it is noteworthy that out of the all variants examined here, only

associations with the TIMELESS variants rs7486220 in females

and rs1082214 in males sustain after correction for the multiple

testing. Ultimately, our findings need to be replicated in

sufficiently powered cohorts of patients with information on both

mood and sleep.

In conclusion, we present here a systematic report on

polymorphisms in multiple circadian genes and their associations

with depression and disturbed sleep. Our data support the

involvement of circadian clock genes in the gender-specific

regulation of mood and sleep. This finding may have clinical

relevance considering that the prevalence of depressive disorder

varies between males and females and further helps us understand

the genetics of the circadian system and to develop strategies to

address its dysfunction.

Materials and Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

Institutional Review Board of Helsinki and Uusimaa Hospital

District. All participants provided written informed consent for the

collection of samples and subsequent analysis.
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First Sample Set
The study sample was recruited from the population-based

Health 2000 program in Finland. The sampling design, target

population, and methods of the survey have been reported

elsewhere (http://www.ktl.fi/terveys2000/index.uk.html). The

health status of all study subjects was evaluated by an interview

conducted at home and a health examination monitored by

physicians and trained nurses at the local healthcare center. These

interviews included questions related to the quality of sleep as well

as general and mental health problems.

The diagnosis of major depressive disorder or dysthymia

involves the research version of the CIDI based on criteria from

the Diagnostic and Statistical Manual of Mental Disorders (DSM-

IV) for psychiatric disorders during the last 12 months [75]. The

details of the predisposition for early morning awakening and

fatigue have been published [56].

The study sample consisted of 1654 subjects, the youngest of

which was 30 years of age. Of these, 384 were cases (259 females,

mean age 49 years, and 125 males, mean age 48 years) (group D+).

There were 1270 individuals in the control group (708 females,

mean age 46 years, and 562 males, mean age 45 years) with no

depression or any other psychiatric disorder according to the CIDI

interview (group D–). The control group were matched by their

age and gender to the cases (n = 384) and it comprised 392

additional individuals from the general population that did not

have any sleep related problems or disorders (Table 7). Altogether,

the sample was representative of the Finnish population (Figure

S2).

Seasonal variations in mood and behavior were investigated in

the study sample with a two-factor solution for GSS on the

Seasonal Pattern Assessment Questionnaire [76]. Factor 1 was

considered as a metabolic factor (GSSf1) (weight and appetite) and

factor 2 as a mental factor (GSSf2) (sleep duration, social activity,

mood and energy level) for the season-bound variations that may

feature depressive episodes [77].

Second Sample Set
We analyzed an independent set of individuals from the Health

2000 survey in a sample that was initially selected for the study on

metabolic disorder. We excluded all cases with a CIDI-based

diagnosis of depression from that sample which then comprised

753 males (men age 47 years) and 759 females (mean age 53

years). Of them, 691 males and 695 females had information on

GSS. There were 248 males who reported to have early morning

awakenings and 342 had fatigue. The corresponding numbers in

females were 274 and 388, respectively (Table 7).

Genotyping Methods
Genomic DNA was isolated from peripheral blood leukocytes

using a standard EDTA extraction procedure [78]. The circadian

genes we chose were based on the literature (see Table 8). SNPs

within these genes were selected using the International HapMap

database (www.hapmap.org) (see Table S5). CEPH (Centre

d’Etude du Polymorphisme Humain) genotype data of the

International HapMap Project were referred to in order to cover

the haplotype tagging SNPs (tagSNPs), International HapMap

Consortium [79]. We implemented the pairwise tagging method

with an r2 threshold of 0.8 and minor allele frequency (MAF) of

0.1. For large genes (tagging SNP number .50) such as NPAS2

and RORA, tagSNPs were selected evenly spaced throughout the

gene. The flanking regions of the DNA sequences were derived

from SNPper [80]. The extension primers for polymerase chain

reaction were designed with MassARRAY Assay Design 3.1

software (Sequenom Inc., San Diego, CA, USA).

SNP genotyping was performed using MassARRAY iPLEX

Gold platform (Sequenom Inc.) following the manufacturer’s

guidelines in 24- to 34-plex reactions in 384-well plates using a

total reaction volume of 5 ml including 12.5 ng of genomic DNA.

The qualities of genotypes were analyzed using MassARRAY

Typer 4.0 software (Sequenom Inc.) and verified manually. As

quality controls, eight duplicated DNA samples and eight water

controls were included in each plate. The overall average

genotyping success rate for the SNP data was $95%, and MAF

was $5%.

Hardy-Weinberg equilibrium was monitored using Haploview

version 4.1 [81], and a cutoff of p,0.05 was applied. Seven SNPs

[rs17374292 (PER3); rs6722909, rs12712085 (NPAS2); rs7950226,

rs2278749 (ARNTL); rs7137588, rs17413842 (ARNTL2)] failed the

Hardy-Weinberg equilibrium test and were excluded from further

analyses.

Table 7. Features of the samples used.

Group N (Females) Age (Average 6 SD) N (Males) Age (Average 6 SD)

First sample set

patients with depression (D+) 259 49.02613.65 125 47.94610.75

depressed patients with early morning awakening (D+EMA+) 109a 51.64613.19 61b 48.8569.85

depressed patients with fatigue (D+FAT+) 194a 50.10614.06 103b 48.39611.07

controls (no depression) (D–) 708 46.35611.80 562 44.80610.57

controls without early morning awakening (D–EMA–) 705 46.32611.80 561 44.83610.57

controls without fatigue (D–FAT–) 580 46.10611.68 482 45.28610.69

Second sample set

controls with early morning awakening (D–EMA+) 274c 56.87610.38 248d 54.29610.30

controls with fatigue (D–FAT+) 388c 56.24610.22 342d 48.56611.42

controls without early morning awakening (D–EMA–) 412 69.0567.77 419 48.82611.84

controls without fatigue (D–FAT–) 349 56.97610.48 383 53.08610.64

Overlap in group’s D+EMA+ and D+FAT+ was a94 for females and b 58 for males [56].
Overlap in the second sample set with D–EMA+ and D–FAT+ was c165 for females and d136 for males.
doi:10.1371/journal.pone.0009259.t007
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The second study sample was genotyped with Illumina 610 K

platform (Illumina Inc. San Diego, CA, USA). The call rate was

.95% both for individuals and markers. The markers with MAF

,1% or Hardy-Weinberg p ,161026 had been excluded.

Statistical Analyses
We compared the allele frequencies between cases and controls

using chi-square tests as implemented in the PLINK software

package, web-based version 1.06 (http://pngu.mgh.harvard.edu/

purcell/plink/) [82]. To exclude possible false-positive results,

PLINK’s max (T) permutation test with 10,000 permutations was

used to generate empirical p-values and for multiple testing

correction. Power calculations show that our sample was powered

(Table S6) to detect associations for variants that increase risk

depression $1.5 fold in females and $1.8 fold in males at Æ = 0.05

and H = 0.80 and $2.0 fold in females and $2.7 fold in males at

Æ = 0.05/(2611363) = 0.000073 threshold level for statistical

significance when taken into account the number of tests

and H = 0.80.

In the single-locus analysis, we compared the following groups:

(1) all depressed patients against all controls (D+ vs. D–), (2)

depressed patients with early morning awakening against controls

without early morning awakening (D+EMA+ vs. D–EMA–), and

(3) depressed patients with fatigue against controls without fatigue

(D+FAT+ vs. D–FAT–). To check gender-dependent and

symptom-specific differences in the genetic background of

depression, females and males were analyzed separately.

Subsequently, we performed a descriptive analysis and com-

pared allelic frequencies of gene variants that gave any evidence

for an association (P,0.05, not corrected for multiple testing). The

following non-overlapping groups were analyzed: (1) D+EMA–

FAT– (n = 41 females and 16 males), (2) D+EMA+FAT+ (n = 94

females and 58 males), (3) D+EMA+FAT– (n = 15 females and 3

males; owing to the small number of males in this group, we did

not examine their allelic frequencies), (4) D+EMA–FAT+ (n = 91

females and 33 males), and (5) controls, D–EMA–FAT– (n = 578

females and 481 males).

Factors 1 and 2 from GSS were analyzed using linear regression

models including age and affection status as covariates. This model

was constructed separately for all females (n = 967) and all males

(n = 687). We also implemented similar type of analyses for second

sample set in which the status for metabolic disorder as well as age

were the covariates.

We also used Haploview (V.4.1) to determine the pair-wise LD

structure for all genotyped variations within each studied circadian

gene [81]. We then performed two-SNP, three-SNP and four-SNP

haplotype association analyses by utilizing SNPs in genes giving an

association of P,0.05 in the single-locus analyses of the first

sample set.

Furthermore, the logistic regression model, as implemented in

the PLINK software package (V.1.06) [82], was used to investigate

interaction of gender between variants of most significantly

associated gene and study phenotypes, also used to SNP-SNP

interaction analyses for SNPs that gave significant results when

comparing D+FAT+ females vs. D–FAT– females, and D+EMA+
males vs. D–EMA– males.

Finally, to search for transcription factor binding sites within a

particular TIMELESS gene that was differentially associated with

both genders for depression and sleep-related problems, we

implemented the tool ConSite, a platform-independent web

resource [83]. The corresponding regulatory regions of human

(ENSG00000111602) and target mouse (ENSMUSG00000039994)

were retrieved using a genome browser such as EnsEMBL (www.

ensembl.org), and the retrieved orthologous pairs of genomic

sequences were re-aligned using the ORCA aligner [83]. We then

examined the transcription factor binding sites shared by this gene.

Only vertebrate transcription factors, with a specificity of minimum

10 bits and a TF score threshold of 90%, in parts of the

sequences presenting a minimum conservation of 90% between

the species.

Table 8. List of studied circadian candidate genes.

Gene Symbol Gene Name References

PER3 period homolog 3 (Drosophila) [36,37,46,47,48,51]

PER2 period homolog 2 (Drosophila) [37,44,45,84]

NPAS2 neuronal PAS domain protein 2 [31,84]

CLOCK clock homolog (mouse) [32,33,34,35,37,40,42,73]

NFIL3 nuclear factor, interleukin 3 regulated [85]

BHLHE40 basic helix-loop-helix family, member e40 [40,86]

CRY2 cryptochrome 2 (photolyase-like) [37,54]

ARNTL aryl hydrocarbon receptor nuclear translocator-like [36,37,53,68,84]

ARNTL2 aryl hydrocarbon receptor nuclear translocator-like 2 [40]

BHLHE41 basic helix-loop-helix family, member e41 [50,86]

TIMELESS timeless homolog (Drosophila) [37]

CRY1 cryptochrome 1 (photolyase-like) [37,54]

RORA RAR-related orphan receptor A [69]

TIPIN TIMELESS interacting protein [87]

NR1D1 nuclear receptor subfamily 1, group D, member 1 [40,88,89]

PER1 period homolog 1 (Drosophila) [37]

DBP D site of albumin promoter (albumin D-box) binding protein [40]

CSNK1E casein kinase 1, epsilon [40,49]

doi:10.1371/journal.pone.0009259.t008
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Supporting Information

Figure S1 Linkage disequilibrium (LD) structures of PER3

SNPs. LD structures of PER3 SNPs based on (A) the Health 2000

study sample, (B) based on the Health 2000 sub sample that was

genotyped for genome wide association study (GWA), and (C)

based on the HapMap data with all possible SNPs found in (A),(B)

and SNPs rs10462020, rs2640909, rs10462021 studied by Ebisawa

et al., (EMBO reports 2001:2:342).

Found at: doi:10.1371/journal.pone.0009259.s001 (7.80 MB TIF)

Figure S2 Geographical characteristics of the study samples.

The Health 2000 cohort was collected from 5 university hospital

areas, 1) Helsinki and Uusimaa, 2) Varsinais-Suomi, 3) Pirkanmaa,

4) Pohjois-Savo, and 5) Pohjois-Pohjanmaa; red, green color

marked for cases and controls, respectively.

Found at: doi:10.1371/journal.pone.0009259.s002 (1.79 MB TIF)

Table S1 Complete results for analysis between depressive

disorder and SNPs of the circadian clock genes in females from

Finnish population. aSNPs yielding permutated pointwise p-

values, bold are SNPs having the p-values , 0.05 in the single-

locus analyses. bAlleles: Major/Minor. D+, patients with depres-

sion. D-, controls (no depression). D+EMA+, depressed patients

with early morning awakening. D-EMA-, controls without early

morning awakening. D+FAT+, depressed patients with fatigue. D-

FAT-, controls without fatigue. *SNP indicated permutation-based

corrected empirical P-value (P,0.05) over the model D+FAT+
vs.D-FAT- .

Found at: doi:10.1371/journal.pone.0009259.s003 (0.05 MB

XLS)

Table S2 Complete results for analysis between depressive

disorder and SNPs of the circadian clock genes in males from

Finnish population. aSNPs yielding permutated pointwise p-

values, bold are SNPs having the p-values , 0.05 in the single-

locus analyses. bAlleles: Major/Minor. D+, patients with depres-

sion. D-, controls (no depression). D+EMA+, depressed patients

with early morning awakening. D-EMA-, controls without early

morning awakening. D+FAT+, depressed patients with fatigue. D-

FAT-, controls without fatigue. *SNP indicated permutation-based

corrected empirical P-value (P,0.05) over the model D+EMA+
vs. D-EMA-.

Found at: doi:10.1371/journal.pone.0009259.s004 (0.04 MB

XLS)

Table S3 Results from association analysis of Global Seasonality

Score (GSS) with the sample of depressed females and males. SNPs

yielding suggestive P-values (P,0.05). Alleles: Major/Minor.

b= Regression coefficient. P-values for the GSS factor 1 and

factor 2 were generated using the linear regression model

including age and affection status as covariates.

Found at: doi:10.1371/journal.pone.0009259.s005 (0.02 MB

XLS)

Table S4 Linkage Disequilibrium (LD) patterns for all geno-

typed variations within each of the studied circadian genes in the

Health 2000 dataset.

Found at: doi:10.1371/journal.pone.0009259.s006 (1.00 MB

DOC)

Table S5 List of genotyped circadian SNPs in the current study.

The variant information is from the NCBI dbSNP BUILD 125

and 129 (http://www.ncbi.nlm.nih.gov/).

Found at: doi:10.1371/journal.pone.0009259.s007 (0.03 MB

XLS)

Table S6 Power calculations.

Found at: doi:10.1371/journal.pone.0009259.s008 (0.03 MB

XLS)
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