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Abstract

Dendrolimus kikuchii Matsumura, 1927 is a serious forest pest causing great damage to

coniferous trees in China. Despite its economic importance, the population genetics of this

pest are poorly known. We used three mitochondrial genes (COI, COII and Cytb) to investi-

gate the genetic diversity and genetic differentiation of 15 populations collected from the

main distribution regions of D. kikuchii in China. Populations show high haplotype and nucle-

otide diversity. Haplotype network and phylogenetic analysis divides the populations into

three major clades, the central and southeastern China (CC+SEC) clade, the eastern China

(EC) clade, and the southwestern China (SWC) clade. Populations collected from adjacent

localities share the same clade, which is consistent with the strong relationship of isolation

by distance (r = 0.74824, P = 0.00001). AMOVA analysis indicated that the major portion of

this molecular genetic variation is found among the three groups of CC+SEC, EC and SWC

(61.26%). Of 105 pairwise FST comparisons, 93 show high genetic differentiation. Popula-

tions of Puer (PE), Yangshuo (YS) and Leishan (LS) are separated from other populations

by a larger genetic distance. Distributions of pairwise differences obtained with single and

combined gene data from the overall populations are multimodal, suggesting these popula-

tions had no prior population expansion in southern China. The nonsignificant neutral test

on the basis of Tajima’ D and Fu’s Fs, and the lack of a star-shaped haplotype network

together with the multiple haplotypes support this hypothesis. Pleistocene climatic fluctua-

tions, combined with the host specificity to Pinus species, made these regions of south

China into a refuge for D. kikuchii. The high level of population genetic structuring is related

to their weak flight capacity, their variations of life history and the geographic distance

among populations.
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Introduction

Simao pine moth, Dendrolimus kikuchii Matsumura, 1927, is a destructive forest pest with an

extensive range across southern China. Larvae attack various coniferous trees and regular out-

breaks occur. These outbreaks are mainly on Pinus langhianensis Chev, P. yunnanensis Franch,

P. massoniana Lambert, P. armandi Franch and Keteleeria evelyniana Mast. [1,2]. D. kikuchii
larvae consume, on average, 7486.6 mm of P. langhianensis pine needles to complete their

development [3]. During outbreaks, a large amount of pine needles are consumed, giving the

appearance of forest fire damage. Larval damage from a large infestation of D. kikuchii can

reduce the yield of timber, resin and cones, and affect the growth rate of pines, even resulting

in tree death [1,2]. The Simao pine moth shows differences in ecological preferences among

areas in China. One generation of D. kikuchii occurs in areas with short periods of optimal

environment, such as in the middle region of Yunnan and Guizhou provinces. In Zhejiang,

Fujian, and the southwest region of Yunnan provinces, two generations occur. In different

counties of Yunnan province, such as Jingdong and Anning, the life histories of D. kikuchii
also show significant variation [1].

Genetic diversity and genetic structure in insects can be affected by many factors, such as

host plant species, chemical controls, geographic distance and geographic barriers [4–11]. For

some lepidopterous species, the genetic diversity and genetic structure are related to their

migration capacity and number of generations [12–15]. Despite the economic and landscape

threats of the D. kikuchii to pine trees in the southern parts of China and the need to establish

control strategies for this pest, it has been unclear whether analogous associations between

these factors and genotype patterns may be present among D. kikuchii populations.

Pleistocene climatic fluctuations are thought to have a great effect on this species’ distribu-

tion and historical demography [16]. South China was considered as a key area of some refugia

for many relict rare species during the Pleistocene glaciation [17,18]. Zhang et al [19] studied

the geohistory of Dendrolimus punctatus, a sympatric species of D. kikuchii, based on these

geological events. They found that D. punctatus settled down in south China with the spread of

masson pine during the Pleistocene. However, to our knowledge, there is no published report

on the population history of D. kikuchii, and also no studies on the population history of Den-
drolimus species based on molecular data.

In this study, we use three mitochondrial genes to (i) investigate the genetic diversity and

genetic differentiation of 15 populations collected from the main distribution regions of D.

kikuchii in southern China, and infer the demographic history of this pest, and (ii) to test the

hypothesis that geographical isolation and biological characters, such as life history, are signifi-

cant factors underlying genetic variation in Chinese D. kikuchii.

Material and methods

Ethics statement

There is no endangered or protected species involved in this study. No specific permissions

were required for the described field studies for this widespread forest pest. We confirm that

the locations are not privately owned or otherwise protected.

Sampling

A total of 182 individuals were collected from 15 locations during 2013 to 2016 within the D.

kikuchii China distribution range (Table 1 and Fig 1). Different instar larvae and adult moths

were sampled. For larvae, only one individual was collected per tree. For adult moths, phero-

mone traps were used in the pine forest (>1 ha) and only one moth from each trap was
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sampled in order to avoid sampling errors. All sampled insects were immersed in absolute

ethyl alcohol, and then stored at -20˚C prior to genetic analysis.

DNA extraction and amplification

Genomic DNA was extracted from the last proleg of the larvae or from any leg of the adult

using the DNeasy Tissue Kit (QIAGEN, Hilden, Germany). Extraction was performed accord-

ing to the bench protocol for animal tissues. Mitochondrial COI (LCO1490, HCO2198, [20]),

COII (Eva, Patrick, [21]), and Cytb (generated for codling moth, unnamed [22]) were selected

for use in this study. Polymerase chain reactions (PCR) were performed using a S1000 Ther-

mal Cycler (BIO-RAD, Hercules, CA, USA) in a total volume of 20 μl, containing 10 μl 2×PCR

Super Master Mix (Biotool, Shanghai, China), 0.25 μM of each primer, and 1 μl genomic DNA

(10–30 ng/μl). PCR amplification was employed with denaturation at 95˚C for 10 min, fol-

lowed by 40 amplification cycles consisting of 95˚C for 30 s, primer-specific annealing temper-

ature of 53˚C (COI), 52˚C (COII and Cytb) for 1 min, 72˚C for 45 s, and then a final step at

72˚C for 10 min. Amplified products were purified and sequenced by Tianyi Huiyuan Biotech-

nology Co., Ltd.

Data analysis

The sequences were preliminarily aligned using the CLUSTAL X program [23]. Sequences of

COI (646), COII (675), Cytb (700) of D. kikuchii were deposited in the NCBI GenBank (Gen-

Bank accession numbers: COI, MF155667-MF155697; COII, MF155698-MF155737; Cytb,

MF155738-MF155760) (data in S1–S3 Text). Multiple sequences of COI, COII and Cytb were

concatenated to yield a total length of 2021 bp. The haplotype network of D. kikuchii was ana-

lyzed using a median-joining algorithm in the program Network 4.6 [24]. A neighbour-joining

(NJ) tree was built using NJ tree subroutine in NEIGHBOUR within PHYLIP 3.5 [25], and the

parameters were expanded 1,000 times. The CONSENSE subroutine within PHYLIP was then

applied to generate a consensus NJ tree that provided bootstrap support at each node. The tree

was visualized using treeview version 1.6.6 software. DnaSP 5.0 [26] were performed to calcu-

late number of polymorphic sites (S), number of haplotypes (H), haplotype diversity (Hd),

Table 1. Sampling information of D. kikuchii in China.

Province Location Population code Latitude Longitude Sample size Sample date

Fujian Longyan LY 25˚040N 116˚590E 8 2016.06.19

Jiangle JL 26˚420N 117˚270E 4 2014.04.16

Wuyishan WYS 27˚450N 117˚540E 15 2016.05.01

Hunan Hengyang HY 26˚560N 112˚430E 32 2014.06.13

Jiangxi Jian JA 27˚000N 114˚490E 19 2016.05.20

Jiujiang JJ 30˚220N 118˚250E 4 2016.04.06

Zhejiang Qiandaohu QDH 29˚350N 119˚000E 10 2014.08.07

Guangxi Yangshuo YS 24˚440N 110˚270E 4 2014.08.19

Yunnan Puer PE 22˚500N 100˚460E 32 2013.10.25

Guizhou Leishan LS 25˚040N 108˚110E 4 2015.06.01

Anhui Nanling NL 30˚550N 118˚150E 6 2013.09.20

Huangshan HS 30˚050N 118˚120E 26 2014.06.07

Qimen QM 29˚530N 117˚410E 5 2014.04.01

Taiping TP 30˚190N 118˚000E 7 2014.04.15

Jingde JD 30˚220N 118˚250E 6 2014.05.15

https://doi.org/10.1371/journal.pone.0179706.t001
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nucleotide diversity (Pi), Tajima’s D (D), and Fu’s Fs (Fs). Analysis of molecular variance

(AMOVA) was performed using the ARLEQUIN version 3.5 based on the combinations of

the three gene sequences [27], along with calculating pair fixation indices (FST). The pairwise

genetic distances were calculated by MEGA 6.0 [28] based on the Kimura-2-parameter

model [29]. Referring to the criterion for genetic differentiation by Wright (1978) [30], we

defined genetic differentiation as low for FST<0.05, moderate for 0.05<FST<0.15, high for

0.15<FST<0.25, and very high for FST>0.25 [31]. In order to test isolation by distance (IBD),

the matrices of genetic distance FST/(1-FST) and the geographic distance (ln) between all 15

sampling populations were compared using the Mantel test with 10,000 permutations [32].

This analysis was performed using the ZT software package [33]. For examining demographic

history, the distribution of pairwise differences between individual sequences was analyzed by

means of mismatch distribution analysis using DnaSP 5.0 [26]. The formula, Tau = 2 ut was

used to detect the time of population size changes [34]. The nucleotide substitution rate in

mitochondrial DNA was 2.3% per million years (MY) as suggested in Knowles et al. (2000)

[35].

Fig 1. Sample locations for the 15 D. kikuchii populations from China, the codes for D. kikuchii populations are explained in

Table 1; the gray region represents the geographic distribution of five D. kikuchii populations in Anhui.

https://doi.org/10.1371/journal.pone.0179706.g001
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Results

Genetic diversity

For concatenated sequences, the haplotype diversity ranged from 0 to 1 with a average of

0.940, while the nucleotide diversity ranged from 0 to 0.00251 with a average of 0.01451

(Table 2). All populations displayed large numbers of mitochondrial haplotypes, with a total

31 haplotypes obtained for COI, 40 haplotypes for COII, and 23 haplotypes for Cytb. Seven,

six and four common haplotypes were shared for COI, Cytb and COII respectively (Fig 2). The

median-joining network demonstrated a high genetic diversity for populations of D. kikuchii
in China. Of 73 examined haplotypes, 68 were unique. Most populations lacked a common

haplotype.

Genetic differentiation

The Median-Joining network of the haplotypes can be divided into three major clades (Clades

CC+SEC, EC and SWC) (Fig 3). All haplotypes in Clade CC+SEC were obtained from samples

from central China and southeastern China including Hunan, Jiangxi, and Fujian provinces,

while all haplotypes in Clade EC were from eastern China including Anhui and Zhejiang prov-

inces. The haplotypes in Clade SWC included samples from southwestern China and covered

Yunnan, Guizhou and Guangxi provinces. Overall, populations collected from adjacent locali-

ties or the same province shared the same clade. However, the Median-Joining network of the

haplotypes based on single gene of COI and Cytb was not in line with the result from the com-

bined genes. This may due to less nucleotide variation in both single genes.

Phylogenetic reconstruction using the Kimura-2-parameter resulted in a consensus NJ tree

with comparatively higher bootstrap values. The populations were divided into three major

clusters, CC+SEC, EC and SWC, which comply well with the results from the haplotype net-

work (Fig 4).

Table 2. Parameters of genetic diversity based on mitochondrial sequence data of 15 populations of D. kikuchii.

Population (Abbreviation) Combined gene

S Hd Pi H

Longyan (LY) 6 0.929 0.00127 6

Jiangle (JL) 9 1.000 0.00223 4

Wuyishan (WYS) 6 0.648 0.00050 6

Hengyang (HY) 11 0.613 0.00057 8

Jian (JA) 10 0.604 0.00113 6

Jiujiang (JJ) 10 0.833 0.00251 3

Qiandaohu (QDH) 20 1.000 0.00244 10

Yangshuo (YS) 2 0.333 0.00033 2

Puer (PE) 9 0.442 0.00042 8

Leishan (LS) 5 1.000 0.00130 4

Nanling (NL) 1 0.600 0.00030 2

Huangshan (HS) 35 0.942 0.00176 18

Qimen (QM) 2 0.600 0.00059 2

Taiping (TP) 3 0.714 0.00057 2

Jingde (JD) 0 0 0 1

Total 150 0.940 0.01451 73

This table includes population code, number of polymorphic sites (S), number of haplotypes (H), haplotype diversity (Hd), nucleotide diversity (Pi)

https://doi.org/10.1371/journal.pone.0179706.t002
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Fig 2. Median-Joining network based on the single genes of COI, COII and Cytb haplotypes. Each circle represents a

haplotype, and the area of a circle is proportional to the number of observed individuals. Colors within the nodes refer to the

D. kikuchii sampling regions.

https://doi.org/10.1371/journal.pone.0179706.g002
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Fig 3. Median-Joining network based on the combined gene of COI, COII and Cytb haplotypes. Each circle represents a haplotype, and the

area of a circle is proportional to the number of observed individuals. Colors within the nodes refer to the D. kikuchii sampling regions. A, B, and C

indicate the three clades obtained.

https://doi.org/10.1371/journal.pone.0179706.g003
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The values of pairwise FST range from 0 to 0.98921. Of 105 comparisons, 93 showed high

genetic differentiation. The pairwise FST values between JA and JJ populations were less than

0.15, indicating moderate genetic differentiation. The pairwise FST values between the popula-

tions from Anhui and Zhejiang provinces, ranged from 0 to 0.06363, indicating low genetic

differentiation. FST values among populations from Anhui Province range from 0 to 0.11845,

suggesting a relatively low genetic differentiation (Table 3). This is consistent with the results

of the clustering analysis based on a Median-Joining network.

Fig 4. Unrooted NJ phylogenetic tree of D. kikuchii based on the combination of the three gene sequences, estimated

with PHYLIP using Kimura-2-parameter (1000 replications). The bootstraps were shown near the nodes. A, southwestern

China clade; B, central and southeastern China clade; C, eastern China clade.

https://doi.org/10.1371/journal.pone.0179706.g004
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The values of pairwise genetic distance between PE population and other populations range

from 0.032 to 0.037, indicating high genetic differentiation.

Similar high values were observed in comparisons of the LS population with other popu-

lations, which range from 0.016 to 0.032. Comparisons of the YS population with other pop-

ulations range from 0.015 to 0.032. The values of genetic distance among the remaining

populations are less than 0.01 (Table 3).

AMOVA results indicate that the major portion of the molecular genetic variation is found

among groups (61.26%). Exact tests showed a significant genetic variance on all three levels

(P<0.001) (Table 4).

The Mantel test for the 15 populations revealed a positive correlation between genetic dis-

tances and geographic distances (r = 0.74824, P = 0.00001), suggesting that isolation by dis-

tance had a limiting effect on gene flow.

Mismatch distribution

The results of the combined gene analysis show that Tajima’ s D values are significantly posi-

tive with a value of 0.24250, but are not significant in most specific populations (P<0.05 in HS,

PE and HY, P>0.05 in the rest of the populations). Fu’s F statistic was significantly negative

with a value of -5.132 (P>0.1) (Table 5). At the population level, HS, HY and PE populations

have negative and significant Tajima’ s D and Fu’s Fs values, whereas HS, HY and PE popula-

tions show a bimodal distributions, suggesting that expansion events were not detected with

this analysis (data not shown). Distributions of pairwise differences (mismatch distributions)

obtained with the single and combined gene data from the overall populations were multi-

modal, suggesting that the populations of D. kikuchii in southern China did not experience

population expansion (Fig 5). A nonsignificant neutral test based on Tajima’ D and Fu’s Fs

support this interpretation. The time of reaching a stable population size are estimated to be

26500 (COI), 21600 (COII), and 11800 (Cytb) years ago.

Discussion

Using three mitochondrial genes, we investigated the genetic diversity and structure of 182

individuals of 15 D. kikuchii populations sampled throughout their main areas of distribution

in China. The results show a high genetic diversity and high level of genetic structuring of D.

kikuchii in the sampled areas.

All populations displayed large numbers of mitochondrial haplotypes, with a total 31 haplo-

types obtained for COI, 40 haplotypes for COII, and 23 haplotypes for Cytb, of which seven,

six and four were common haplotypes shared respectively. Of 73 examined haplotypes based

on combined genes, 68 were unique and did not share the same ancestral haplotype. High

numbers of private haplotypes and lack of ancestral haplotype suggest that D. kikuchii could be

a species native to China. In a previous study, Zheng et al. [36] indicated that these two features

can be considered as indicators for native species, especially for native species with a low

Table 4. Analysis of molecular variance of populations.

Source of variation d. f. Sum of

squares

Variance

components

Percentage of

variation

P value

Among groups 2 1672.749 12.13831 Va 61.26 P<0.001

Among populations within

groups

12 782.032 6.72706 Vb 33.95 P<0.001

Within populations 164 155.756 0.94973 Vc 4.79 P<0.001

Total 178 2610.536 19.81510

https://doi.org/10.1371/journal.pone.0179706.t004
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Fig 5. Observed and expected mismatch distributions for D. kikuchii in China, based on COI, COII, Cytb, and combined gene

sequences.

https://doi.org/10.1371/journal.pone.0179706.g005

Table 5. Parameters of the neutral test based on mitochondrial sequence data of 15 populations of D.

kikuchii.

Population (Abbreviation) Combined gene

Tajima’s D Fu’s Fs

D P Fs P

Longyan (LY) 0.5185 >0.10 -1.980 >0.05

Jiangle (JL) -0.8294 >0.10 -0.664 >0.10

Wuyishan (WYS) -1.5856 >0.05 -2.782 <0.05

Hengyang (HY) -1.8270 <0.05 -3.202 <0.05

Jian (JA) -1.0770 >0.10 -0.630 >0.10

Jiujiang (JJ) -0.5281 >0.10 1.557 >0.10

Qiandaohu (QDH) -1.4796 >0.10 -6.049 <0.05

Yangshuo (YS) -1.1320 >0.10 0.952 >0.10

Puer (PE) -1.9080 <0.05 -4.601 <0.05

Leishan (LS) -0.2125 >0.10 -1.414 >0.10

Nanling (NL) 1.4451 >0.10 0.795 >0.10

Huangshan (HS) -2.2918 <0.01 -11.469 <0.05

Qimen (QM) 1.4588 >0.10 1.688 >0.10

Taiping (TP) 1.6500 >0.10 0.263 >0.10

Jingde (JD) 0 - 0 -

Total 0.2425 >0.10 -5.132 >0.10

This table includes population codes, Tajima’s D (D), and Fu’s Fs (Fs). Bold type values indicate statistical

significance (P<0.05).

https://doi.org/10.1371/journal.pone.0179706.t005

Population genetics of Dendrolimus kikuchii in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0179706 June 29, 2017 11 / 16

https://doi.org/10.1371/journal.pone.0179706.g005
https://doi.org/10.1371/journal.pone.0179706.t005
https://doi.org/10.1371/journal.pone.0179706


dispersal capacity, such as Grapholita molesta Busck (Lepidoptera: Tortricidae) and Chilo sup-
pressalis (Walker) (Lepidoptera: Pyralidae). Although the origin of D. kikuchii remains uncer-

tain, the higher genetic diversity we observed in the present study supports our assumption

that China is part of the original range of D. kikuchii.
Based on the results of three mitochondrial genes, including AMOVA analysis, haplotype

network and phylogenetic analysis, we conclude that D. kikuchii populations were geographi-

cally structured in three regions: eastern China, southwestern China, and central China along

with southeastern China. The sampling localities of southwestern China are isolated by the

Wumeng, Leigong, and Fanjingshan Mountains, while sampling localities of central China are

isolated by the Hengshan and Dabieshan Mountains, which have acted as substantial barriers

to gene flow. Populations from central China and southeastern China shared common haplo-

types; this is in accordance with the results of phylogenetic analysis. Although there is a geo-

graphical barrier formed by Wuyishan Mountain between these two regions, a transportation

network increases the gene flow among D. kikuchii populations. In Lepidoptera species, dis-

persal patterns also influence genetic variation [37,38]. D. kikuchii is generally regarded as a

sedentary species based upon previous studies of its flight capacity, with a sphere of activity

extending over 10~20 km [1, 3]. The weak flight capacity of D. kikuchii can reduce gene flow

among populations. The IBD relationship (r = 0.74824, P = 0.00001) in the present study sup-

ports this hypothesis. Similar trends have been identified for many sedentary species, such as

Chilo suppressalis (Walker) [15] and Carposina sasakii Matsumura [18]. The same result was

reported by Weng et al. [39]. They found that the genetic variation of D. punctatus populations

that ranged over five adjacent regions in Zhejiang province were low using the ISSR-PCR

marker.

Analysis of genetic distance indicate that populations of Puer (PE), Yangshuo (YS) and

Leishan (LS) are separated from other populations. In fact, D. kikuchii caterpillars in Puer and

Yangshuo populations turn into adults one moth earlier than those of other populations. And

in Guizhou, only one generation occurs, while two generations occur in the rest of the prov-

inces [1]. These variations in life history may contribute to the significant genetic differentia-

tion. Moreover, the areas of distribution of D. kikuchii in China occur across very complex

topography (tall mountains, plain and basin), different climates (temperate and tropical cli-

mates), different agricultural landscapes and forest types. A high level of population differenti-

ation presents a high potential for adaptation to different environmental conditions [40] and

high reproductive rates [41], which allow the moth to form locally differentiated populations.

Similar results have been found for Chilo suppressalis [15] and Reticulitermes chinensis [42].

Distributions of pairwise differences (mismatch distributions) obtained with COI, COII,

Cytb, and combined gene data from the overall populations are multimodal, suggesting that

the populations of D. kikuchii did not experience population expansion. The lack of a star

shape for the haplotype network together with the existence of multiple haplotypes support

such a hypothesis. This also explains why there are so many private haplotypes in different geo-

graphical populations. The times when population histories stabilized are estimated to be

26500 (COI), 21600 (COII), and 11800 (Cytb) year ago. This range is within the late Pleisto-

cene, which was characterized by climatic oscillations between warm and cold periods [43].

Over 42 thousand years ago, Pinus massoniana, the favorite host plant for D. kikuchii, gradually

spread into the warmer south China, a condition they would prefer [19]. These events

impacted the distribution of D. kikuchii, with these regions of south China gradually becoming

the refuge for D. kikuchii. During the late Pleistocene, some regions of south China were not

covered by large ice sheets [44]. In addition, south China comprises a mountainous mosaic

area and has the potential to host microclimatic zones that are probably capable of providing

some key refuges for many relict species [45]. Considering the lack of an ancestral haplotype
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and strong isolation-by-distance relationships of this species, we can conclude that D. kikuchii
in south China has arisen in separate refuges and experienced parallel evolutions. Similar

results have been found for grasshoppers [46], and the blue manakin [47].

Future population genetic research on D. kikuchii in China should cover a larger area and

larger number of sampled individuals, as well as use nuclear genes as markers to provide a

greater understanding of genetic structure. Additional research needs to be done to detail the

geographic origins of D. kikuchii in China and its spread through China.

Conclusion

Using three mitochondrial genes, we investigated the genetic diversity and structure of 182

individuals of D. kikuchii sampled throughout its main distribution areas in China. The results

show high genetic diversity and a high level of genetic structuring of D. kikuchii in sampled

areas. The high level of population genetic structuring is related to the weak flight capacity of

the D. kikuchii, variations in its life history and the geographic distance among populations.

Distributions of pairwise differences (mismatch distributions) obtained with COI, COII, Cytb,

and combined gene data indicate the populations of D. kikuchii in southern China did not

experience population expansion. These genetic data not only provide us with an understand-

ing of population genetics for such a secondary species, but also provide guidance for pest

management strategies.
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