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Hereditary ataxia, or motor incoordination, affects approximately 150,000 Americans and
hundreds of thousands of individuals worldwide with onset from as early as mid-childhood.
Affected individuals exhibit dysarthria, dysmetria, action tremor, and diadochokinesia. In
this review, we consider an array of computational studies derived from experimental
observations relevant to human neuropathology. A survey of related studies illustrates the
impact of integrating clinical evidence with data from mouse models and computational
simulations. Results from these studies may help explain findings in mice, and after
extensive laboratory study, may ultimately be translated to ataxic individuals. This
inquiry lays a foundation for using computation to understand neurobiochemical and
electrophysiological pathophysiology of spinocerebellar ataxias and may contribute to
development of therapeutics. The interdisciplinary analysis suggests that computational
neurobiology can be an important tool for translational neurology.
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INTRODUCTION
Computational systems neurobiology (Brown et al., 2012) can be
used to understand neuronal systems, based on utilizing infor-
mation garnered from clinical reports, animal studies and in vitro
modeling. Results from computational neurobiology can be used
to develop additional animal and cellular experiments that may
ultimately be translated to clinical practice, i.e., translational
neurology. One clinical condition poised to benefit from this mar-
riage is spinocerebellar ataxia (SCA) (Figure 1). Ataxia refers to
lack of motor coordination (Goetz, 2003). In this paper, we use
SCA as an example to demonstrate how computation and transla-
tion can potentially be woven together to enhance our knowledge
of cell function.

The most common SCAs are spinocerebellar ataxia 1 (SCA1),
spinocerebellar ataxia 2 (SCA2), spinocerebellar ataxia 3 (SCA3),
and Spinocerebellar Ataxia 6 (SCA6) (Supplementary Material,
Table S1) (Jacobi et al., 2012; Orr, 2012; Musova et al., 2013).
They are caused by expanded polyglutamine (polyQ; CAG) repeat
mutations in genes that code for ataxin 1, ataxin 2, ataxin 3,
and the CACNA1A calcium channel, respectively (Supplementary
Material, Table S1) (Gispert et al., 1993; Orr et al., 1993;
Kawaguchi et al., 1994; Pulst et al., 1996; Zhuchenko et al., 1997;
Tonelli et al., 2006; Bürk et al., 2014).

A number of mutations that cause SCA or episodic spinocere-
bellar ataxia (EA) also occur in genes directly involved in calcium
signaling and plasma membrane excitability, which are criti-
cal for cerebellar Purkinje neuron function (Kim et al., 1997;
Yue et al., 1997; Zhuchenko et al., 1997; Guida et al., 2001;
Alonso et al., 2005; Iwaki et al., 2008; Becker et al., 2009;

Alviña and Khodakhah, 2010; Kasumu and Bezprozvanny, 2012)
(Supplementary Material, Table S1). A number of these genes
impact the phosphoinositol signaling pathway (Supplementary
Material, Figure S1A; Table S1) (Aiba et al., 1994; Kim et al.,
1997; Alonso et al., 2005; van de Leemput et al., 2007). This
pathway is important for calcium release from the smooth endo-
plasmic reticulum (sER) into the cytoplasm of cerebellar Purkinje
neurons. Many other mutations affect calcium and potassium
ion channels (EA2, SCA6, EA1, EA5, SCA13, SCA19, SCA22)
(Supplementary Material, Table S1) (Yue et al., 1997; Zhuchenko
et al., 1997; Lin et al., 2000; Guida et al., 2001; Imbrici et al.,
2003; Sausbier et al., 2004; Tonelli et al., 2006; Bürk et al., 2014)
that are important for regulating the rate of calcium influx into
cells. spinocerebellar ataxia 14 (SCA14) involves a mutation in the
gene encoding protein kinase C (PKC) that is also important for
calcium homeostasis (Supplementary Material, Figure S1A; Table
S1) (Alonso et al., 2005; Ueda et al., 2013; van Gaalen et al., 2013;
Ji et al., 2014). spinocerebellar ataxia 15 (SCA15) and spinocere-
bellar ataxia 16 (SCA16) in humans and in mice are caused by
deletion and missense mutations in the gene for inositol-1,4,5-
trisphosphate receptor type 1 (IP3R1), a calcium channel on the
sER (Desaiah et al., 1991; Street et al., 1997; Zecevic et al., 1999;
Lin et al., 2000; Storey et al., 2001; Serra et al., 2004; van de
Leemput et al., 2007; Chen et al., 2008; Chou et al., 2008; Hara
et al., 2008; Iwaki et al., 2008; Liu et al., 2009; Di Gregorio et al.,
2010; Novak et al., 2010a,b; Huang et al., 2012).

Data from mouse experiments and clinical observations have
been incorporated into SCA computational models (Brown
and Loew, 2015). The models are developed using computer
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FIGURE 1 | Translational neurology: ataxia. SCA mouse observations
and human SCA findings are incorporated into the computational
framework SCA modeling suite. The models help interpret experimental
and clinical findings. The models also predict interactions between proteins
and emergent properties that can be borne out in novel mouse
experiments. Results from the laboratory and clinical observations can be
used to validate, disprove, or tweak the computational models. Findings
from mouse experiments can also ultimately be translated to human
studies, leading to clinical trials to test therapeutics. The final step in
translational neurology with the example of ataxia is implementation of the
iterative findings in patient care. The solid square bracket highlights the
components addressed directly by computational systems neurobiology
(Brown et al., 2012; Brown and Loew, 2012).

engineering tools and software, such as Virtual Cell (Moraru et al.,
2008; Slepchenko and Loew, 2010) and NEURON (Hines and
Carnevale, 2001). These modeling platforms are based on math-
ematical equations for physics principles, such as reaction, dif-
fusion, flux, and concentration gradients (Hines and Carnevale,
1997; Schaff et al., 2000; Cowan et al., 2012). The models simulate
physiological interactions among intracellular reactions, molecu-
lar diffusion, and cell geometry and give insight into how these
cellular processes work together as an efficient system (Brown
et al., 2008; Brown and Loew, 2012). Simulations help clarify
observed phenomena and suggest future experiments to help
elucidate disease mechanisms and potential therapeutics.

EXPERIMENTS CONFIRM MODEL PREDICTIONS
There are a handful of neurobiological and electrophysiologi-
cal computational models relevant to IP3R1-associated ataxias
(Brown and Loew, 2012), detailed in the following subsections.

NEUROBIOLOGY MODELING AND SIMULATION
PIP2 signaling upstream of IP3R1
First, a model of phosphatidylinositol-4,5-bisphosphate (PIP2)
signaling upstream of IP3R1 in neuroblastoma cells was devel-
oped (Xu et al., 2003) (Supplementary Material, Figure S1A).
The model predicted stimulated PIP2 synthesis in addition to
PIP2 hydrolysis when the Purkinje neuron spine is activated

by parallel fibers, to produce IP3R1-mediated calcium release.
Subsequently, bench experiments confirmed simulation results in
a mouse neuroblastoma cell line (Xu et al., 2003).

IP3R1 signaling downstream of PIP2
Second, models of IP3R1-related signaling downstream of PIP2
in the cerebellar Purkinje neuron were created (Doi et al., 2003;
Hernjak et al., 2005). One model considered the high abun-
dance and low sensitivity of IP3R1 in Purkinje cells (Hernjak
et al., 2005). This model qualitatively reproduced experimentally
observed calcium transients during coincident activation of the
Purkinje spiny dendrite (Wang et al., 2000).

Sources of sufficient PIP2 for IP3R1-mediated signaling
Third, quantitative models of Purkinje neurons spiny dendrites
were developed (Brown et al., 2008, 2011; Brown and Loew,
2012). Local sequestration of PIP2 (with a lower diffusion coef-
ficient than unbound PIP2) on the inner leaflet of cerebellar
Purkinje neuron spines (McLaughlin et al., 2002; Golebiewska
et al., 2008) (Supplementary Material, Figure S1B) was assessed.
Model results supported the efficacy of local sequestration as
a means of providing sufficient PIP2 for IP3R1-mediate cal-
cium release. Findings correlated with prior experimental results
(Wang et al., 2000) (Table 1). The computational simulations
predicted a time window during which coincident activation of
the Purkinje spine by other cell types could occur (Brown et al.,
2008). This time window was independently borne out in bench
experiments in rat cerebellar brain slices (Sarkisov and Wang,
2008) (Table 1).

Signaling downstream of IP3R1
Fourth, predictions were generated about kinetic interac-
tions between PKC and α-amino-3-hydroxy-5-methylisoxazole-
4-propionic acid subtype glutamate receptors (AMPAR) in
Purkinje neurons that were experimentally verified (Ogasawara
et al., 2008) (Table 1). These molecules are downstream of
IP3R1-mediated calcium release, as calcium co-activates PKC.

Potential use of neurobiological model results
Using results from these computational models, drugs could be
developed to interfere with local sequestration or other steps
in the phosphoinositol signaling pathway in mice or rats and
could potentially be translated to humans with supersensitive
IP3R1 to help treat SCA1-3 and SCA14 (Supplementary Material,
Table S1).

NEUROELECTROPHYSIOLOGY MODELING
Prediction of Purkinje neuron calcium and potassium channels
Normal electrophysiology of the Purkinje neuron was also mod-
eled (De Schutter and Bower, 1994a,b; Miyasho et al., 2001).
New properties of Purkinje neuron electrophysiology were pre-
dicted, requiring contributions of D-type potassium channels
and class-E calcium channels that were not known previously
to influence Purkinje neuron electrophysiology (Supplementary
Material, Figure S1A). The predictions were confirmed with rat
model experiments (Miyasho et al., 2001) (Table 1).
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Table 1 | Examples of contributions of computational systems neurobiology to translational neurology.

Mechanism elucidated Computational prediction Supporting experiments References

(Computational/Experiment)

Source of requisite IP3 PIP2 synthesis concurrent with
hydrolysis

IP3 production in neuroblastoma
cells

Xu et al., 2003/Xu et al., 2003

Purkinje spine electrophysiology D-type K and class-E Ca channels
required

Purkinje neuron current clamp Miyasho et al., 2001/Miyasho et al.,
2001

Biochemical-electrical cross-talk Emergent cross-signaling
properties

Biochemical before electrical
changes in SCA2 mice

Brown and Loew, 2012/Hansen
et al., 2013

AMPAR all-or-none activation MAPK-PKC positive feedback loop Purkinje stimulation by CFs/PFs Ogasawara et al., 2008/Ogasawara
et al., 2008

Local PIP2 sequestration Fine-tunes coincidence detection Purkinje stimulation by CFs/PFs Brown et al., 2008/Wang et al.,
2000

Coincidence detection

IP3R1 compensation

50–100 ms time window CF
before PF
IP3R1 downregulation in polyQ
disorders with IP3R1
supersensitivity

Purkinje stimulation by CFs/PFs

IP3R1 (and other members of the
signaling complex*)
downregulation in DLPRA

Brown et al., 2008/Sarkisov and
Wang, 2008
Brown and Loew, 2012/Suzuki
et al., 2012

*(Supplementary Material, S1 Signaling complex regulation).

Reduction of Purkinje neurons
A method to map realistic neurons into equivalent reduced mod-
els while maintaining high accuracy membrane potential changes
during synaptic inputs, with direct links to experimental observ-
ables was subsequently developed (Marasco et al., 2012).

Potential use of neuroelectrophysiological model results
The examples provided suggest that iterative computational mod-
eling can provide insight into normal and pathological neuro-
physiology. The neuroelectrophysiology models could be used to
economically assess the impact of new therapeutics in research
and development prior to studies in mice or rats. Manipulation
in the virtual system would allow for precise input control and
real-time output review with changes in firing dynamics of the
Purkinje neuron. This would facilitate discovery of determi-
nant and feedback loops (Brown and Loew, 2015) and other
interactions that would otherwise be impossible to monitor in
brain slices in the same time frame. Insights could potentially
be translated to humans with various SCAs, particularly those
such as SCA6, SCA13, SCA19, and SCA22 that involve disrup-
tion of membrane electrophysiology (Supplementary Material,
Table S1).

SIMULATIONS INTERPRET OBSERVED PHENOTYPES
SUPRANORMAL IP3R1 SENSITIVITY IN SCA 1-3
A source of pathology caused by the polyQ repeats (Orr et al.,
1993; Kawaguchi et al., 1994; Koide et al., 1994, 1999; Trottier
et al., 1994; Pulst et al., 1996; David et al., 1997; Nakamura et al.,
2001) is due to interaction of the mutant protein with IP3R1
(Bezprozvanny, 2011). In SCA2 (Liu et al., 2009) and SCA3 (Chen
et al., 2008), mutant Ataxin-2 and Ataxin-3, respectively, directly
bind to the C-terminal of IP3R1 and make it easier to solicit IP3-
induced calcium responses. Association of mutant Ataxin-1 with
IP3R1 has been reported (Liu et al., 2009), but supersensitivity
in these mice has not yet been tested. SCA modeling results sug-
gests that IP3R1 supersensitivity in SCA1 is necessary (Brown and

Loew, 2012) to elicit observed supranormal calcium transients
(Inoue et al., 2001).

IP3R1 DOWNREGULATION PROVIDES PARTIAL COMPENSATION IN
SCA 1-3
Studies in SCA1 and SCA2 mouse models, as well as mice and
humans with SCA3, found reduced levels of IP3R1, metabotropic
glutamate receptor (mGluR), and other calcium signaling and
glutamatergic proteins (Lin et al., 2000; Vig et al., 2001;
Serra et al., 2004; Chou et al., 2008; Hansen et al., 2013)
(Supplementary Material, Figure S1). Decreased expression of
IP3R1 and sarcoendoplasmic reticulum calcium ATPase (SERCA)
was also confirmed in SCA1 patients (Lin et al., 2000). Such find-
ings were also discovered in Purkinje neurons from mouse models
of HD (Datta et al., 2011; Euler et al., 2012). SCA modeling inter-
prets downregulation of these key calcium signaling proteins as
serving to partially compensate for supersensitive IP3R1 (Brown
and Loew, 2012). Further downregulation of these glutamater-
gic signaling proteins could be manipulated to delay symptomatic
disease in mouse models and in the long run in presymptomatic
humans (Brown and Loew, 2015).

HOMER AND MYOSIN VA ASSOCIATION WITH IP3R1 IN SCAs
Homer 3 is part of a signaling complex with reduced expres-
sion in SCA1 mice (Serra et al., 2004) (Supplementary Material,
S1 Signaling complex regulation). Homer 3 localizes predom-
inantly to Purkinje neuron spines (Shiraishi et al., 2004) and
may associate with mGluR and IP3R1 in vivo (Tu et al., 1998;
Sandonà et al., 2003). Myosin Va levels are also decreased in SCA1
(Serra et al., 2004). Both Homer and Myosin Va have been pro-
posed to guide sER (sER) into spines as spines are being formed
from dendritic shafts (Wagner and Hammer, 2003). Accordingly,
Myosin Va knockout mice are ataxic with spines devoid of sER
and IP3R1 (Takagishi et al., 1996). SCA modeling results sug-
gest that reduced spine sER volume due to downregulation of
Homer 3 and Myosin Va in SCA1 partially compensates for IP3R1
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supersensitivity (Brown and Loew, 2012). This supports findings
from an experiment in which downregulation of Homer 1b/c
attenuated IP3R1-mediated calcium release in rat cortical neu-
rons (Chen et al., 2012). Expression of Homer could potentially
be manipulated to further compensate for IP3R1 supersensitiv-
ity in polyQ ataxias, which also include SCA7 (David et al., 1997),
SCA17 (Nakamura et al., 2001), and dentatorubral-pallidoluysian
atrophy (DLPRA) (Koide et al., 1994). SCA simulations could
determine a therapeutic window for Homer expression to avoid
overcompensation. As an example, although a very different
mechanism, Homer 3 scaffolding protein has been implicated as
an autoimmune target in subacute cerebellar ataxia. This ataxia
is not hereditary and occurs post-infection or as a paraneoplas-
tic process in some patients with Hodgkin’s lymphoma (Zuliani
et al., 2007). Presumably, disruption of Homer 3 scaffolding
beyond a therapeutic window, or in the absence of supersensi-
tive IP3R1 as in autoimmune subacute cerebellar ataxia, inter-
rupts signaling complex formation and related cellular processes
(Supplementary Material, S1 Signaling complex regulation).

CROSS-SIGNALING BETWEEN BIOCHEMICAL AND
ELECTROPHYSIOLOGICAL DYSREGULATION IN SCAs
These and other forms of biochemical dysregulation precede
electrophysiological impairment in an SCA2 mouse model, with
Purkinje neuron firing frequency decreased at 6 weeks com-
pared to wild type (Hansen et al., 2013) and worsening as the
mice age (Kasumu et al., 2012b). This is consistent with tim-
ing of electrophysiological changes in an SCA1 mouse model
(Hourez et al., 2011) and in the large conductance calcium-
activated voltage-gated potassium channel (BK) knockout mice
(Sausbier et al., 2004). These changes are then followed by onset
of motor discoordination at 8 weeks in the SCA2 mice (Hansen
et al., 2013) and 6–8 weeks in SCA3 mice (Shakkottai et al.,
2011). The time of ataxia onset for these mice is identical to that
for mice heterozygous for IP3R1 deletion (Ogura et al., 2001).
These findings imply shared pathophysiology leading to similar
phenotype: biochemical dysfunction and subsequent electrophys-
iological aberrations leading to ataxia. The SCA modeling suite
has also predicted altered Purkinje neuron firing arising from
cross-talk between calcium signaling and membrane electrophys-
iology (Brown and Loew, 2012) (Table 1). Future iterations of
the modeling suite could additionally include the small con-
ductance calcium-activated potassium channels (SK), which has
been shown to help mediate the influence of calcium signal-
ing on membrane electrophysiology in SCA2 and EA, and has
also been proposed as a potential therapeutic targets (Alviña and
Khodakhah, 2010; Kasumu et al., 2012a).

CLINICAL TRANSLATION
COMPUTATIONAL MODELS ARE CLINICALLY INFORMATIVE FOR SCAs
The cerebellum is conserved across all vertebrate species (Kandel
et al., 2000). Thus, a combination of computational models and
mouse models is clinically informative for human SCAs. Several
SCA mouse models have been developed (Burright et al., 1995;
Huynh et al., 2000; van de Leemput et al., 2007; Colomer Gould,
2012; Kelp et al., 2013). As virtual model neurons are created,
details of the computational models are validated by comparison

with experimental data in these mice (Xu et al., 2003; Marasco
et al., 2012), with an end to translation to humans (Figure 1).

ICpeptide APPLICATION IN VIVO FOR SCAs AND OTHER polyQ
DISEASES
Peptides resembling portions of the IP3R1 C-terminal
(ICpeptides) (Supplementary Material, Figure S1B) have
been created (Tang et al., 2003b, 2009; Tu et al., 2004). SCA
model results suggest that application of IC-G2736X (IP3R1
base pairs D2590-G2736) (Supplementary Material, Figure S1B)
restores normal calcium transients in polyQ ataxias (Brown and
Loew, 2012). ICpeptides could be used to develop more selective
therapeutics that can then be tested in animals and, if promising,
in patients. Simulations also showed that treating SCA15/16 mice
with IC4 (IP3R1 base pairs Q2714-A2749) normalizes calcium
release by therapeutically increasing IP3R1 sensitivity to IP3 to
counteract IP3R1 haploinsufficiency (Brown and Loew, 2012).
IC4 competitively binds protein phosphatase 1 alpha (PP1α; a
phosphatase that decreases IP3R1 sensitivity).

A different polyQ disorder, Huntington’s disease (HD),
is sometimes phenotypically confused with SCA if ataxia is
prominent (Tang et al., 2003a; Bezprozvanny and Hayden,
2004; Bezprozvanny, 2007; Zhang et al., 2008; Dong et al.,
2013; Rodríguez-Quiroga et al., 2013). Whereas ataxias pri-
marily exhibit motor discoordination, HD is a neurodegener-
ative hyperkinetic movement disorder affecting the basal gan-
glia (Bezprozvanny, 2011). Although molecular interactions in
Purkinje neurons are different from those in medial striatal
neurons, the polyQ SCAs share underlying pathophysiology
with HD involving supersensitive IP3R1 (Bezprozvanny, 2011).
Application of the IC10 peptide (IP3R1 base pairs F2627-A2749)
(Supplementary Material, Figure S1B) in medial striatal neurons
in HD mice restored normal calcium response (Tang et al., 2009).
These mice were largely spared from neurotoxicity, with improved
motor coordination (Tang et al., 2009). IC-peptides therefore rep-
resent an alternative step toward thinking about new therapeutics
for polyQ disorders.

IP3 SUPPRESSION IN SCAs
Subsequent to these simulations (Brown and Loew, 2012), it
was demonstrated that overexpressing inositol 1,4,5-phosphatase
(5PP) to chronically suppress IP3R1-mediated calcium release
improved motor coordination in SCA2 mice (Kasumu et al.,
2012b). The enzyme 5PP converts IP3 to the inactive form
inositol 1,4-bisphosphatase (Supplementary Material, Figure
S1A), decreasing the overall amount of IP3 sensed by IP3R1.
This demonstrated that suppression of IP3R1-mediated calcium
release could be of therapeutic benefit for SCAs, as supported by
SCA modeling predictions (Figure 1).

ANTICIPATORY THERAPEUTICS FOR SCAs
There is currently no direct way of treating hereditary ataxias.
Patients can be cared for symptomatically, with physical and
speech therapy and walking aids (Schöls et al., 2004). If SCA
modeling can help us understand how alterations in calcium
signaling and membrane electrophysiology can be restored in
SCAs, this can enhance our chance at engineering therapeu-
tics for ataxia. In the era of SCA genomic testing (Smeets and
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Verbeek, 2014), anticipatory therapeutics would be useful pref-
erentially in presymptomatic patients (Brown and Loew, 2015).
For example, if ICpeptides are applied before mice become symp-
tomatic, this could reduce symptom occurrence, delay onset,
slow progression, and maximize output from undamaged tis-
sue. SCA modeling would therefore be integrated with genomic
testing, family history considerations, and presymptomatic inves-
tigation and treatment. Presymptomatic testing is often pursued
for severe late-onset neurodegenerative diseases, including SCAs
(Guimarães et al., 2013; Schuler-Faccini et al., 2014). Even with-
out genetic testing, other early clinical disease features (pro-
dromes) are detectable prior to onset of ataxia and can be used
to determine treatment timing (Velázquez-Pérez et al., 2014a,b).
Such translation, after extensive lab research, could improve qual-
ity of life and alleviate economical, social, and occupational
strains on patients, as well as family members and caregivers.

USES FOR SCA MODELING EXEMPLIFIED
In computational models, various parameters in the cerebel-
lar Purkinje neuron may be deliberately perturbed, with results
examined to see if any of these perturbations match those
found in individuals with various cerebellar disorders. This can
assist with making connections between subcellular dysfunction
and phenotypic manifestations. In addition to understanding
pathophysiology, the models could be used to screen drugs,
investigate adverse effects, and examine ramifications of genetic
replacements and knockouts.

There are other computational models that can be used
to exemplify the potential of SCA models. Experiment-based
computational modeling similar to SCA, including the use of
individualized 3D reconstruction of in vivo-acquired computed
tomography (CT) images from several patients, showed that peak
wall stress calculated in vivo for abdominal aortic aneurysm
(AAA) near the time of rupture was more predictive of rupture
than the conventional assessment of aortic diameter (Fillinger
et al., 2002; Raut et al., 2013; Soudah et al., 2013). Similarly, Caroli
et al used computational modeling to create patient-specific com-
putational vascular network models (Caroli et al., 2013). These
models predicted blood flow 6 weeks after surgical creation of
arteriovenous fistulas (AVF) for long-term hemodialysis (Caroli
et al., 2013). The model was validated in a multicenter, prospec-
tive clinical study, and is expected to reduce AVF failure or dys-
function and related patient morbidity. A line of computational
models were also created to compare various modes of pharma-
cologic delivery of Doxorubicin, a chemotherapeutic drug used
for a variety of cancers. The models predicted optimal antitumor
efficacy with protection from adverse effects with thermosensi-
tive liposomes or with an administration protocol using increased
duration of infusion with higher doses, compared to the conven-
tional bolus injection (Reich et al., 1979; El-Kareh and Secomb,
2000, 2005; Evans et al., 2009; Zhan and Xu, 2013).

SYSTEMS BIOLOGY IN TRANSLATIONAL MEDICINE
A number of scientific contributions from computational mod-
eling (Table 1) that enhance our understanding of SCA have
been presented. The computational models are more economical,
reproducible, and expedient than animal experiments. However,

the computer models depend on and integrate information from
animal studies and clinical observations. As a result, Figure 1
shows that animal experiments and SCA models work together
in concert to iteratively explain and predict pathophysiology. In
addition, computational predictions were made via a bioinfor-
matics screen to identify transcripts that interact with and have
functions relevant to polyQ SCAs (Spence and Wallihan, 2012).
Next steps in translational systems biology will include mining
and modeling network motifs in ataxia and considering their
functional implications (Alon, 2007; Brown and Loew, 2015).
Findings from such translational studies could be used to develop
new drugs or treatment strategies (Matilla-Dueñas et al., 2014),
suggesting that computational neurobiology plays a role in trans-
lational neurology (Figure 1). Expanding interactions between
these related research and medical communities (De Schutter,
2008) will usher in an era that may create advanced support for
Translational Medicine and, in particular, Neurology.
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