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MART-1 TCR gene-modified peripheral blood T cells for the treatment of
metastatic melanoma: a phase I/IIa clinical trial
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Background: Adoptive cell therapy with peripheral blood T cells expressing transgenic T-cell receptors (TCRs) is an
innovative therapeutic approach for solid malignancies. We investigated the safety and feasibility of adoptive
transfer of autologous T cells expressing melanoma antigen recognized by T cells 1 (MART-1)-specific TCR, cultured
to have less differentiated phenotypes, in patients with metastatic melanoma.
Materials and methods: In this phase I/IIa trial, peripheral blood T cells from HLA-A2*02:01-positive patients with
unresectable stage IIIC/IV melanoma expressing MART-1 were selected and stimulated with anti-CD3/CD28 beads,
transduced with a modified MART-1(26-35)-specific 1D3 TCR (1D3HMCys) and expanded in interleukin (IL)-7 and IL-15.
Patients received a single infusion of transgenic T cells in a dose-escalating manner. Feasibility, safety and objective
response rate were assessed.
Results: Twelve pretreated metastatic cutaneous (n ¼ 7) and uveal (n ¼ 5) melanoma patients were included. Patient 1
received 4.6 � 109 1D3HMCys T cells and experienced grade 5 toxicity after 9 days. Subsequent patients received 5.0 �
107 [n ¼ 3; cohort (c) 2], 2.5 � 108 (n ¼ 2; c3) and 1.0 � 108 (n ¼ 6; c4) 1D3HMCys T cells. The study was prematurely
terminated because of dose-dependent toxicity, concerning skin (10/12), eyes (3/12), ears (4/12) and cytokine release
syndrome (5/12), with 7 patients experiencing grade 3-5 toxicity. Partial responses were seen in 2/11 (18%) assessable
patients and persistence of 1D3HMCys T cells corresponded to infused cell dose.
Conclusions: Production of TCR-modified cells as described leads to highly potent T cells. Partial responses were seen in
18% of patients with dose-dependent ‘on-target, off-tumor’ toxicity and a maximum tolerated dose of 1.0 � 108 cells.
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INTRODUCTION

Although the prognosis of patients with advanced mela-
noma has dramatically improved, there is still a need for
novel treatment options as half of the patients obtain no
durable clinical benefit from currently approved therapies.1

This unmet need is even higher in patients with uveal
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melanoma, with no viable treatment options until
recently.2,3

A novel treatment modality is adoptive cell therapy (ACT)
with in vitro-expanded tumor-infiltrating lymphocytes
(TILs), T-cell receptor (TCR)-modified peripheral blood T
cells or chimeric antigen receptor-modified peripheral
blood T cells.4-7 Generation of autologous T cells expressing
a TCR reactive to a particular shared tumor antigen (line-
age-specific antigens, cancer/testis antigens, viral antigens
and overexpressed antigens) is an attractive option to
transfer cells with a highly defined antitumor reactivity.
Adoptive transfer of such gene-modified T cells targeting
melanoma antigen gene (MAGE)-A3,8 New York esophageal
squamous cell carcinoma-1 (NY-ESO-1),9 human papillo-
mavirus (HPV)10 and melanoma antigen recognized by T
cells 1 (MART-1)11,12 is feasible and has resulted in clinical
responses.
https://doi.org/10.1016/j.iotech.2022.100089 1
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The melanoma differentiation antigen (MDA) MART-1 is
expressed in melanocytes and 80%-95% of melanomas.13,14

MART-1-specific TCR gene therapy has already been
explored utilizing the DMF4 TCR11 derived from a patient
with a near-complete response after treatment with TIL15

and in a subsequent trial using the MART-1 DMF5 TCR,
derived from the same patient but showing a higher affinity
for cognate antigen.12 In these earlier trials, peripheral
blood T cells were activated and expanded with anti-CD3
monoclonal antibodies in the presence of interleukin 2
(IL-2), playing an important role in the differentiation of
naïve CD8þ T cells to effector (memory) cells,16 and retro-
virally transduced with the specific TCR. Efficacy of the
DMF4 and DMF5 trials was modest, with an acceptable
toxicity profile, leaving room for improvement. Preclinical
models have shown improved function and engraftment
potential of T cells activated and expanded through CD3/
CD28 stimulation in the presence of IL-7 and IL-15,17 in
generating T cells with a less differentiated phenotype, as
these cytokines are instrumental in the generation and
maintenance of central memory T cells.18 Adoptive transfer
of low numbers of T cells with a less differentiated
phenotype improved long-term immune responses19 and
may thus improve the potency of ACT.20

Based on these potential improvements for ACT, we
developed a novel, robust good manufacturing practice
(GMP) production process to generate autologous periph-
eral blood-derived T cells transduced with a MART-1-specific
TCR (gene optimized, not affinity-enhanced), known as
1D3HMCys, expanded in IL-7 and IL-15 with anti-CD3/CD28
selection and activation to investigate the impact for TCR
gene therapy, as described previously.21-23 These cells
harbored the potential for better engraftment17 and
improvement of long-term antitumor responses due to the
less differentiated phenotype. As the affinity of the
1D3HMCys TCR was not higher than the earlier described
MART-1 DMF5 TCR,12 safety was hypothesized to be com-
parable. Between 2012 and 2018, we conducted an early
phase clinical trial in which advanced melanoma patients
were treated with a single infusion of 1D3HMCys T cells.
Here, we report the results of this clinical trial.

MATERIALS AND METHODS

Study design and patients

This is a phase I/IIa, single-center, single-arm, dose-finding
trial conducted at the Netherlands Cancer Institute (NKI,
Amsterdam, The Netherlands) following the Declaration of
Helsinki. This trial was approved by the Central Committee
on Research Involving Human Subjects (NCT02654821). All
patients gave written informed consent. The primary
endpoints were safety, feasibility and objective response
rate (ORR). Secondary endpoints were 1-year progression-
free survival (PFS), median overall survival (OS), and
evaluation of the induction of tumor-specific T-cell
responses.

HLA-A*02:01-positive patients with treatment-refractory
unresectable stage IIIC/IV melanoma with >10% MART-1
2 https://doi.org/10.1016/j.iotech.2022.100089
expression in tumors were eligible. All eligibility criteria
are presented in Supplementary Table S1, available at
https://doi.org/10.1016/j.iotech.2022.100089.

Study procedures

Patients underwent baseline apheresis to acquire �1 � 109

mononuclear cells, which were cryopreserved until start of
culture. Before the adoptive transfer of 1D3HMCys
TCR-transduced peripheral blood T cells, patients were
preconditioned with non-myeloablative chemotherapy
[cyclophosphamide 60 mg/kg/day intravenously (i.v.) for 2
days and fludarabine 25 mg/m2/day i.v. for 5 days]. Sub-
sequently, patients received subcutaneous injections of low-
dose IL-2 (2 � 106 IU) once daily up to 2 weeks.

Safety was monitored according to the National Cancer
Institute’s Common Terminology Criteria for Adverse Events
version 4.03 and evaluated by a Data Safety Monitoring
Board (DSMB) to assess subsequent cell dose escalation. In
accordance, the study protocol was amended seven times,
as further described in the Results section. Patients’ hearing
level was evaluated by standard audiometry before treat-
ment and 4 weeks post-treatment. Patients 7-12 received
intratympanic dexamethasone injections (4.0 mg/ml, 0.5-1
ml per ear) following severe ototoxicity in patient 6. During
hospitalization, standard supportive care was provided. Skin
biopsies were taken from (un)affected areas of patients
who developed dermatitis. Blood serum samples, periph-
eral blood mononuclear cells and tumor biopsies were
collected for immunological monitoring and translational
research. Tumor response was evaluated by computed to-
mography (CT) according to Response Evaluation Criteria in
Solid Tumors (RECIST) version 1.124 every 4 weeks. See
Figure 1 for the detailed treatment schedule.

Production of MART-1 1D3HMCys TCR-modified T cells

The 1D3HMCys TCR, recognizing the HLA-A*02:01-restricted
MART-1(26-35) epitope, was derived from a melanoma pa-
tient vaccinated with the MART-1(26-35) peptide25 and
selected for its high affinity.21,22 To enhance TCR expression
and minimize mixed dimer formation with endogenous TCR
chains, the 1D3 TCR was optimized by replacing the human
constant domains with murine constant domains26 and by
inclusion of a non-native cysteine pair.27,28 Additionally, a
self-cleaving P2A peptide was used to link the a- and b-
chains to achieve equal expression of both chains.29

Autologous peripheral blood CD3þ T cells from the apher-
esis product were isolated and stimulated using anti-CD3/
CD28 beads and retrovirally transduced with an MP71
vector encoding the 1D3HMCys TCR. Transduced T cells
were subsequently expanded ex vivo in the presence of IL-7
and IL-15. TCR optimization and GMP production protocols
have been described previously.21,23

Immunological monitoring

Flow cytometry analysis of infusion products and post-
infusion peripheral blood lymphocytes. Expression of the
1D3HMCys TCR, composition and phenotypical
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Figure 1. Treatment and monitoring schedule. Blood draw for serum and PBMCs was carried out 2 weeks before cell infusion, 24 h after cell infusion, days 7 and 14
and at follow-up at 1, 2, 3, 6, 9, 12, 18 and 24 months after infusion. Blood draw for serum alone was carried out pre-infusion on day 0 and daily thereafter during
hospitalization and at follow-up at 1.5, 2.5, 4.5, 7.5 and 15 months post-infusion and continued every 3 months thereafter. If accessible, tumor biopsies were taken
before and after treatment and at the first time point of documented response and/or at the first time of (proven) disease progression. Because of the observed
toxicity during the trial, the following amendments to the protocol were made: aCyclophosphamide dose was reduced from 60 to 30 mg/kg/day i.v. after patient 6.
bSubcutaneous injections of LD IL-2 (2 � 106 IU/once daily up to 2 weeks) following cell infusion were omitted from patient 6 onward. cAfter the first treated patient
suffered a fatal serious adverse event, subsequent patients with high disease burden (>2 � ULN LDH), brain metastases and/or pre-existing cardiac dysfunction were
not eligible for participation in the trial. Serum IL-6 would be monitored in all patients and administration of tocilizumab would be considered when IL-6 levels exceed
200 pg/ml and/or the patient shows signs of clinical deterioration. In case of severe toxicity, high doses of corticosteroids in addition to anti-CD52 antibody could be
administered to eliminate T cells. dIntratympanic dexamethasone injections (4.0 mg/ml, 0.5-1.0 ml per ear) starting 2 days before the transfer of the T cells and five
times in the following 10 days was initiated from patient 7 due to severe ototoxicity in patient 6. In the last six patients, follow-up audiometry was carried out more
frequently and up to 12 weeks post-treatment.
CT, computed tomography; Cy, cyclophosphamide; ECG, electrocardiogram; Flu, fludarabine; LDH, lactate dehydrogenase; LD IL-2; low-dose interleukin-2; MRI,
magnetic resonance imaging; ORL, otorhinolaryngology; PBMC, peripheral blood mononuclear cells; TCR, T-cell receptor; ULN, upper limit of normal.
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characteristics of the infusion products and patients’ blood
were analyzed by flow cytometry. Blood samples collected
at indicated time points after infusion were cryopreserved
in cryopreservation medium containing fetal calf serum and
10% dimethyl sulfoxide for subsequent analysis.

MART-1-specific T cells were identified by staining with
HLA-A*02:01 MART-1(26-35 A>L) tetramers, generated
through ultraviolet-induced peptide exchange.30,31 In addi-
tion, cells were stained with antibodies for phenotypic
markers and anti-mouse TCRb. See Supplementary Table S2,
available at https://doi.org/10.1016/j.iotech.2022.100089,
for the full list of antibodies, clones and manufacturers. Cell
viability was quantified using LIVE/DEAD� Fixable Near-IR
Dead Cell Stain (Invitrogen e Thermo Fischer Scientific,
Whalthman, MA Cat#L10119). Extracellular stains were
carried out for 30 min at 4�C in Brilliant Stain Buffer (BD,
Franklin Lakes, NJ Cat#563794). To allow intracellular
staining of T-cell factor 1 (TCF1), cells were fixed for 30 min
at 4�C with eBioscience Intracellular Fixation & Per-
meabilization Buffer (Invitrogen e Thermo Fischer Scientific
Cat#88-8824-00, as per manufacturer’s recommendation).
Intracellular staining was carried out in 1X Permeabilization
Buffer (Invitrogen e Thermo Fischer Scientific Cat#00-8333)
for 30 min at 4�C. All samples were acquired using a BD LSR
Fortessa, and data were analyzed using FlowJo 10 software
(BD).
Volume 15 - Issue C - 2022
Analysis of tumor and skin biopsies. Biopsies were stained
with hematoxylineeosin. Immunohistochemistry was car-
ried out using an automated Ventana Benchmark Ultra
staining system (Ventana Medical Systems, Tucson, AZ) us-
ing antibodies against MART-1 (clone A103, Dako/Agilent,
Santa Clara, CA), CD3 (clone 2GV6, Ventana/Roche, Oro
Valley, AZ) and HLA-A (clone EP1395Y, Abcam, Cambridge,
UK). Central review by an expert pathologist was carried out
on all evaluable biopsies, blinded for clinical outcome. Im-
mune infiltration was scored in a semi-quantitative manner
according to a four-step grading system.32

For assessment of living skin-infiltrating lymphocytes
(SILs) and TILs, biopsy sections were fragmented and
cultured in Roswell Park Memorial Institute (RPMI) medium
for 3-5 days supplemented with 10% human serum and
6000 IU/ml IL-2 in a 24-well plate. Cells were stained with
anti-CD3, anti-CD8, HLA-A*02:01 MART-1(26-35 A>L) tetra-
mers and anti-mouse TCRb (see Supplementary Table S2,
available at https://doi.org/10.1016/j.iotech.2022.100089)
in flow cytometry buffer for 20-30 min at 4�C and analyzed
on a BD FACSCalibur and FlowJo 10 software (BD).

Cytokine measurements. Serum samples were stored
at �80�C. Levels of IL-2, IL-4, IL-6, IL-10, interferon-g, tumor
necrosis factor-a, IL-17A, sFas, sFasL, granzyme A, granzyme
B, perforin and granulysin were measured simultaneously
https://doi.org/10.1016/j.iotech.2022.100089 3

https://doi.org/10.1016/j.iotech.2022.100089
https://doi.org/10.1016/j.iotech.2022.100089
https://doi.org/10.1016/j.iotech.2022.100089
https://doi.org/10.1016/j.iotech.2022.100089


Immuno-Oncology and Technology M. W. Rohaan et al.
by multiplex bead-based assay using the LEGENDplex Hu-
man CD8/NK Panel, according to the manufacturer’s pro-
tocol (Biolegend, San Diego, CA: 740267; Lot: B263848).
Samples were mixed, centrifuged and diluted twofold with
assay buffer and were run in duplicate.
Statistical analyses

An optimal Simon’s two-stage design was used to test the
null hypothesis that the ORR was �10% versus the alter-
native hypothesis that the ORR was �30%. Using an a error
of 0.10 and a b error of 0.10, an objective response in at
least 2 of the first 16 patients was needed to continue the
study and recruit 25 patients in total. If >5 patients ach-
ieved an objective response in the total study population,
adoptive transfer of autologous T cells expressing
1D3HMCys would be considered worthy of further investi-
gation. Data are presented in a descriptive manner, and
curves for PFS and OS were computed using R (version
3.6.1; Boston, MA), according to the KaplaneMeier
method. Other graphs were plotted using GraphPad Prism
(version 9.0; GraphPad Software, San Diego, CA).
RESULTS

Patients

Between October 2012 and October 2017, 12 treatment-
refractory advanced cutaneous (n ¼ 7) and uveal (n ¼ 5)
melanoma patients were treated with 1D3HMCys T cells.
The trial was stopped prematurely because of treatment-
related toxicity. Patient baseline characteristics are sum-
marized in Table 1.
Study conduct and protocol amendments

Enrolled patients were treated in four dose cohorts defined
in agreement with the DSMB (Table 1). As described pre-
viously, patient 1 received 4.56 � 109 1D3HMCys T cells and
died 9 days post-infusion, presumably due to grade 4
cytokine release syndrome (CRS)/sepsis, which in combi-
nation with other clinical factors led to multiple organ
failure grade 5.33 The trial was initially designed as phase Ib/
IIa trial, however, based on this fatal event, the trial was
heavily amended and resulted to be more a dose-finding
phase Ia/IIa trial. Cell dose was subsequently lowered by
100-fold (5.0 � 107 cells) and was tolerated well by the next
three patients. Two subsequent patients received 2.5 � 108

cells, and severe dose-limiting on-target, off-tumor and
cytokine-associated toxicities were observed. The DSMB
recommended lowering the cell dose by 2.5-fold, omitting
the administration of low-dose IL-2 (from patient 6) and
lowering the lymphodepleting chemotherapy regimen to
cyclophosphamide 30 mg/kg/day (the fludarabine dose
remained unchanged) after patient 6. The last six patients
received 1.0 � 108 cells with acceptable toxicity, and this
dose was thus defined as the maximum tolerated cell dose.
4 https://doi.org/10.1016/j.iotech.2022.100089
Infusion products show a large proportion of 1D3HMcys-
edited T cells with a less differentiated phenotype

From all patients, sufficient mononuclear cells were har-
vested by apheresis for transduction with the 1D3HMCys
TCR. Infusion products contained a median of 57.4% (range
38.4%-77.5%) of 1D3HMCysþ CD8þ cells and 51.3% (range
38.9%-63.4%) of 1D3HMCysþ CD4þ cells (Figure 2A and B).

The expression of phenotypical markers CD45RO,
CD45RA, CCR7, CD27, CD28 and TCF1 on gene-modified
cells in the infusion products is shown in Figure 2C.
Expression of CD45RA was low amongst CD4þ cells, but
observed in around half of CD8þ cells. Expression of CCR7
was low in all samples and did not correlate with the more
substantial expression of CD62L which had been measured
in the infusion product before cryopreservation (not
shown). Both CD4þ and CD8þ T cells showed high expres-
sion of CD28 and, to a lesser extent, CD27, which has been
associated with less terminally differentiated cells with a
more central memory phenotype. The transcription factor
TCF1 (encoded by the gene TCF7) was also quantified to
identify cells with enhanced stemness and long-term
persistence.34 Due to the capacity of IL-15 to promote
proliferation of natural killer (NK) and TCRgd lymphocytes,
the presence of these cells in the final infusion products
was evaluated. Flow cytometry analysis showed that the
fraction of NK or TCRgd lymphocytes in the final infusion
products was highly limited with a purity of CD3þ cells of
99% (Supplementary Figure S1A, available at https://doi.
org/10.1016/j.iotech.2022.100089).

The killing capacity of the CD8þ 1D3HMCysþ and CD4þ

1D3HMCysþ T cells was analyzed in vitro, and the ability to
directly kill melanoma cells was almost exclusively observed
for CD8þ cells (Supplementary Figure S1B, available at
https://doi.org/10.1016/j.iotech.2022.100089).
Treatment-related toxicity was highly 1D3HMCys T-cell
dose-dependent

The most common adverse events (AEs) resulted from
transient bone marrow depression secondary to chemo-
therapy, with a median duration of grade 3-4 neutropenia
of 6.5 days (range 4-11 days). An overview of all observed
AEs is presented in Supplementary Table S3, available at
https://doi.org/10.1016/j.iotech.2022.100089. All enrolled
patients developed grade �3 treatment-related toxicity
(Figure 3A), but occurrence and severity of on-target, off-
tumor toxicity was highly dependent on administered cell
dose. Patients treated with 5.0 � 107 1D3HMCys T cells
developed mild dermatitis with spontaneous full recovery
within 2-19 days.

In the subsequent cohort of 2.5 � 108 1D3HMCys T cells,
both patients experienced grade 3 dermatitis (Figure 3B),
subsiding after 12-14 days upon topical and systemic steroid
treatment. Skin biopsies showed increased lymphocyte
infiltration and decreased MART-1 expression in melano-
cytes in the epidermis of affected skin compared to normal
skin of the same individual (Figure 3C). Expression of the
1D3HMCys TCR on SIL derived from these biopsies was only
Volume 15 - Issue C - 2022
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Table 1. Patient characteristics, dose cohort description and response

Patient Age
(years)/
sex

Primary
melanoma

Disease stage
(Sites)

Prior systemic therapy ECOG
score

Serum LDH
level

Cell dose Preparative
lymphodepleting
regimen

IL-2a (days) BOR by
RECIST 1.1
(DOR in
months)

TTPb in
months

Survival
in months from
time of infusion

1 43/F Cutaneous M1d
(CNS, pan, lu, pl, li,
ov, LN, SC, C, PRe, P, om)

MEK inhibitor, anti-CTLA-4 1 >2 � ULN 4.56 � 109 Cy 60 mg/kg for 2
days þ Flu 25 mg/m2

for 5 days

5 NA NAc 0.3d

2 74/F Cutaneous M1c
(lu, LN, spleen)

DTIC, DNA vaccination (trial),
MEKinhibitor (trial), anti-CTLA-4

0 1-2 � ULN 5.0 � 107 Cy 45 mg/kg for 2
days þ Flu 12.5 mg/m2

for 5 dayse

14 SD 2.1 70.2d

3 48/M Cutaneous M1c
(C, LN)

T-cell therapy (trial), anti-CTLA-4,
BRAF inhibitor

0 >2 � ULN 5.0 � 107 Cy 60 mg/kg for 2
days þ Flu 25 mg/m2

for 5 days

14 PD 1.2 8.1d

4 44/F Cutaneous M1d
(IM, li, C, lung)

Anti-PD-1, anti-CTLA-4 0 >2 � ULN 5.0 � 107 Cy 60 mg/kg for 2
days þ Flu 25 mg/m2

for 5 days

14 SD 2.5 6.5d

5 49/M Cutaneous
(acral)

M1c
(li, IM, C, SC)

MEK inhibitor, anti-PD-1,
anti-CTLA-4, DITC, TIL (trial)

1 <ULN 2.5 � 108 Cy 60 mg/kg for 2
days þ Flu 25 mg/m2

for 5 days

3f PR (7.1) 9.3 24.8d

6 59/F Cutaneous M1c
(LN, IM, li)

Anti-CTLA-4, anti-PD-1 0 1-2 � ULN 2.5 � 108g Cy 60 mg/kg for 2
days þ Flu 25 mg/m2

for 5 days

d SD 2.7 3.5d

7 46/F Cutaneous M1c
(li, LN, oss, P,
ce, v, pa, IM)

Anti-PD-1, anti-CTLA-4 1 1-2 � ULN 1.0 � 108 Cy 30 mg/kg for 2
days þ Flu 25 mg/m2

for 5 days

d SD 2.1h 2.3d

8 56/M Uveal M1c
(oss, li, SC)

Anti-CTLA-4 0 1-2 � ULN 1.0 � 108 Cy 30 mg/kg for 2
days þ Flu 25 mg/m2

for 5 days

d SD 6.3 14.0d

9 49/M Uveal M1c
(pl, lu)

d 0 1-2 �ULN 1.0 � 108 Cy 30 mg/kg for 2
days þ Flu 25 mg/m2

for 5 days

d SD 4.1h 25.2d

10 69/M Uveal M1c
(pl, lu, LN,
pan, SC, IM)

d 0 <ULN 1.0 � 108 Cy 30 mg/kg for 2
days þ Flu 25 mg/m2

for 5 days

d SD 2.7 6.2d

11 66/F Uveal M1c
(SC, lu, li)

d 0 1-2 � ULN 1.0 � 108 Cy 30 mg/kg for 2
days þ Flu 25 mg/m2

for 5 days

d PR (4.1) 5.1 5.2d

12 71/F Uveal M1c
(SC, AG)

Anti-CTLA-4 0 <ULN 1.0 � 108 Cy 30 mg/kg for 2
days þ Flu 25 mg/m2

for 5 days

d SD 12.2 37.6i

AG, adrenal gland; BOR, best overall response; C, cutaneous; ce, cervix; CNS, central nervous system; CRS, cytokine release syndrome; Cy, cyclophosphamide; DOR, duration of best response; DSMB, Data Safety Monitoring Board; ECOG, Eastern
Cooperative Oncology Group performance score; F, female; Flu, fludarabine; IM, intramuscular; LDH, lactate dehydrogenase; li, liver; LN, lymph nodes; lu, lung; M, male; NA, not available; om, omental; oss, osseus; ov, ovary; P, peritoneal; pa,
parametrium; pan, pancreas; pl, pleural; PD, progressive disease; PR; partial response; PRe, pararenal; SC, subcutaneous; SD, stable disease; ULN, upper limit of normal; v, vagina.
aSubcutaneous injections of low-dose interleukin-2 (2 � 106 IU/once daily up to 2 weeks) following cell infusion.
bTime to progression (TTP), defined as the length of time between moment of cell infusion and time of first documented disease progression.
cPatient 1 experienced a grade 5 serious adverse event and died 9 days after cell infusion and subsequent cell dose was drastically lowered.
dDeceased.
ePatient 2 received a dose reduction of the chemotherapy based on the observed toxicity of patient 1.
fBecause of the occurring toxicity (grade 3 CRS), it was agreed with the DSMB to omit IL-2 support in subsequent patients.
gAfter the last patient treated with 2.5 � 108 cells, the DSMB recommended to lower the cell dose to 1.0 � 108 transduced cells with half the dose of cyclophosphamide (30 mg/kg/day i.v.). Patients in this last dose cohort were additionally
treated with intratympanic dexamethasone injections.
hClinical progression.
iOngoing at the time of data close-out.
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Figure 2. Characteristics of infusion products. Samples from the infusion products
after 11 days of culture (end of production) were stained with HLA-A*02:01 MART-
1(26-35 A>L) tetramers to identify cells expressing the 1D3HMCys TCR. (A) Compo-
sition of infusion products. The median percentage of 1D3HMCys expression within
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seen in affected skin areas, suggesting that the skin toxicity
was due to recognition of MART-1 on healthy melanocytes
by the infused 1D3HMCys T cells (Figure 3D). Notably, most
1D3HMCys T cells cultured from the affected skin were
CD4þ, possibly indicating a key role for these cells in the
development of on-target, off-tumor toxicity at this site
(Figure 3E). Uveitis and hearing impairment occurred in
both patients. Patient 6 developed permanent sensori-
neural hearing loss in one ear, as previously described.35

Both patients experienced CRS (grade 2 and 3), requiring
tocilizumab (8 mg/kg with a maximum of 800 mg), an anti-
IL-6 receptor antibody, and local and systemic steroids.

All patients treated in the final dose cohort of 1.0 � 108

1D3HMCys T cells developed acceptable toxicity, with grade
2 (two patients) and grade 3 (three patients) dermatitis
occurring in five out of six patients. One patient experi-
enced grade 2 conjunctivitis and two patients, treated with
intratympanic dexamethasone injections, developed grade
1 hearing loss.

In the total cohort, the occurrence of CRS was dependent
on the T-cell dose and was associated with elevated IL-6
serum levels (Figure 4). However, occurrence of toxicities
did not seem to correspond to other measured serum
cytokine levels in peripheral blood upon cell infusion
(Supplementary Figure S2, available at https://doi.org/10.
1016/j.iotech.2022.100089).
Clinical benefit after treatment with 1D3HMCys T cells was
not clearly associated with administered cell dose

Two of 11 assessable patients (18%) reached an objective
partial response (PR) (Figure 5A and B) at 9.5 weeks
[duration of best response (DOR) 7.1 months after 2.5 �
108 cells] and 4 weeks (DOR 4.1 months after 1.0 � 108

cells), respectively. In five additional patients, minor tumor
shrinkage (not qualifying for response as per RECIST 1.1)
was observed.

The percentage of MART-1 expression in tumors before
therapy did not correspond with response and sequential
pre- and post-treatment tumor biopsies from most patients
showed no significant changes in MART-1, HLA or CD3
expression (Supplementary Table S4, available at https://
doi.org/10.1016/j.iotech.2022.100089). However, a 40%
decrease in MART-1 expression and HLA-A expression rela-
tive to a pre-treatment biopsy of the same lesion was
observed upon progression in patient 4 (Figure 5C). Flow
cytometry analysis of expanded TIL from biopsies of the
same subcutaneous metastasis from patient 5 at 7 and 9
months (time of progression) after treatment showed
CD3þ T cells in the infusion products was 56.4% (range 41.9%-75.5%) with a
median viability of 95.8% (range 92.9%-98.5%). (B) Number of 1D3HMCysþ

transferred T cells. Total number of CD4þ and CD8þ cells expressing the 1D3HMCys
TCR transferred per patient. (C) Phenotypical analysis of transgenic T cells. Dif-
ferentiation marker expression of CD45RO, CD45RA, CCR7, CD27, CD28 and TCF1
was measured on infusion products. Expression in CD8þ T cells (top) and CD4þ T
cells (bottom), gated on 1D3HMcysþ cells (as shown in Supplementary Figure S4A,
available at https://doi.org/10.1016/j.iotech.2022.100089).
MART-1, melanoma antigen recognized by T cells 1; TCF1, T-cell factor 1; TCR, T-cell
receptor.
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Figure 3. Treatment-related toxicity. (A) All T-cell product-related on-target, off-tumor, cytokine-mediated and � grade 3 adverse events (AEs) related to the lym-
phodepleting chemotherapy and/or interleukin-2 (IL-2), per dose cohort. All presented AEs are the worst grade (G) occurring in the patient graded by Common
Terminology Criteria for Adverse Events (CTCAE) v.4.03. The most common on-target, off-tumor toxicities due to the 1D3HMCys T cells presented as dermatitis in
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10/12 (83%) (max grade 3, median duration of worst-grade dermatitis of 12 days), uv
ototoxicity in 4/12 (33%) patients (max grade 3, median duration of worst-grade hear
of first symptoms. bCytokine-mediated AEs, with a heterogeneous presentation char
[clinically referred to as cytokine release syndrome (CRS)]. cThe first patient experien
development of vitiligo was seen following the dermatitis. ePatient 5 recovered to g
was not possible as no subsequent audiograms were carried out and the patient was
mg) was administered in patients 5, 6 and 11 with resolution of symptoms thereaft
protocol after patient 1 experienced a grade 5 AE. gPatient 6 suffered from permanent
grade 1 skin hypopigmentation, but worsened to grade 2 after treatment. iIn patie
Darier’s disease. jGrade 1 hearing impairment in patient 11 was still present at the tim
tumor’ AE in patients 5 and 6. Development of dermatitis occurred at day 2 after c
steroids and patient 5 also received systemic steroid therapy due to progressive ski
biopsies from affected and unaffected skin (locations of biopsies outlined in purple an
and D). (C) Histopathological features of dermatitis from patient 6. Hematoxylineeos
on skin biopsies from the back of affected and unaffected skin, taken 4 days after d
MART-1 expression and infiltration of CD3þ T cells along the dermoepidermal j
(magnification �200). (D) Flow cytometry analysis of skin-infiltrating lymphocytes (S
from the affected and unaffected skin of patient 5, who developed dermatitis 2 days
the affected skin but not from the unaffected skin. Flow cytometry analysis of the a
1D3HMCys TCR and anti-mouse TCRb indicating that all cells were derived from the
and unaffected skin 6 days post-infusion (see Figure 3B for the exact location). After 7
that infiltrating cells were >80% double positive for the 1D3HMCys TCR and anti-mo
cells in the affected skin of patients with dermatitis. From a total of six patients, biop
patients, an increase was seen in CD4þ 1D3HMCys T cells in the affected skin comp
AF, alkaline phosphatase; AST, aspartate aminotransferase; ALT, alanine aminotran
MART-1, melanoma antigen recognized by T cells 1; TCR, T-cell receptor.
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persistence of CD4þ and CD8þ 1D3HMCys T cells
(Figure 5D).

After a median follow-up of 37 months, the median PFS
for the total cohort was 2.8 months [95% confidence in-
terval (CI) 1.28-6.41 months] (Supplementary Figure S3A,
available at https://doi.org/10.1016/j.iotech.2022.100089).
Median OS for the total cohort was 7.3 months (95% CI
2.33-25.26 months) with a 1-year OS of 41.7% (95% CI
15.25% to 66.53%) (Supplementary Figure S3B, available at
https://doi.org/10.1016/j.iotech.2022.100089).
Long-term in vivo persistence of 1D3HMCys T cells in
peripheral blood

Persistence of 1D3HMCys T cells in peripheral blood was
related to infused cell dose and 1D3HMCys T cells could be
traced in peripheral blood up to 9 months post-infusion in
the patient with the most durable response. Peak fre-
quencies of 1D3HMCys T cells in the peripheral blood were
observed within 20 days of infusion, and 1D3HMCys T-cell
numbers dropped less quickly in patients treated with the
highest cell dose (Figure 6A). A large variation in the per-
centage of 1D3HMCys CD4þ and CD8þ T cells in peripheral
blood was observed over time, with a trend toward longer
persistence of 1D3HMCys CD8þ T cells compared to
1D3HMCys CD4þ T cells (Figure 6B), possibly reflecting
distinct tissue distributions.

Expression of CD4, CD8, LAG-3, TIM-3, CCR7, CD45RA,
CD137, OX40 and programmed cell death protein 1 (PD-1)
on 1D3HMCys T cells was evaluated in infusion products
and on peripheral blood T cells at multiple time points after
infusion. Supplementary Figure S4A, available at https://doi.
org/10.1016/j.iotech.2022.100089, shows the gating strat-
egy and Supplementary Figure S4B, available at https://doi.
org/10.1016/j.iotech.2022.100089, illustrates results for
patient 5, with a PR, showing long-term persistence of
1D3HMCys T cells. Infusion products from all patients
eitis/conjunctivitis in 3/12 (25%) (max grade 2, median duration of 26 days) and
ing impairment of 86.5 days in assessable patients). aIndicates the time of onset
acterized by fever, tachycardia, hypotension, edema and increased oxygen need
ced a grade 5 serious AE and died 9 days after cell infusion. dIn patients 2 and 3,
rade 2 hearing impairment 16 days after onset of symptoms. Further evaluation
thus lost to follow-up for this AE. fTocilizumab (8 mg/kg with a maximum of 800
er. Tocilizumab administration for the treatment of CRS was added to the study
unilateral hearing loss, as described earlier.35 hPatient 9 was already known with

nt 10, the dermatitis could have been an exacerbation of previously diagnosed
e of death. (B) Clinical representations of grade 3 dermatitis as an ‘on-target, off-
ell infusion for patients 5 and 6. Both patients required treatment with topical
n rash and persisting CRS despite tocilizumab administration. In patient 6, skin
d green, respectively) were taken for histopathological evaluation (see Figure 3C
in (HE) and immunohistochemical stainings of MART-1 and CD3 were carried out
evelopment of dermatitis (6 days after cell infusion). Loss of melanocytes and
unction can be seen in the affected skin compared to the unaffected skin
ILs) in patients with dermatitis. Needle biopsies were taken 4 days post-infusion
after infusion of 2.5 � 108 1D3HMCys T cells. After 8 days, SILs expanded from
ffected skin showed that skin-infiltrating cells were 95% double positive for the
infusion product. From patient 6, needle biopsies were taken from the affected
days, SIL expanded from the affected and unaffected skin. FACS analysis showed
use TCRb both for the unaffected and affected skin. (E) Presence of 1D3HMCys T
sies were obtained from both the affected and unaffected skin. In five out of six
ared to the unaffected skin.
sferase; FACS, fluorescence-activated cell sorting; GGT, g-glutamyl transferase;
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showed low expression of LAG-3, CD137, OX40 and PD-1,
but relatively high expression of TIM-3 both on CD4þ and
CD8þ cells, consistent with a non-exhausted T-cell
phenotype.
DISCUSSION

This phase I/IIa, single-center, single-arm, dose-escalation
trial, investigating adoptive transfer of autologous periph-
eral blood T cells transduced with the MART-1-specific
1D3HMCys TCR in patients with metastatic melanoma,
was stopped prematurely because of severe
dose-dependent toxicity and modest clinical activity at
tolerated cell doses. Production of 1D3HMCys T cells
expanded in the presence of IL-7 and IL-15 was feasible for
all patients and in vitro killing capacity of transduced CD8þ

T cells was demonstrated.
The first patient in this study received 4.56 � 109

1D3HMCys T cells, based on previous MART-1-specific TCR
gene therapy studies,11,12 and experienced grade 5 toxicity
9 days after cell infusion because of CRS/sepsis and multiple
organ failure.33 In subsequent patients, cell dose was
reduced by 100-fold. In these cohorts with 5.0 � 107, 2.5 �
108 and 1.0 � 108 cells, respectively, severe dose-
dependent toxicity was observed, comprising dermatitis,
uveitis/conjunctivitis, ototoxicity and CRS (in 5/12 patients),
with grade 3-5 toxicity in 7/12 patients.

Before this study, three clinical trials with MART-1-specific
TCR therapy in melanoma patients have been reported.
Morgan et al. (2006)11 treated patients with autologous
peripheral blood T cells retrovirally transduced with the
DMF4 TCR recognizing the MART-1(26-35) epitope. Infused
transduced cells ranged from 0.5 to 34.4 � 109 and 13% (2/
15) of patients showed objective tumor regression without
development of treatment-related toxicities. In a subse-
quent trial by Johnson et al. (2009),12 T cells expressing a
high-avidity MART-1-specific TCR (DMF5) were generated
and patients received between 0.5 and 97.4 � 109 trans-
genic cells, resulting in an ORR of 30% (6/20 patients).
However, these patients experienced widespread on-target,
off-tumor toxicity, ascribed to the on-target recognition of
the MART-1 antigen in normal melanocytes. Biopsies of
affected skin showed a dense infiltrate of T cells (mainly
CD8þ T cells) with concurrent destruction of melanocytes,
comparable with the observations in our clinical trial. A
third clinical trial by Chodon et al. (2014)36 combined ACT of
0.6-4.8 � 109 MART-1-specific T cells, produced using a
shorter (1 week) manufacturing protocol, and dendritic cell
vaccination treating 13 patients with metastatic melanoma.
Severe toxicity (rash and acute respiratory distress) and
median peak value of 141.4 ng/l (range 26.1-588.8 ng/l). A clear association was
seen between the value of IL-6 and the severity of toxicity, as the three patients
with the highest IL-6 peaks developed CRS and required tocilizumab adminis-
tration. aPatients 5, 6 and 11 received a single dose of tocilizumab (8 mg/kg with
a maximum of 800 mg) on days 5, 4 and 6, respectively, due to persisting
symptoms despite supportive measures.
CRS, cytokine release syndrome; IL-6, interleukin-6.
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Figure 5. Clinical outcomes. (A) Clinical activity of 1D3HMCys T cells. Spider plot showing changes in size of target lesions according to RECIST 1.1 for all assessable
patients (n ¼ 11). Baseline computed tomography (CT) scans were carried out at t ¼ 0 and changes in lesion size at each follow-up visit are presented at the
subsequent time points. The dashed lines at 20% and �30% change in the sum of the diameter of the target lesions represent progressive disease and partial response
(PR), respectively. Patients 5 and 11 reached a PR at 9.5 and 4 weeks after cell infusion, respectively. aNew lesion. bClinical progression and deceased before next
tumor evaluation. cNew lesion detected clinically and confirmed by pathology. dClinical progression with palliative radiotherapy on target lesion. (B) Pre- and post-
treatment CT scans of the two patients (5 and 11) with a PR according to RECIST 1.1. The duration of responses was 7.1 and 4.1 months, for patients 5 and 11,
respectively. (C) Immunohistochemical changes in tumor sites upon infusion of 1D3HMCys T cells in patient 4. Hematoxylineeosin (HE) and immunohistochemical
stainings with melanoma antigen recognized by T cells 1 (MART-1), HLA-A and CD3 were carried out on pre- and post-treatment biopsies from the same subcutaneous
metastasis from the right flank of patient 4 (magnification �400). This patient showed progressive disease 88 days after cell infusion. A decrease can be seen in MART-
1 and HLA-A expression at the time of progression compared to the pre-treatment biopsy, from 80% to 40% and 75% to 40%, respectively. Immune infiltration scored
by CD3 expression remained grade 1. (D) Persistence of 1D3HMCys T cells in tumor sites in patient 5. Tumor biopsies were taken at 7 and 9 months after infusion of
2.5 � 108 1D3HMCys T cells from the same subcutaneous metastasis and were cultured in the presence of IL-2. Expanded T cells were analyzed by flow cytometry.
Biopsy at 7 months: expanded TILs were analyzed after 5 days of culture. Nine percent of the CD3þ cells stained with HLA-A*02:01 MART-1(26-35 A>L) tetramers and
anti-mouse TCRb, indicating that they express the transgenic 1D3HMCys TCR. Of the CD4þ cell population, 20% were 1D3HMCysþ, while for the CD8þ cells this was
6%. Biopsy at 9 months (time of progression): expanded TILs were analyzed after 3 days of culture. Within the CD3þ cells, 3% expressed the 1D3HMCys TCR. One
percent of the CD4þ and 5% of the CD8þ T cells were 1D3HMCysþ.
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short-lived antitumor activity were observed after the
infusion of MART-1 transgenic T cells.

In this clinical trial, severe dose-dependent, on-target
toxicity and CRS with a maximum tolerated dose of 1.0 �
108 gene-modified T cells were observed. This 10-fold or
more lower maximum tolerated dose compared to the
previous MART-1-specific TCR studies led to similar or even
more severe on-target, off-tumor toxicity and CRS, which
might very well be attributed to the production method of
MART-1-engineered T cells. Although the same epitope of
MART-1 was targeted, peripheral blood-derived T cells were
isolated and activated using anti-CD3/CD28 beads instead
of an anti-CD3 monoclonal antibody. Subsequently, isolated
T cells were expanded and activated in the presence of IL-7
and IL-15 instead of the more commonly used IL-2, with the
goal of stimulating the in vitro development and mainte-
nance of less differentiated T cells with a memory stem/
central memory phenotype.

A major fraction of engineered T cells in our infusion
product expressed CD45RO, CD45RA, CD27 and CD28,
indicating a less differentiated phenotype. Moreover, this
expansion protocol yielded a relatively high percentage of
CD4þ cells in the infusion product. Both could be possible
downstream effects of the novel production strategy,
resulting in highly active cells. Patients 5 and 6 received the
largest amount of CD4þ 1D3HMCys T cells, possibly
contributing to the severe toxicity in both patients.
Whether this increased toxicity was due to the less differ-
entiated phenotype or increased proportion of CD4þ T cells
or both remains unclear. Intriguingly, the two patients with
a PR also had relatively high fractions of CD4þ 1D3HMCys T
cells in their infusion products (48% and 25% for patients 5
and 11, respectively). CD4þ T cells have been shown to
contribute importantly to antitumor activity37; however,
their contribution to cytotoxicity in this study could not be
addressed separately.

Besides exposure to 1D3HMCys T cells, patients received
lymphodepleting chemotherapy and low-dose IL-2 to facil-
itate engraftment, as in previous trials.11,12 Both can cause
significant toxicity; however, there is no clear indication that
either of these supporting treatments was a potential
confounder affecting safety in this trial. After patient 1
experienced grade 5 toxicity, cell dose was drastically low-
ered in the following three patients, with unchanged
chemotherapy and IL-2 dosing. Mild, transient toxicity was
observed and cell dose was increased. After patient 5
experienced grade 3 CRS, IL-2 was omitted in the subse-
quent patients to reduce toxicity. Despite receiving the
same cell dose as patient 5 without IL-2, patient 6 still
developed severe on-target, off-tumor toxicity and grade 2
CRS. As the exact role of lymphodepletion next to cell
numbers in the development of toxicities was unknown,
the cyclophosphamide and cell dose were lowered. In
retrospect, however, both protocol amendments and
https://doi.org/10.1016/j.iotech.2022.100089 11
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Total 1D3HMcys+ cells (CD4+ and CD8+) CD4+ 1D3HMcys+ cells CD8+ 1D3HMcys+ cells

Figure 6. Persistence of 1D3HMCys T cells in peripheral blood after infusion. (A) The percentages (top row) and absolute numbers (bottom row) of 1D3HMcysþ cells
in the blood of patients were quantified after infusion and were correlated with infused cell dose. aPersistence of transgenic cells was confirmed at 9 months post-
infusion in patient 5. (B) Distribution of 1D3HMcysþ CD4þ and CD8þ T cells over time. Absolute numbers of total 1D3HMcysþ cells and CD4þ or CD8þ 1D3HMcysþ

cells after infusion, quantified at different time points as indicated. Absolute numbers of transduced T cells were calculated by determining the percentage of
1D3HMCys TCR T cells within the flow cytometry lymphocyte gate, multiplied by the absolute number of lymphocytes per liter of blood.
TCR, T-cell receptor.
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subsequent clinical course in patients clearly suggest that
the toxicity was more related to the cell dose than the
supporting treatments.

Objective antitumor activity was observed in two pa-
tients receiving 1.0 � 108 and 2.5 � 108 cells. For enroll-
ment, >10% MART-1 expression in tumors was required;
however, the percentage of cells expressing target antigen
for optimal efficacy is unknown. As most melanomas ex-
press MART-1,13,14 the arbitrary minimum 10% MART-1
12 https://doi.org/10.1016/j.iotech.2022.100089
expression was used.38 The percentage of MART-1 expres-
sion before treatment did not clearly correspond with
clinical efficacy. The patient with the most durable response
received the highest cell dose and demonstrated the
longest persistence of modified T cells in peripheral blood,
in line with observations in earlier trials.12,39,40 In contrast
to previous trials, patients with cutaneous melanoma in our
trial had failed prior immune checkpoint inhibition (ICI) and
therefore response rates are difficult to compare, as these
Volume 15 - Issue C - 2022
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patients (in the post-ICI era) are considered less susceptible
to immunotherapy. Of note, one patient who had failed
both anti-cytotoxic T-lymphocyte-associated protein-4 and
anti-PD-1 therapy achieved a PR, adding to the evidence
that adoptive cellular therapies can be efficacious after
failure of prior ICI. This was also observed in a recent trial
with lifileucel, a TIL therapy, that induced a response rate of
36% in ICI-refractory cutaneous melanoma patients.41

An objective response was also observed in a patient
with uveal melanoma, a disease with, until recently, no
viable treatment options and poor response to ICI.2

Intriguingly, this patient received an attenuated dose of
chemotherapy and no IL-2, supporting the fact that these
cells are highly potent and that the supporting treatments
had little influence on clinical efficacy. In a recent phase III
trial, treatment with tebentafusp (a bispecific protein of a
soluble TCR fused to an anti-CD3 single-chain variable
fragment-activating domain targeting an MDA) resulted in
prolonged OS,3 further indicating that T-cell-directed killing
targeting MDAs in uveal melanoma has merit. Promising
antitumor activity has also been seen with adoptive transfer
of TIL in these patients,42 supporting further investigation of
immune therapies including TCR-based therapies in this
disease.

The observed strong on-target, off-tumor reactivity poses
a major limitation for the further development of TCR gene
therapy targeting tumor-associated antigens such as MART-
1 that are also presented on normal tissue cells. To further
improve the safety and efficacy of TCR gene therapy, target
selection, ideally expressed exclusively on tumor cells, is of
great importance. Attractive strategies currently under
investigation showing high specificity are targeting neo-
antigens solely expressed on tumors, the tumor microen-
vironment or engineering T cells solely triggered by multiple
specific antigens (or absence thereof).43,44

In conclusion, this clinical trial demonstrated the feasi-
bility to generate and to adoptively transfer TCR-engineered
T cells grown in the presence of IL-7 and IL-15, with a less
differentiated phenotype leading to a highly reactive cell
population with clear dose-dependent toxicity and modest
antitumor activity. This production method in combination
with strictly tumor-specific TCR-engineered T cells could be
an attractive strategy to improve ACT, leading to highly
potent cells with high tumor reactivity and reduction of on-
target, off-tumor toxicity.
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