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Introduction. Electroporation-based treatments rely on increasing the permeability of the cell membrane by high 
voltage electric pulses delivered to tissue via electrodes. To ensure that the whole tumor is covered by the sufficiently 
high electric field, accurate numerical models are built based on individual patient geometry. For the purpose of re-
construction of hepatic vessels from MRI images we searched for an optimal segmentation method that would meet 
the following initial criteria: identify major hepatic vessels, be robust and work with minimal user input.
Materials and methods. We tested the approaches based on vessel enhancement filtering, thresholding, and their 
combination in local thresholding. The methods were evaluated on a phantom and clinical data.
Results. Results show that thresholding based on variance minimization provides less error than the one based on 
entropy maximization. Best results were achieved by performing local thresholding of the original de-biased image in 
the regions of interest which were determined through previous vessel-enhancement filtering. In evaluation on clinical 
cases the proposed method scored in average sensitivity of 93.68%, average symmetric surface distance of 0.89 mm 
and Hausdorff distance of 4.04 mm.
Conclusions. The proposed method to segment hepatic vessels from MRI images based on local thresholding meets 
all the initial criteria set at the beginning of the study and necessary to be used in treatment planning of electropora-
tion-based treatments: it identifies the major vessels, provides results with consistent accuracy and works completely 
automatically. Whether the achieved accuracy is acceptable or not for treatment planning models remains to be 
verified through numerical modeling of effects of the segmentation error on the distribution of the electric field.  
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Introduction

Exposing a biological cell to a sufficiently high 
electric field causes increased permeability of the 
cell membrane. This increased permeability of the 
membrane allows transfer of molecules which nor-
mally lack membrane transport mechanism into 
the cell. The described effect of the electric field on 

the cell is called electroporation. 1,2 Electroporation 
can be classified as either reversible or irreversible. 
The reversible/irreversible nature of electropora-
tion is in strong correlation with pulse amplitude, 
duration and number of pulses. In reversible elec-
troporation, the cell membrane eventually re-
turns to its normal state. Irreversible electropora-
tion however leads to cell death because the cell 
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membrane is permanently disrupted or due to 
the extensive loss of the intracellular components. 
Combination of reversible electroporation with tra-
ditional methods of chemotherapy has resulted in 
a new method for tumor treatment named electro-
chemotherapy (ECT).3–5 Irreversible electroporation 
(IRE) has found its application in tumor treatment 
as a tissue ablation procedure, its main advantage 
being the fact that, if controlled properly, it does 
not thermally damage the tissue.6–8 

Tumor treatments based on electroporation like 
ECT and IRE include placement of the electrodes in 
the tissue and delivery of the electric pulses. In or-
der for the treatment to be successful the whole tu-
mor must be covered by a sufficiently high electric 
field. The magnitude and distribution of the elec-
tric field depends on the number and the position 
of the electrodes, the amplitudes of pulses applied 
per electrode pair and the electric properties of the 
tissue, especially conductivity.9,10 

Prediction of parameters needed for success-
ful treatment is easier for surface tumors which is 
why the ECT was first performed on skin tumors.4 
Ensuring the complete tumor coverage with a suf-
ficiently high electric field is however more chal-
lenging in the case of deep-seated solid tumors as 
well as large tumors.11 This was well demonstrat-
ed in a case where a patient with a deep-seated 
tumor in the thigh was treated with ECT.12 The 
post-treatment evaluation showed that 6% of the 
tumor volume was not covered by a sufficiently 
high electric field, which caused the tumor to re-
grow. The reasons which reduce predictability of 
the electric field distribution in deep-seated tumors 
are the tumor position, high diversity in tumor size 
and shape, and presence of the surrounding tissues 
with different electric conductivities. Predictability 
of an adequate distribution of the electric field can 
be best achieved by calculating a patient-specific 
treatment plan as a part of an electroporation-
based treatment procedure.13 A patient-specific 
treatment plan for electroporation-based treatment 
of deep-seated solid tumors takes into account pa-
tient geometry and tissue properties to generate an 
optimal set of treatment parameters.14,15

Correctness of a treatment plan is ensured by 
an accurate model of the patient which includes 
the tumor with critical surrounding tissues and 
structures. The patient model is built by segment-
ing the medical images and then used to perform 
numerical calculations of the electric field distribu-
tion. A proof-of-concept was provided in a clinical 
study in which colorectal metastases in the liver 
were treated by means of ECT.16 For the purpose 

of the mentioned clinical study, an algorithm for 
automatic segmentation of the liver from MRI im-
ages was developed.17 Similar treatment planning 
process is well-established in radiotherapy where 
it has been in use for decades.18 Generation of mod-
els from medical images for subsequent numerical 
calculations has also been used as a part of treat-
ment planning for radiofrequency ablation (RFA) 
of liver tumors.19,20 

Other than liver and tumor tissue, critical struc-
tures that need to be included in the model for both 
RFA and electroporation-based treatments of the 
liver are hepatic vessels. For the purpose of radi-
ofrequency ablation, vessels which measure more 
than 3 mm in diameter size have been described as 
critical because of their influence on heat propaga-
tion.21 In case of electroporation-based treatment 
of the liver the hepatic vessels are important for 
other reasons. Firstly, the electric conductivity of 
the vessels is different than that of the liver tissue 
and tumors, which can have an impact on the elec-
tric field distribution, especially in cases when a 
tumor is situated close to large vessels.22 Secondly, 
during an electroporation-based treatment the 
surgeons insert needle electrodes into the liver tis-
sue and these should not damage larger hepatic 
vessels. The hepatic vessels which were identified 
by surgeons as critical are vena cava and vena por-
ta with branches up to second order, left, middle 
and right hepatic vein, and larger hepatic arteries. 
These vessels will thus be the ones we will most 
certainly want to include in our model. Lastly, the 
model of vessels built from medical images can 
be used for intra-operative visualization to help 
surgeons navigate during the insertion of the elec-
trodes.

The problem of segmentation of vessels in gen-
eral23 and hepatic vessels in particular has been 
an area of interest for several decades. The inter-
est in segmentation of hepatic vessels resulted in 
exploring several different approaches. First at-
tempts were based solely on thresholding24 and re-
gion growing.25,26 The evolution of highly popular 
methods for enhancement of tubular structures27–29 
resulted in their combinations with thresholding30 
and region growing.20,31–33 Other than tube-enhanc-
ing filtering the traditional methods of segmenta-
tion were enhanced through use of Gaussian mix-
ture models34,35 and by utilizing morphology of 
the vascular tree through centerline extraction.20,31 
More advanced methods for segmentation of he-
patic vessels include those based on graph-cuts36,37, 
active contours38 and morphological properties 
embedded in context-based voting system.39
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All these methods for vessel segmentation have 
however been designed for and applied to CT im-
ages. To our knowledge, no method so far was test-
ed on MRI images. Although CT images have been 
considered superior for hepatic vessels, the vessels 
are also visible in MRI images, especially when a 
contrast agent is applied. With respect to the colo-
rectal metastases of the liver, multiple studies have 
shown that MRI is superior to CT in sensitivity and 
accuracy of detecting tumor lesions.40–45 If MRI is a 
modality of choice for detecting the tumors, using 
the same modality to segment the hepatic vessels 
would avoid the need for registration and errors 
that inevitably come with it. Another reason why 
MRI is a method of choice for planning of electropo-
ration-based treatments is possibility to directly 
observe the distribution of the electric field using 
the magnetic resonance electric impedance tomog-
raphy (MREIT), which was described in the work of 
Kranjc et al.46,47 and is being actively explored. 

Given all of the mentioned advantages of MRI 
over CT in treatment of colorectal metastases in 
the liver with electroporation-based treatments, 
we directed our research towards segmentation 
and validation of segmentation of hepatic vessels 
from MRI images. The segmentation method used 
for hepatic vessels has to be robust and include 
minimal or no user interaction. These prerequisites 
are necessary for using the procedure for hepatic 
vessel segmentation as a module in the process 
of treatment planning.48 Having this in mind, the 
segmentation methods we tested were built upon 
already established and robust approaches based 
on filtering, vessel enhancement, automatic thresh-
olding and region growing. Data used in valida-
tion consisted of two sources: a phantom and clini-
cal cases. The phantom was used to optimize the 
segmentation parameters and analyze the perfor-
mance of methods in detail. Images of clinical cases 
were then used to validate the performance of seg-
mentation methods under realistic conditions.

Materials and methods
Segmentation of hepatic vessels

In order to segment the hepatic vessels from MRI 
images we tested several simple approaches, alone 
and their combinations. The main approaches in-
clude vessel enhancement filtering, thresholding, 
region growing, connected component analysis 
and morphological operations.

To determine the optimal method for our pur-
pose we tested two different thresholding methods 

on different input: on original de-biased images 
and on the results of vessel enhancement filtering. 
The thresholding of that input was performed on 
the slice level and is referred to as global threshold-
ing. The thresholding method that performed best 
on phantoms was also tested locally on smaller re-
gions of original de-biased images determined by 
vessel enhancement filtering.

Pre-processing phase

Prior to running any of the methods on the origi-
nal images we performed de-biasing in order to 
remove the inhomogeneity of image intensity. The 
intensity inhomogeneity is a product of the mag-
netic field inhomogeneity in the MRI device.49 The 
applied de-biasing method is publicly available 
and based on the work of Zheng et al.50 After de-
biasing the images were masked with the results of 
liver segmentation.17

Vessel enhancement filtering

The filter we used is based on the work of Frangi et 
al.28 The filter differentiates line-like from blob-like 
and plate-like structures by observing the relation-
ships between eigenvalues of the Hessian matrix 
in each voxel of the image. Before applying the fil-
ter, the image is scaled by filtering with Gaussian 
kernels of different size σ. The value of σ is set to 
a value that equals the size of the diameter of the 
vessels we wish to enhance.

For each scale σ the probability of a voxel be-
longing to a line, i.e. vesselness is calculated as:

 
 (1)

where  are eigenvalues of the Hessian 

matrix in three dimensions,  and  

are parameters which discriminate line-like struc-
tures from plate-like and blob-like structures, and 

 is the Frobenius norm of the 

Hessian matrix. Values of parameters α and β were 
chosen through optimization on phantoms and 
were selected as 0.3 and 0.7, respectively. Value of 
parameter c is calculated for each case and for each 
value of scale σ according to the following equa-
tion:
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  (2)
The parameter c is used in the expression for ves-
selness as is, without squaring and multiplying by 2 
as it is done in the original work of Frangi et al.28 The 
reason for this is better enhancement of vessel struc-
tures. The final vesselness filtered image is obtained 
by calculating the maximum of vesselness values at 
different scales for each voxel of the image.

Thresholding

Out of many thresholding methods developed un-
til today we chose to implement two of the most 
successful as reported by Sankur et al.51 The first 
method is based on minimizing intra-class vari-
ance.52 The second method is based on maximiza-
tion of image entropy.53 Both methods are com-
pletely automatic and were implemented to de-
termine the threshold on slice level on an image 
histogram with values in the 16-bit range.

We assessed the performance of the two thresh-
olding methods globally on de-biased original 
images and vesselness filtered images of both 
phantoms and clinical cases. Additionally we as-
sessed the method that performed better globally 
on smaller regions of interest. The details of local 
thresholding are described in the section Proposed 
method. 

Proposed method

Through analysis of the results of previously de-
scribed methods applied on both phantom and 
clinical data, we derived a method comprised of 
the best aspects of vessel enhancement filtering 
and thresholding. Vessel enhancement filtering 
is excellent for locating the position of the ves-
sels but unable to determine their exact borders. 
Thresholding of the de-biased original image can 
detect vessel borders but not with consistent accu-
racy throughout the whole image. The proposed 
method is therefore based on local thresholding of 
smaller regions of interest (ROI), rather than deriv-
ing a single threshold for the whole slice. The ROIs 
for local thresholding are determined based on the 
output of vessel enhancement filtering. Detailed 
steps of the proposed method with all the input, 
output, parameters and dimension in which the 
step is performed are provided in Table 1.

First, we performed sinc interpolation to obtain 
isotropic voxels (O2) so that we could perform ves-
selness filtering.54 After that we applied the ves-
selness filtering on the interpolated, de-biased, 
masked original images (O3). The filtered image 
(O4) was interpolated once again to obtain the orig-

inal voxel size (O5). In the end of the filtering sec-
tion the result of vesselness filtering has to be once 
again masked with the original liver mask to sup-
press the high response which appears in the area 
where background borders with the liver (O6). 

The output of the vesselness filtering has high 
values for voxels with high probability of belong-
ing to a vessel and is very low for very small ves-
sels. The voxels with small vesselness values might 
also be a result of image noise. For this reason we 
have chosen a small threshold of 0.05 of the maxi-
mum vesselness value. All of the voxels with a 
vesselness value higher than this threshold are iso-
lated into a basic vessel model (O7). A basic vessel 
model thus consists of voxels with high certainty 
of belonging to a vessel. The same small threshold 
for output of Frangi’s vessel enhancing filter was 
already successfully used in the work of Dongen 
et al. to prevent false positives in the algorithm for 
extraction of pulmonary vasculature.55 

To eliminate the smallest vessels which are not 
of interest for electroporation-based treatments we 
morphologically open the results to remove all ob-
jects with a diameter smaller than 3 mm. We need 
to keep only larger objects (O8) because the small-
est hepatic vessels from the list of those that should 
not be damaged during the electrode insertion are 
the main hepatic arteries, and they measure around 
3 mm in diameter and more.56

After we have extracted and morphologically 
opened the basic vessel model (O8) we proceed 
with local thresholding to determine the exact ves-
sel borders. To extract the ROIs we first perform 
the connected component analysis on the slice level 
to break the basic vessel model into smaller 2D ob-
jects (O9). These objects are then morphologically 
dilated with a structuring element in the shape of a 
disc with a radius of 5 pixel. The dilation gives us 
the ROIs (O10) within which we perform the local 
thresholding (O12). The threshold for each ROI is 
calculated based on variance minimization.

The final steps in the proposed method are 
meant to refine the results by adding possibly 
missed nearby voxels and removing small objects. 
For this purpose we perform region growing with 
results of local thresholding (O12) as seed points. 
Region growing is performed on de-biased original 
images in 3D by searching the 27-neighborhood of 
each seed voxel. A threshold for adding new vox-
els is determined on a slice level as a median value 
of intensities of voxels already marked as vessels. 
The thresholds are re-calculated after each series 
of newly found voxels. The region growing stops 
once there are no new voxels that could be added. 
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After region growing we mask the results (O13) 
with an eroded liver mask (O14) to eliminate 
boundary outliers. This step is in general unneces-
sary if the provided liver masks are completely ac-
curate and contain only liver voxels. Otherwise the 
results of the vessel segmentation will also include 
a small strip around the liver which in original im-
ages is of similar intensity as vessels. The final step 
in the proposed method includes once again mor-

phologically opening the results (O15) to remove 
all objects with a diameter smaller than 3 mm. 

In order to give better insight into the proposed 
method we provide output of all the relevant steps 
in Figure 1. The outputs are the result of applying 
the proposed method on a clinical case. For all of 
the presented steps we provide a one slice output 
and for some steps also the complete 3D model, if 
relevant.

 TABLE 1. Sequential list of all the steps performed within the proposed optimal method, along with inputs, outputs and parameters of each step and the 
dimension (2D or 3D) in which the step is performed. (Ox) denotes an output from a previous step where x is the step number

No Step Input Output Parameters Dimension

1 Bias removal Original unmasked image De-biased image (O1) / 2D

2
Sinc interpolation 
to obtain isotropic 
voxels

De-biased image (O1)
Liver mask

Interpolated de-biased image (O2’)
Interpolated liver mask (O2’’) / 3D

3 Masking
Interpolated de-biased 
image (O2’)
Interpolated liver mask (O2’’)

Interpolated masked de-biased 
image (O3) / 2D

4 Frangi filtering Interpolated masked de-
biased image (O3)

Interpolated vesselness filtered image 
(O4)

Gaussian kernel 
σ=[1,12] with a step 
of 0.5
α=0.3
β=0.7
c= half of Frobenius 
norm

3D

5 Interpolation to 
original voxel size

Interpolated vesselness 
filtered image (O4) Vesselness filtered  image (O5) / 3D

6 Masking
Vesselness filtered image 
(O5)
Liver mask 

Masked vesselness filtered image 
(O6) / 2D

7 Thresholding with a 
low threshold

Masked vesselness filtered 
image (O6) Basic vessel model (O7) Threshold = 0.05 * 

max(vesselness) 3D

8 Removal of small 
objects Basic vessel model (O7) Basic vessel model with objects with 

diameter > 3 mm (O8)

Size of small object 
= number of pixel of 
a circle with 3 mm 
diameter

2D

9 Connected 
component analysis

Basic vessel model with 
objects with diameter > 3 
mm (O8)

Basic objects (O9) / 2D

10 Dilation Basic object (O9) ROI of object (O10) Structuring element: 
disc with radius = 5 2D, per object

11 Masking De-biased image (O1)
Liver mask Masked de-biased image (O11) / 2D

12 Local thresholding
ROI of object (O10)
Masked de-biased image 
(O11)

Locally thresholded image (O12)

Threshold 
determined 
for each ROI 
through variance 
minimization

2D, per object

13 Region growing

Locally thresholded image 
(O12)
Masked de-biased image 
(O11)

Region grown image (O13)

Threshold = 
median of locally 
thresholded image, 
per slice
27-neighborhood

2D/3D

14 Erosion Liver mask Eroded mask (O14) Structuring element: 
disc with radius = 6 2D

15 Masking Region grown image (O13)
Eroded mask (O14) Segmented image (O15) / 2D

16 Removal of small 
objects Segmented image (O15) Segmented image with objects with 

diameter > 3 mm (O16)

Size of small object 
= number of pixel of 
a circle with 3 mm 
diameter

2D
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Most of the parameters that are used in the pro-
posed method are calculated automatically based 
on the image. These parameters include the two 
most critical parameters: the value of c used in the 
vessel enhancing filter that influences the filter out-
put most57 and thresholds in the local thresholding 
step. Values of two of the remaining parameters of 
the vessel enhancing filter, α and β, were chosen 
based on validation on phantoms. The rest of the 
parameters that had to be set do not directly influ-
ence the accuracy of the results but rather deter-
mine the region of interest in which the main pa-
rameters operate. These less-sensitive parameters 
are namely a threshold in step 7 and a structuring 
element in step 9 (Table 1). We would, however, 
not suggest setting these parameters to more than 
±25% of the values used in this paper. There is one 
parameter remaining that strongly influences the 

output of the vessel enhancement filter, and that is 
the value of σ in the Gaussian kernel. This param-
eter needs to be set only once and according to the 
size of the vessels one wishes to extract, as is stated 
in the work of Frangi et al.28

Phantom design

Our primary concern in hepatic vessel segmenta-
tion was the accuracy of segmentation rather than 
the segmentation sensitivity to the depth of the 
vessel tree. For this reason we created a phantom 
which enabled detailed observation of whether a 
certain method over- or undersegments. The phan-
tom was composed of a cup filled with agarose gel 
and a tube filled with physiological solution insert-
ed into that gel, similar to the work of Merkx et al.58 
and Jiang et al.59 The gel was prepared as a 0.5% 
solution of agarose in 100 ml distilled water, doped 
with 0.17 mM MnCl2 to enhance MRI signal prop-
erties.60 Three glass tubes with outer diameters of 4, 
6 and 8 mm were filled with physiological solution 
in order to model the vessels. Each tube was insert-
ed into its own cup filled with agarose gel perpen-
dicularly to the cup bottom. Another set of tubes, 
also with 4, 6 and 8 mm outer diameters were in-
serted into another three cups filled with agarose 
gel, but this time in a tilted position. In total, we 
had six cups containing tubes. An example dem-
onstrating different positions of the tube inside the 
cup is shown in Figure 2. All six cups were placed 
in a Siemens Avanto 1.5T MRI device and imaged 
at the same time in order to ensure the same im-
aging conditions for all six phantoms. Imaging 
parameters were set as in the standard protocol 
for imaging of the abdomen: T1-weighted, VIBE 
breath-hold, coronal plane with body coil. We im-
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FIGURE 1. Output of the proposed method applied on a clinical case. (A) Original 
image. (B) De-biased original image. (C) Masked de-biased original image. (D) 
Vesselness filtered image. (E) Masked vesselness filtered image. (F) The same output 
as in E. presented in colored scale. (G) Basic vessel model with small objects. (H) 
Basic vessel model with small objects shown in 3D. (I) Basic vessel model without small 
objects. (J) Basic vessel model without small objects shown in 3D. (K) Basic object 
with ROI. (L) Basic object with ROI in colored scale. (M) Result of local thresholding. 
(N) Result of local thresholding shown in 3D. (O) Result of region growing. (P) Result of 
region growing shown in 3D. (Q) Result of masking with an eroded mask. (R) Result of 
masking with an eroded mask shown in 3D. (S) Final result after the removal of small 
objects. (T) Final result after the removal of small objects shown in 3D.  

FIGURE 2. A simple phantom constructed for validation of 
hepatic vessel segmentation from MRI images. The phantom is 
made of agarose gel and a glass tube filled with physiological 
solution inserted in: (A) perpendicular position. (B) tilted position.

A

C

E

G

I

B

D

F

H

J

K

M

O

Q

S

L

N

P

R

T

A B



Radiol Oncol 2014; 48(3): 267-281.

Marcan M et al. / Segmentation of hepatic vessels for electroporation treatments 273

aged in two intra-slice resolutions: 1.56 mm by 1.56 
mm and 1.04 mm by 1.04 mm. The slice thickness 
in both cases was 2 mm.

In order to be able to directly compare different 
vessel diameters imaged with different resolutions, 
we expressed the vessel diameters in number of pix-
el/diameter instead of in mm. The same approach 
was already used in papers which also evaluated 
accuracy of determining vessel area from MR an-
giography data.58,59 When expressed in pixel/diam-
eter, the value of different resolutions we observed 
were 2.56 pix, 3.84 pix, 5.12 pix, 5.76 pix and 7.69 
pix per diameter.

Clinical data

For validation on clinical data we obtained MRI 
images of six patients that were a part of Phase I/
II clinical study “Treatment of Liver Metastases 
with Electrochemotherapy (ECTJ)” (EudraCT 
number 2008- 008290-54; ClinicalTrials.gov 
(NCT01264952)).16 The study was conducted at the 
Institute of Oncology Ljubljana, Ljubljana, Slovenia. 
Regulatory approvals from the Institutional board, 
as well as from the National Medical Ethics 
Committee were obtained. Written consents of 
the patients were obtained. The series on which 
we performed the segmentation were the ones on 
which the colorectal metastases are most visible. 
The segmentation of the liver was also performed 
on the same image series by a method described 
by Pavliha et al.17 The reason for choosing the se-
ries where the liver, hepatic vessels and colorectal 
metastases are all visible was to avoid the need for 
subsequent registration. The chosen series were 
T1-weighted, VIBE breath-hold, transversal plane, 

with body coil and imaged 20 minutes after injec-
tion of the Primovist® (Bayer Group, Germany) 
contrast agent. Images were acquired with a 
Siemens AVANTO 1.5T MRI device at the Institute 
of Oncology in Ljubljana. In three cases the inter-
slice resolution was 0.684 mm by 0.684 mm with a 
slice thickness of 2.75 mm. In the other three cases 
the inter-slice resolution was 1.188 mm by 1.188 
mm with a slice thickness of 3 mm.

Accuracy assessment metrics
Phantom data

Once the images have been segmented, we count-
ed the number of pixel characterized as ‘vessel’ in 
each slice, thus obtaining the segmented vessel area. 
For reference vessel area we created a theoretical 
model which observes different ways in which a 
perfect circle can be positioned relative to the sam-
pling grid of certain size, depending on the circle 
size and the grid size. The illustration of our theo-
retical model for the case of 2.56 pixel/diameter is 
presented in Figure 3.

The need for such theoretical model is caused by 
partial volume effect, i.e. an artifact in medical imag-
ing where the value of a border pixel between dif-
ferent tissue types is influenced by the amount of 
tissues it is composed of. After segmentation, the 
pixel can be characterized as belonging to only one 
tissue type. Which type will it be depends on the 
amount in which a certain type is present in the 
pixel, but also on the segmentation method. Some 
segmentation methods, for instance, would charac-
terize every pixel that contains any amount of ves-
sel as a vessel pixel.59 We have therefore defined 
three reference area values in our theoretical con-
siderations. The first value, the optimal vessel area 
is the number of all pixels which contain at least 
half of the vessel tissue (pixels marked darker in 
Figure 3). The second reference value, the maximum 
vessel area is the number of all pixels that contain 
any amount of the vessel tissue (all colored pixels 
in Figure 3). The third reference value is calculated 
vessel area which is the mathematically calculated 
area of the perfect circle, expressed in number of 
pixels. The three reference area values (optimal, 
maximum and calculated) are calculated for each 
resolution and each of the three positions of object 
illustrated in Figure 3. The final optimal vessel area 
for a certain resolution is the smallest of the opti-
mal vessel area calculated for three positions (in 
Figure 3 that would be 4 pixels in case A).The final 
maximum vessel area for a certain resolution is the 
largest of the maximum vessel area calculated for 

Pixels with >= 50% vessel tissue

Pixels with > 0% vessel tissue

FIGURE 3. Theoretical model of reference vessel area with all 
possible positions of the object relative to the sampling grid. 
An example for the 2.56 pixel/diameter resolution. (A) vessel 
with a center in the pixel point, (B) vessel with the center on 
the middle of one of the pixels’ edges, (C) vessel with a center 
position right in the middle of one of the pixels. The pixels with 
>= 50% vessel tissue are a subset of pixels with >0% vessel tissue.

A B C
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three positions (in Figure 3 that would be 12 pixels 
in cases A and B). 

If the number of pixel contained in segmented 
vessel area falls in the range between optimal ves-
sel area and maximum vessel area, we consider the 
segmentation valid. Otherwise, we count the num-
ber of pixels outside this range as pixels missed. The 
segmentation error is expressed as relative area er-
ror, in percent:

  (3 )

Clinical data

The gold standard for the evaluation of segmenta-
tion of clinical data is a segmentation performed 
by manually determining an optimal threshold for 
each slice and manually drawing possibly missed 
contours. The segmentation result was addition-
ally validated by one of the authors (MMM) who 
is an experienced radiologist and who manually 
adjusted the segmentation where necessary. The 
evaluation of the segmentation of clinical data was 
performed on the level of objects detected in indi-
vidual slices. 

Metrics used for validation included a hit rate, 
i.e. a ratio of the number of detected objects against 
the number of all objects in the image, sensitiv-
ity (SEN = true positives / (true positives + false 
negatives)), average symmetric surface distance 

(ASSD)34,61 and Hausdorff distance. ASSD provides 
a measure of the average mutual distance between 
edges of the two surfaces, while Hausdorff distance 
is in fact the maximum symmetric surface distance. 
ASSD and Hausdorff distance were calculated ac-
cording to equations (4) and (5), respectively:

   (4)

  (5)

where A and B denote the borders of segmented 
and reference objects, a and b are points on A and 
B respectively.  denotes the distance between 
a and b. NA and NB are the number of points on A 
and B. 

We have chosen to use ASSD and Hausdorff dis-
tance to describe the segmentation specificity rath-
er than a measure of specificity itself (SPEC=true 
negatives / (false positives + true negatives)) since 
a high number of true negatives (background) 
would always yield a high value of specificity. The 
values of sensitivity, ASSD and Hausdorff distance 
for the whole image were obtained by calculating 
a median of those values for all objects. We calcu-
lated the median instead of the mean since the data 
did not conform to Normal distribution.

Additional to previously described metrics we 
also used the receiver operating characteristics 
(ROC) curve analysis to objectively compare re-
sults of image filtering with original and de-biased 
images.62–64 The ROC curves used were constructed 
with threshold as a parameter.

Results

The first part of this section shows the results of 
segmenting phantom images. There we assess the 
performance of thresholding algorithms based on 
variance minimization and entropy maximization 
on original and vesselness filtered images. The sec-
ond part shows the results of segmenting images 
obtained from clinical cases. In this part we present 
the comparison of methods that performed best on 
phantoms and the method based on local thresh-
olding, i.e. the proposed method. 

Images of phantoms

For the validation on phantom data, Figure 4 shows 
relative area error of different segmentation meth-
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FIGURE 5. Median accuracy of seg-
mented area of phantom in tilted po-
sition as a function of resolution for 
different segmentation methods: vari-
ance minimization thresholding of the 
original image, entropy maximization 
thresholding of the original image, ves-
selness filtered image thresholded by 
variance minimization thresholding, and 
vesselness filtered image thresholded by 
entropy maximization thresholding.

FIGURE 4. Median accuracy of segment-
ed area of phantom in perpendicular 
position as a function of resolution for dif-
ferent segmentation methods: variance 
minimization thresholding of the original 
image, entropy maximization threshold-
ing of the original image, vesselness fil-
tered image thresholded by variance 
minimization thresholding, and vesselness 
filtered image thresholded by entropy 
maximization thresholding.
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ods for segmentation of tube phantom in perpendic-
ular position under different image resolutions. The 
thresholding method based on variance minimiza-
tion produces 0% error on both original images and 
vesselness filtered images. The thresholding method 
based on entropy maximization undersegments the 
vesselness filtered images and highly oversegments 
the original images. As could be expected, an abso-
lute value of error drops with increasing resolution.

Figure 5 also shows the same error as Figure 4, 
only for the phantom in tilted position. The thresh-
olding method based on variance minimization 
again produces 0% error on both original images 
and vesselness filtered images. The thresholding 
method based on entropy maximization produces 
an error only in the case of original images, which 
as expected drops with increasing resolution. 
Notably, an absolute error of the method based on 
entropy maximization applied on original images 
is higher for the phantom with tube in tilted posi-
tion than for the phantom in perpendicular posi-
tion. An error for the same thresholding method 
applied on vesselness filtered images in the case of 
tilted phantom is 0%.

In conclusion, thresholding based on variance 
minimization outperformed the thresholding 
based on entropy maximization on both original 
and vesselness filtered images.

Images of clinical cases

In this section the thresholding method that per-
formed best on images of phantoms, which is 
thresholding based on variance minimization, was 
also applied to images of clinical cases. The thresh-
olding was first applied globally on de-biased 
original images and on vesselness filtered images. 
After that we applied our proposed method which 
is based on local thresholding. 

Based on visual inspection only it was possi-
ble to determine that direct global slice-by-slice 
thresholding of vesselness filtered images results 
in large undersegmentation of the vessels. The seg-
mentation inaccuracy is shown in Figure 6, where 
Figure A shows one slice of the original data while 
Figure B shows the result of the segmentation of 
the same slice using thresholding of the result of 
the vesselness filter. Figure 6.C shows the result 
of global thresholding of the de-biased original 
slice based on minimization of variance. Although 
more accurate than thresholding of the vesselness 
filtered image, this approach detects many false 
positives on the liver border. In Figure 6.D we can 
observe that false positives from Figure 6.C can 

be avoided by our proposed method which also 
provides the highest level of accuracy. Figure 6.E 
shows the gold standard – the radiologist segmen-
tation. Figure 6.F is a 3D representation of the seg-
mentation by the proposed method.

To additionally explore the potential of differ-
ently filtered images at providing an accurate seg-
mentation, we observed the ROC curves of original 
images, de-biased images and vesselness filtered 
images. As shown in Figure 7, optimal threshold-
ing of the de-biased images can provide highly 
accurate segmentations, while slightly outper-
forming thresholding of the original images and 
more significantly of the vesselness filtered im-
ages. Regardless of the choice of the threshold, di-
rect thresholding of vesselness filtered images can 
barely reach the sensitivity above 90%.

Final comparison of methods that performed 
best on phantoms (global thresholding of original 
de-biased images and vesselness filtered images 

FIGURE 6. Visual comparison of performance of global thresholding and our 
proposed method. (A) Original image slice. (B) Results of variance minimization 
based global thresholding of the vesselnes filtered image. (C) Results of variance 
minimization based global thresholding of the de-biased original image D. Results of 
our proposed method. (E) Gold standard – a radiologist segmentation. (F) 3D result 
of the segmentation by the method in (D).
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based on variance minimization) and the pro-
posed method based on local thresholding is given 
by observing hit rate, median sensitivity, median 
Hausdorff distance and median average symmet-
ric surface distance (ASSD) per clinical case. In 
Figure 8 we can observe that methods based on 
global thresholding of the original de-biased im-
ages have a hit rate around or above 90%, while 
results of global thresholding of vesselness fil-
tered images identify less than 70% of all objects. 
Similar results are observed for median sensitivity 
in Figure 9. The values of median sensitivity are 
again around or above 90% for global threshold-
ing of original de-biased images and below 70% for 
global thresholding of vesselness filtered images.

The differences between the proposed method 
and methods based on global thresholding can be 
observed through median Hausdorff distance and 
median ASSD in Figures 10 and 11, respectively. 
Values of median Hausdorff distance for the pro-
posed method are for all cases in the range of around 
2.2 pixels to 3.2 pixels. Values of median Hausdorff 
distance for global thresholding of original cases 
are in five out of six cases higher than those for the 
proposed method, in three cases even extremely 
high (above 10 pixel), indicating overestimation of 
the threshold on the global level. Values of median 
Hausdorff distance for thresholding of vesselness 
filtered images are mostly higher than those ob-
served for the proposed method, ranging between 
2.2 pixels and 4 pixels. As for median ASSD, values 

for all methods are in almost all cases below 1.2 pix-
els, except for an extreme for global thresholding in 
the same three cases which also provided extremes 
for the median Hausdorff distance.

Final quantitative results of our proposed seg-
mentation method are given in Tables 2 and 3. In 
Table 2 we provide results of validating the seg-
mentation of all vessels that are critical for elec-
troporation-based treatments of liver metastases 
as indicated previously in the paper. The mean hit 
rate for these vessels is high: 96.7% of objects that 
build up main vessels were detected. The mean 
value of median sensitivity of the detected objects 
is 93.7%. The mean error measured through ASSD 
is 1 pixel, while maximum error in specificity ex-
pressed through mean Hausdorff distance reaches 
4.26 pixels.

The statistics in Table 3 includes all the vessels 
that were marked by the radiologist. Median sen-
sitivity nearly equals the one of main vessels with 
96.65%. Mean value of median ASSD which equals 
0.92 pixel and mean value of median Hausdorff 
distance which equals 2.77 pixels indicate smaller 
level of error in specificity for smaller, more regu-
larly shaped vessels.

Discussion

The main aim of the study described in this paper 
was to find a method which would successfully 
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FIGURE 8. Comparison of hit rates 
for all six clinical cases segmented 
with three methods: the proposed 
method, global variance minimi-
zation thresholding of the original 
de-biased image and global vari-
ance minimization thresholding of 
the vesselness filtered image.

FIGURE 9. Comparison of median 
sensitivity for all six clinical cases 
segmented with three methods: the 
proposed method, global variance 
minimization thresholding of the 
original de-biased image and glob-
al variance minimization threshold-
ing of the vesselness filtered image.

FIGURE 10. Comparison of median 
Hausdorff distance for all six clinical 
cases segmented with three meth-
ods: the proposed method, global 
variance minimization thresholding 
of the original de-biased image 
and global variance minimization 
thresholding of the vesselness fil-
tered image.

FIGURE 11. Comparison of me-
dian average symmetric surface 
distance (ASSD) for all six clinical 
cases segmented with three meth-
ods: the proposed method, global 
variance minimization thresholding 
of the original de-biased image 
and global variance minimization 
thresholding of the vesselness fil-
tered image.
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segment hepatic vessels from MRI images for the 
purpose of generating a patient-specific treatment 
plan for electroporation-based treatment like elec-
trochemotherapy and non-thermal irreversible 
electroporation. The purpose for which the seg-
mentation will be used has resulted in specific cri-
teria the segmentation method must meet. Firstly, 
the segmentation method must detect all hepatic 
vessels that are considered critical in electropora-
tion-based treatments of the liver, which are basi-
cally all major hepatic vessels with branches up to 
second order. Secondly, the method has to be ro-
bust. Thirdly, the method has to perform segmen-
tation with minimal or no user interaction required. 
As for accuracy of the segmentation method, there 
were no limits posed prior to the beginning of the 
study. Having in mind that no segmentation meth-
od provides absolutely accurate results we rather 
aimed at finding the best method that would meet 
the set criteria and assess what is the maximum 
inaccuracy that method produces. Only after the 
maximum inaccuracy has been quantified we can 
conclude if segmenting hepatic vessels from MRI 
images for electroporation-based treatments is fea-
sible or not.

The first step in finding a method that could 
segment hepatic vessels from MRI images while 
satisfying all the mentioned criteria was using the 

established methods already used on CT images. 
Since we intended to test several methods we need-
ed means of evaluation that would enable objective 
comparison of segmentation results. We decided to 
start with a simple phantom model of a single ves-
sel for detailed observation of methods’ behaviors 
and continue assessing robustness of methods on 
clinical data. 

Our first choice of segmentation methods were 
the most widely used approaches of identifying 
vessels with vessel-enhancing filters and auto-
matic thresholding. Regarding automatic thresh-
olding, we have tested two different methods: 
thresholding based on intra-variance minimization 
and thresholding based on entropy maximization. 
Both thresholding methods were applied on both 
original de-biased and vesselness filtered images, 
thus resulting in in four different combinations. All 
four segmentation procedure combinations were 
run on both phantom data and clinical data. The 
results of evaluation on phantom data showed that 
intra-variance minimization thresholding applied 
on both original and vesselness filtered images of 
phantoms provides segmentation without errors. 
An entropy-maximizing thresholding applied on 
phantom data was not successful and showed ten-
dency to over-estimate the optimal threshold, both 
for original and vesselness-filtered images. 

TABLE 2 . Results of segmentation of major hepatic vessels only from six clinical cases. Segmentation was performed by the method based on local 
thresholding. Results show hit rate of all objects in all slices, median sensitivity (SEN), median average symmetric surface distance and median Hausdorff 
distance

CASE Number of 
objects

Pixel 
resolution 
[mm]

Hit rate [%] Median 
SEN

Median 
ASSD [pix]

Median 
ASSD [mm]

Median 
Hausdorff 
distance [pix]

Median 
Hausdorff 
distance [mm]

1 43 0.684 92.9 98.0 1.3 0.9 4.4 3.0
2 69 0.684 98.4 96.4 1.1 0.7 3.6 2.5
3 38 0.684 100.0 100.0 1.1 0.7 4.1 2.8
4 31 1.188 96.4 85.3 0.7 0.8 2.2 2.7
5 31 1.188 92.3 84.2 1.3 1.5 8.1 9.6
6 25 1.188 100.0 98.2 0.6 0.7 3.2 3.8
OVERALL (mean) 96.7 93.7 1.0 0.9 4.3 4.1

 TABLE 3. Results of segmentation of all hepatic vessels from six clinical cases. Segmentation was performed by the method based on local thresholding. 
Results show median sensitivity (SEN), median average symmetric surface distance and median Hausdorff distance

CASE Number of 
objects

Pixel resolution 
[mm] Median SEN Median ASSD 

[pix]
Median ASSD 
[mm]

Median 
Hausdorff 
distance [pix]

Median 
Hausdorff 
distance [mm]

1 305 0.684 100.0 1.0 0.7 2.2 1.5
2 347 0.684 100.0 1.2 0.8 3.2 2.2
3 328 0.684 100.0 1.1 0.8 3.2 2.2
4 327 1.188 89.9 0.7 0.8 2.8 3.4
5 400 1.188 90.0 0.6 0.8 2.2 2.7
6 454 1.188 100.0 0.9 1.1 3.0 3.6
OVERALL (mean) 96.7 0.9 0.8 2.8 2.6
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Application of variance-minimization thresh-
olding alone and in combination with vessel en-
hancement on clinical data did not provide sat-
isfying results. Although variance-minimization 
thresholding on the level of the whole slice had 
a high hit-rate and sensitivity (as seen in Figures 
8 and 9, respectively) it resulted in large overseg-
mentation error in half of clinical cases (seen in 
Figures 10 and 11). Namely, the large oversegmen-
tation error appeared in clinical cases with larger 
image resolution. The reason for this is the fact 
that the difference between the size (expressed in 
number of pixels) of foreground (vessels) and the 
size of background (liver) is larger in images with 
higher resolution. Additionally, larger difference 
between foreground and background size also 
means larger difference between their variance, 
which was shown to cause oversegmentation of 
foreground objects when the intra-variance mini-
mization thresholding method is applied.65–67 The 
other issue of variance-minimization thresholding 
applied on original images was that it detected not 
only vessels but also the liver border which had in-
tensity values similar to vessels (Figure 6.C). Vessel 
enhancement on the other hand was not sensitive 
enough. The reason for such low sensitivity is pri-
marily large slice thickness of the clinical data. 
With a gap of 3 mm between neighboring slices the 
changes in vessel forms are not smooth enough. 
Most cases where vessel enhancement was used so 
far had much smaller slice thickness, with some-
times even isotropic voxels.20,30,32,33,36 Also, hepatic 
vessels as seen in medical images, especially ma-
jor vessels, do not have a shape of a perfect tube. 
These shape irregularities result in smaller values 
of vesselness for large vessels which can then not 
be detected by automatic thresholding.

The complementing weaknesses of vessel en-
hancement and thresholding on a global level 
resulted in a segmentation method that would 
combine these two approaches in a different way. 
The proposed segmentation method utilizes vessel 
enhancement thresholded with a low threshold to 
determine the existence of a vessel. The automatic 
thresholding method then performs the thresh-
olding in a small region of interest just around 
the location of a vessel detected in the first step. 
Regarding the dimension in which each step of the 
proposed method was performed, we have utilized 
3D information only to determine the basic vessel 
model. For determining the accurate vessel borders 
we relied on the original 2D information in order 
to avoid interpolation necessary to obtain isotropic 
voxels.

The evaluation of the proposed method on clini-
cal data resulted in no large over-segmentations 
(Figures 10 and 11) with high values of hit-rate 
(Figure 8) and sensitivity (Figure 9) for both ma-
jor vessels and all vessels together (tables 2 and 3, 
respectively). Value of average symmetric surface 
distance indicates that an error in segmentation 
of any vessel, major or small is mostly likely to be 
smaller than 1 pixel. Value of the median Hausdorff 
distance indicates that, if a larger segmentation er-
ror, i.e. an outlier appears, it is most likely to be 4.3 
pixel for major vessels and 2.8 pixel in general, as 
seen in Tables 2 and 3, respectively. 

A comparison with results of previously devel-
oped methods for segmentation of hepatic vessels 
from CT images was difficult. The general obstacle 
for such comparison is lack of a publicly available 
database that all methods would be tested on as 
well as the lack of unified, standard criteria for val-
idation. Some attempts to standardize validation 
that would enable direct comparison were made 
through MICCAI grand challenges which were 
already organized for segmentation of liver and 
liver tumors from CT images.61,68 A similar grand 
challenge yet remains to be organized for segmen-
tation of hepatic vessels from images of any modal-
ity. The main obstacle to performing any kind of 
comparison of our results was the fact that there 
are not many results to be compared with. We have 
searched the Web of Science directory for all papers 
on the topic of hepatic/liver vessel segmentation 
from CT images, along with referenced and refer-
encing papers of matches. The search yielded only 
19 matches in the past 20 years. Out of 19 papers, 
17 of them were tested on clinical data while the re-
maining 2 were tested only on phantom data. Out 
of the mentioned 17 papers only 1 paper39 included 
a detailed evaluation similar to ours in which the 
authors assessed the method accuracy and error in 
the form of average distance as we have. The re-
sults from that paper report an average distance of 
0.9 mm to 4.4 mm, which is comparable to our find-
ings. The authors also state that »the misclassified 
vessels do not deviate from the ground truth far 
away«.39 In the majority of the remaining 16 papers 
the evaluation was qualitative based on visual in-
spection of “goodness” of the segmentation. 

Although no definite conclusions can be made 
about the validity of our method based on direct 
comparison with other methods, positive conclu-
sions can be drawn with respect to the criteria set 
at the beginning of our research. Firstly, the meth-
od we propose is able to detect all vessels critical 
for electroporation-based treatments of liver with 
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above 93% sensitivity. The errors that are produced 
in segmentation of critical vessels appear in amount 
which is sufficiently low to enable a fast correction 
by an expert radiologist. Namely, manual valida-
tion by an expert radiologist is a step that should 
still be mandatory in the process of treatment plan-
ning and would also provide valuable feedback for 
improvement of the segmentation method. 

Secondly, the proposed segmentation method 
is robust to variations in image resolution, imag-
ing devices and protocols. We have shown that 
the method consistently provided results of high 
sensitivity when validated on images of different 
intra-slice resolution. Regarding the slice thickness 
the results could only be improved using smaller 
thickness while we would not suggest using im-
ages with slices thicker than 3 mm because of high 
complexity of hepatic vasculature. Given the fact 
that main method parameters (namely thresholds 
and parameter c that regulates response of the ves-
selness filter to high contrast) are automatically cal-
culated from the image, the method is expected to 
perform well regardless of the imaging device. In 
order to be used on image series imaged with dif-
ferent protocols only one change should be made. 
Should the vessels in such case appear brighter 
instead of darker against the background a minus 
sign should be added in front of the equation for 
the vesselness filter. 

Thirdly, the method is performed completely 
automatically with no user input, assuming that 
the liver is segmented automatically.17

Finally, the evaluation of the proposed method 
resulted in a quantitative estimation of a segmen-
tation error which is most likely to appear in the 
worst case of segmentation – 2.8 pixels. Assuming 
the lowest image resolution of our test images, 
which was 1.188 mm per pixel, the above men-
tioned segmentation error would translate to 3.3 
mm. For comparison, a study on registering CT 
with MRI images of the liver performed in 2005 re-
ports a mean registration error of 14.0-18.9 mm,69 
while a newer study from 2010 reports a mean er-
ror of 3.3 mm.70 If a segmentation of hepatic vessels 
was performed on CT images and then registered 
with MRI images for colorectal metastases seg-
mentation the total error of vessel model would 
be even higher due to the error of segmentation on 
CT images itself. It is thus indeed more feasible to 
perform the hepatic vessel segmentation with our 
proposed method directly on MRI images. Still, in 
order to give a final decision if the proposed meth-
od of segmentation of hepatic vessels from MRI 
images can be used in treatment planning of liver 

tumors with electroporation-based treatments an 
additional assessment is needed. The additional 
assessment would be based on introducing the es-
timated value of the segmentation error – 2.8 pixels 
– into treatment plan calculations and observe its 
influence on the distribution of the electric field. 
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