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The speed of voluntary movements is determined by the conflicting needs of maximizing

accuracy and minimizing mechanical effort. Dynamic perturbations, e.g., force fields,

may be used to manipulate movements in order to investigate these mechanisms.

Here, we focus on how the presence of position- and velocity-dependent force fields

affects the relation between speed and accuracy during hand reaching movements.

Participants were instructed to perform reaching movements under visual control in two

directions, corresponding to either low or high arm inertia. The subjects were required

to maintain four different movement durations (very slow, slow, fast, very fast). The

experimental protocol included three phases: (i) familiarization—the robot generated

no force; (ii) force field—the robot generated a force; and (iii) after-effect—again, no

force. Participants were randomly assigned to four groups, depending on the type of

force that was applied during the “force field” phase. The robot was programmed to

generate position-dependent forces—with positive (K+) or negative stiffness (K−)—or

velocity-dependent forces, with either positive (B+) or negative viscosity (B−). We

focused on path curvature, smoothness, and endpoint error; in the latter we distinguished

between bias and variability components. Movements in the high-inertia direction are

smoother and less curved; smoothness also increases with movement speed. Endpoint

bias and variability are greater in, respectively, the high and low inertia directions. A robust

dependence on movement speed was only observed in the longitudinal components

of both bias and variability. The strongest and more consistent effects of perturbation

were observed with negative viscosity (B−), which resulted in increased variability during

force field adaptation and in a reduction of the endpoint bias, which was retained in the

subsequent after-effect phase. These findings confirm that training with negative viscosity

produces lasting effects in movement accuracy at all speeds.

Keywords: hand movements, negative viscosity, position-dependent force fields, velocity-dependent force fields,

speed/accuracy trade-off
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1. INTRODUCTION

The speed of a movement is determined by the conflicting
requirements of maximizing task-dependent accuracy and
minimizing mechanical effort (Harris and Wolpert, 1998;
Todorov and Jordan, 2002). Studies in decision-making further
suggest that the time elapsed before getting a reward contributes
to movement cost, and similar effects occur in the control of
movements (Choi et al., 2014). It has been suggested (Mazzoni
et al., 2007) that some neuromotor symptoms, e.g., bradykinesia
in Parkinson’s disease, might be a consequence of an abnormal
account of these conflicting demands. It is reasonable to ask
whether specifically designed training protocols can counteract
this unbalance (Summa et al., 2015).

In target-directed movements the inter-relation between
speed and accuracy—speed/accuracy trade-off (SAT)—has been
studied for more than a century (Muller and Martin, 1899;
Woodworth, 1899); see Heitz (2014) for a recent review.
Experiments on speed/accuracy trade-off can be classified into
two categories: spatially constrained or temporally constrained
(Plamondon and Alimi, 1997). In experiments with spatial
constraints, e.g., Fitts (1954), participants are required to reach
a target placed at pre-determined distance and with a given
accuracy—specified, respectively, by target location and size.
These experiments are used to test how movement time is
determined by amplitude and accuracy constraints. The main
result is that movement time is a logarithmic function of
movement amplitude and target size—the well known Fitts’
law. Therefore, increasing accuracy requires a reduction of
speed, and vice versa. In experiments with temporal constraints,
subjects are required to move to a fixed target within a specified
time. In this case, movement time is controlled and the spatial
variability of themovement ismeasured to reflect accuracy. Based
on these experiments, Schmidt et al. (1979) pointed out that
achieving a greater speed requires a larger motor command; they
hypothesized that motor commands are affected by noise whose
variance increases with the magnitude of the command. As a
consequence, increasing movement speed increases movement
variability, which ultimately affects reaching accuracy. Schmidt
et al. (1979) reported a linear relationship between the average
movement speed and the standard deviation of the final endpoint
position. Explanations based on signal-dependent noise are also
consistent with the Fitts’ law (Harris andWolpert, 1998; Todorov
and Jordan, 2002).

Endpoint error can be decomposed into two components
(Bevington, 1992). The “systematic” component (bias) reflects
the mismatch with respect to the motor plan, e.g., the directional
and extent errors with respect to the target movement. The
“random” component (variability) reflects how repeatable our
movements are. Both components of the endpoint error may be
affected by changes in the dynamic environment.

Here, we investigate whether exercise against a dynamic
perturbation can alter—temporarily or permanently—
the relationship between speed and accuracy (SAT curve).
Specifically, we investigate how the SAT relation is modulated
by body dynamics (inertia, in particular) and by various types
of external perturbations (viscous and elastic forces) during

temporally constrained hand reaching movements. Viscous
and elastic environments are expected to affect features of the
movement (path curvature, smoothness, and endpoint error) in
different ways, and to possibly induce carryover effects in the
subsequent unperturbed movements. We used different force
fields to manipulate the task in order to investigate the above
mechanisms. We focused on the effects of movement speed,
target direction, and the type and sign of the perturbation. We
discuss our findings with reference to optimality—movements
are determined by minimizing a combination of accuracy and
effort (Todorov and Jordan, 2002)—and in terms of the accuracy
of the internal representations of body and environment
dynamics (Gordon et al., 1994a).

2. MATERIALS AND METHODS

2.1. Experimental Set-Up
Subjects sat in front of a 19′′ computer monitor placed vertically
about 1 m away, at eye level. They grasped with their right
hand the handle of a planar manipulandum with two degrees of
freedom—see Casadio et al. (2006) for details. Torso and wrist
were restrained. The robot handle included a support for the
forearm, which partly compensated for the effect of gravity. Seat
position was adjusted so that, with the cursor pointing at the
center of the workspace, the elbow and the shoulder joints were
flexed about 90◦ and 45◦.

2.2. Task
The subjects were instructed to make reaching movements (with
a fixed amplitude of 20 cm) toward targets placed in two
directions: 45◦ (low inertia, LI) and 135◦ (high inertia, HI),
in alternation (LI direction first). The two target directions
approximately correspond to the orientation of the principal axes
of the apparent inertia at the endpoint of the combined robot
and arm system (Hogan, 1985; Gordon et al., 1994a). Hence the
movements in these directions differ in terms of arm inertia and
therefore in terms of the required mechanical effort. Start and
target position were displayed as, respectively, white and yellow
circles with⊘1 cm. Hand position was continuously displayed as
a green circle of ⊘0.5 cm; see Figure 1. The visual scale factor
was 1 : 1.

The experiment was organized into epochs of 40 movements
per direction. Within each epoch, participants were required to
move at a specific speed, defined in terms of a target movement
duration: very slow (VS): duration 1.5 s; slow (S): 1.2 s; fast
(F): 0.9 s; and very fast (VF): 0.6 s. At the beginning of each
epoch, the target speed was displayed on the screen as a text
message. After each movement the subjects also received a visual
feedback about how their actual movement duration compared
to the target duration. We displayed a vertical bar on the left
border of the screen, whose height was proportional to the
inverse of movement duration. A red rectangle denoted the target
1/duration and a tolerance range, corresponding to ±0.15 s. We
chose to use the inverse of duration as feedback signal because
the meaning is more intuitive (faster movements have a greater
1/duration and hence a longer bar).
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FIGURE 1 | Experimental apparatus and task. Left: Experimental set-up. Middle: Screenshots illustrating the movement task, including the starting point (white

circle), the two targets (yellow circles), the performance score and the feedback on target and actual speed. Right: Force field types. From top to bottom and left to

right: K+, K−, B+, B−. The arrows lengths denote force magnitude. In the position-dependent case, forces are directed toward (K+) or away (K−) from the start

position and their magnitude increases with distance from the starting position. In the velocity-dependent case, forces are directed like the velocity vector (B−) or in

the opposite direction (B+). Force magnitude is greater at peak speed.

When the vertical bar remained within the correct range, one
point was added to a cumulative score and the vertical bar was
colored in green. Conversely, if the target speed was not achieved,
the bar color turned to gray. The cumulative score was displayed
at the end of each movement, and subjects were instructed to
maximize it across epochs.

2.3. Experimental Protocol
The experimental protocol consisted of three phases (8 epochs
per phase): (i) Null Field (Null1)—the robot generates no force;
(ii) Force Field (FF)—the robot generates a position-(K) or
velocity-dependent (B) force field; and (iii) Null Field (Null2)—
no force. Hence, the whole experiment consisted of 24 epochs.
i.e., a total of 24 × 40 × 2 = 1920 movements. The speed
constraints were applied in the following order: S − F − VS −

VF (2 epochs per speed constraint). B- and K-values were set to
get maximum forces of approximately equal magnitude (6 N), at
the maximum speed. To do this, we set B= 10 Ns/m and K= 31
N/m. For each direction, velocity-dependent forces were always
directed like (B−) or opposite (B+) the instantaneous movement
velocity vector; position-dependent forces were always directed
toward (K+) or away from (K−) the starting position. Between
epochs, the participants were allowed to rest for ten seconds. The
whole experiment took lasted about 100 min.

A specifically developed software application, written in
Python and based on the H3DAPI (SenseGraphics, Sweden,
http://www.h3dapi.org) software environment, was used to
define the task and to implement the experimental protocol.

2.4. Subjects
The study involved a total of 28 subjects (11 M + 17 F,
average age: 25 ± 3), all right-handed and with no previous
history of neurological disorders. They were randomly assigned

to four groups, which only differed for the type of dynamic
environment applied during the “Field” phase, namely: Viscous
Field, positive (B+; 2 M + 4 F) and negative (B−; 4 M +

3 F); Elastic Field, positive (K+; 2 M + 5 F) and negative
(K−; 3 M + 5 F). The research was carried out in accordance
with the recommendations of the competent Ethical Committee
(Comitato Etico ASL3) and conforms to the ethical standards laid
down in the 1964 Declaration of Helsinki that protects research
subjects. Each subject signed a consent form that conforms to
these guidelines.

2.5. Data Analysis
Hand trajectories were sampled at 60 Hz and smoothed with a
6th order Savitzky-Golay filter with a 127 ms time window (cut-
off frequency: 7.5 Hz). We used the same filter to estimate hand
velocity and jerk. We estimated movement onset as the instant at
which movement speed went above 10% of peak speed. The end
of the movement was identified as the first minimum after the
peak speed in which the speed went below 30% of peak speed.
In this way, we neglected all sub-movements caused by visual
corrections. We analyse movement performance in relation to
movement duration. However, the visual feedback on duration
did not guarantee that the nominal duration was achieved. In
fact, in time-constrained trials the actual duration is usually
greater than the nominal one (Heitz, 2014). For this reason, trials
in which the speed profile did not look bell-shaped by visual
inspection, or in which the duration differedmore than two times
the standard deviation from the median of all movements in
the same epoch were treated as outliers and excluded from the
analysis. For each speed condition, the first epoch exhibited a
much greater variability, reflecting familiarization with the speed
constraint. For this reason, only the second epoch for each speed
condition was retained for analysis.
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2.5.1. Path Curvature and Trajectory Smoothness
Path curvature was measured as the percent increase of the
trajectory length with respect to the ideal path length (a straight
line between hand positions at movement onset and movement
end). Trajectory smoothness was quantified in terms of the
normalized jerk index (Teulings et al., 1997), defined as:

jerk index =

√

1

2
< jerk2 > ·

duration6

length2
(1)

where < jerk2 > is the square norm of the third derivative of
trajectory (jerk), averaged over the whole duration.

2.5.2. Endpoint Bias and Variability
We analyzed the final hand position, x and its average, x̄ =
1
N

∑

i xi. We then calculated the endpoint bias with respect to

the target position xT , εC = x̄ − xT . We took the norm of this
quantity (Bias) and its projections (Biaslon and Biaslat) onto the
target direction vector, d and the orthogonal direction, n:

Bias = ||εC||

Biaslon = ε
C · d

Biaslat = ε
C · n

(2)

As in Gordon et al. (1994a), for the i-th movement in each
epoch we also studied the endpoint variability, εVi = xi − x̄. We
calculated the average norm of this quantity (Variability) and its
projections onto the target direction vector, d and the orthogonal
direction, n (respectively, Variabilitylon and Variabilitylat):

Variability = 1
N

∑

i ||ε
V
i ||

Variabilitylon = 1
N

∑

i ε
V
i · d

Variabilitylat =
1
N

∑

i ε
V
i · n

(3)

where N is the number of trials per direction within each epoch.

2.6. Statistical Analysis
For each indicator, we first tested the data for normality
(Kolmogorov-Smirnov test). Then to quantify whether and how
the above indicators change in the different experimental phases
and in the different groups, we ran a repeated-measures five-
way ANOVAwith two between-subjects factors—force field Type
(K, B) and Sign (+, −)— and three within-subjects factors—
Phase (Null1, Force Field—Null2), Inertia (low inertia, LI; high
inertia, HI) and Time (very fast, fast, slow, very slow). Time and
Inertia are “structural” factors, in the sense that they relate to
the task variables (the required movement time and movement
direction). In the case of the error measures (bias and variability),
the Time factor reflects how they are influenced by the different
speed conditions (SAT curve). Consequently, all interactions
involving Time reflect changes of the SAT curve. In contrast,
Type, Sign, and Phase reflect the effect of the perturbations.

We additionally assessed (planned comparisons) (i)
perturbation effect, expressed as the difference between the
Null1 and Force Field phases; (ii) carryover effect, expressed
as the difference between the Null1 and the Null2 phases, (iii)
inertia effect, i.e., the difference between LI and HI. We carried

out the above comparisons for each combination of force field
Type and Sign (K+, K−, B+, B−). In all cases, we took p = 0.05
as threshold for statistical significance. All statistical analysis was
performed by using the STATISTICA (StatSoft, Tulsa OK, USA)
software package.

3. RESULTS

Movements that did not satisfy the speed constraints were
identified (see Section 2.5) and removed from the analysis. In this
way, over all subjects and conditions a maximum of five trials
per epoch was removed—corresponding to 12.5% of the trials
on that epoch. In the VF, F, S conditions the subjects exhibited
a greater duration with respect to the nominal value for that
condition (The median values were, respectively, 0.65 ± 0.007,
0.98± 0.01, and 1.29± 0.01 s.) Most subjects had problems with
satisfying the “very slow” (VS) time condition. For this reason
we excluded these trials from all further analysis, so that the
Time conditions reduced to VF, F, and S. Movement trajectories
and the corresponding endpoint variability in the different target
directions, phases of the experiment, and time constraints are
displayed—for all four combinations (type and sign) of force
fields—in Figure 2 (Elastic force field) and Figure 3 (Viscous
force field), for one typical subject within each group. Overall, the
99% confidence ellipses of final hand position (colored in gray in
Figures 2, 3) increase in size with movement speed and with arm
inertia. Path curvature also increases with speed. At least for the
null field conditions, these qualitative observations are consistent
with van Beers et al. (2004).

In what follows, we separately discuss the effects of
the different experimental conditions on path curvature,
smoothness, and endpoint error (both bias and variability
components).

3.1. Path Curvature and Jerk Index
The normality assumption could not be rejected, thus we
could use parametric statistical tests. The ANOVA results are
summarized in Table 1. We first considered the structural factors
(i.e., time and inertia). A significant Time effect was only found
for the jerk index [F(2, 48) = 269, p < 0.0001], see Table 1: faster
movements result in smoother trajectories. Both path curvature
and jerk index are strongly affected by hand inertia – significant
Time × Inertia interactions [F(2, 48) = 10.54, p < 0.0001 and
F(2, 48) = 41, p < 0.0001, respectively]: movements in the high-
inertia direction are less curved and more smooth. These effects
are summarized in Figure 4.

3.1.1. Perturbation and Carryover Effects
As regards the effect of perturbation, in both path curvature
and smoothness we observed a significant Phase × Inertia
interaction [F(2, 48) = 11.75, p < 0.0001, F(2, 48) = 11, p < 0.0001,
respectively]. The perturbation mostly affects the high-inertia
direction—the perturbed movements become more curved and
less smooth. Further, the jerk index alone exhibited a significant
effect of Phase [F(2, 48) = 10, p< 0.0001], and significant Phase×
Time [F(4, 96) = 5, p= 0.002] and Phase×Time× Inertia [F(4, 96)
= 4, p = 0.003] interactions. We observed no systematic effects
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FIGURE 2 | Sample movements for different speeds, phases, and field directions, in two typical subjects in groups K+ (left) and K− (right). Rows

denote the different phases (from top to bottom, Null1, Field, and Null2). The columns refer to different speeds (from left to right: slow, fast, very fast), with end point

displayed in red (slow), cyan (fast), and green (very fast) and with 99% confidence ellipses of final hand position in gray.

FIGURE 3 | Sample movements for different speeds, phases, and field directions, in two typical subjects in groups B+ (left) and B− (right). Rows

denote the different phases (from top to bottom, Null1, Field, and Null2). The columns refer to different speeds (from left to right: slow, fast, very fast), with end point

displayed in red (slow), cyan (fast), and green (very fast) and with 99% confidence ellipses of final hand position in gray.

of either Sign or Type of the perturbation. The path curvature
exhibited a significant Phase × Sign interaction [F(2, 48) = 3.89,
p = 0.027] whereas the jerk index exhibited a significant Phase
× Time × Sign interaction [F(4, 96) = 3, p = 0.041]. To further
explore the dependence of both curvature and smoothness on
movement speed in the different phases, for each force field
type, namely K+, K−, B+, and B−, we specifically investigated
(planned comparisons) the differences between the Null1 and the
FF phases (perturbation effect) and the differences between the
Null1 and the Null2 phases (carryover effect). The perturbation
only exhibited a significant effect in the B− group, in both jerk
index [F(1, 6) = 2.29, p = 0.023; high-inertia direction] and path
curvature [F(1, 6) = 6.56, p = 0.043 and F(1, 6) = 16.27, p =

0.0069; respectively, low and high inertia]. Figure 5 summarizes
this finding.

A carryover effect was only observed in the jerk index, limited
to the K+ field and to the low-inertia direction [F(1, 6) = 16.48,
p= 0.0067].

3.2. Endpoint Bias
The normality assumption could not be rejected, thus we used
parametric statistical tests. The ANOVA results are summarized
in Table 2.

We first looked at the “structural” factors (i.e., time and
inertia). Both the total and the longitudinal component of the
bias exhibit a significant time effect. This result simply reflects
the properties of the SAT curve—in particular the notion that
greater speeds result in greater errors, see Figure 6. In contrast,
the lateral component of the bias does not depend on movement
speed; see Table 2 and Figure 6A. In other words, differences in
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TABLE 1 | ANOVA table for path curvature and the jerk index.

Path curvature Jerk index

Type 0.539 0.059

Sign 0.787 0.158

Type × Sign 0.883 0.348

Phase 0.636 <0.0001

Phase × Type 0.341 0.876

Phase × Sign 0.027 0.818

Phase × Type × Sign 0.133 0.199

Time 0.064 <0.0001

Time × Type 0.326 0.513

Time × Sign 0.823 0.510

Time × Type × Sign 0.270 0.231

Inertia 0.001 <0.0001

Inertia × Type 0.298 0.846

Inertia × Sign 0.363 0.692

Inertia × Type × Sign 0.704 0.910

Phase × Time 0.375 0.002

Phase × Time × Type 0.334 0.291

Phase × Time × Sign 0.078 0.041

Phase × Time × Type × Sign 0.404 0.164

Phase × Inertia <0.0001 <0.0001

Phase × Inertia × Type 0.778 0.534

Phase × Inertia × Sign 0.519 0.017

Phase × Inertia × Type × Sign 0.772 0.018

Time × Inertia <0.0001 <0.0001

Time × Inertia × Type 0.257 0.733

Time × Inertia × Sign 0.189 0.839

Time × Inertia × Type × Sign 0.207 0.262

Phase × Time × Inertia 0.108 0.003

Phase × Time × Inertia × Type 0.395 0.443

Phase × Time × Inertia × Sign 0.186 0.139

Phase × Time × Inertia × Type × Sign 0.169 0.378

Numbers in bold indicate statistically significant effects (p < 0.05).

speed requirements only affect the longitudinal component of the
bias, but not the lateral component.

The endpoint bias is also affected by movement direction but,
again, this effect (time × inertia interaction) is only significant
in the total and longitudinal bias, whereas the lateral component
exhibits no such dependence; see Table 2 and Figure 6A.

3.2.1. Perturbation and Carryover Effects
We observed no systematic effects of perturbation (either sign or
type) in any of the bias components.

However, a significant Phase × Inertia interaction was
observed in both total and longitudinal (but not lateral) bias.
Further, the longitudinal bias exhibited a significant effect of
Phase and a significant Phase × Time interaction. To further
explore the way the SAT curve changes in the different phases,
in the above indicators we specifically examined (planned
comparisons) the differences between the Null1 and the FF
phases (perturbation effect) and the differences between the
Null1 and the Null2 phases (carryover effect), for each individual
combination of force field (e.g., K+, K−, B+, and B−).

FIGURE 4 | Dependence of path curvature (A) and jerk index (B) curves on

inertia. Thin and thick lines denote, respectively, low (LI) and high inertia (HI)

directions. Vertical bars denote the SE.

FIGURE 5 | Path curvature (A) and Jerk index (B) vs. Movement Time

(negative velocity-dependent field, B−), for Low inertia (LI, left) and high inertia

(HI, right). Curves are averaged over subjects for each velocity constraint and

for each phase – Null1 (black), FF (red), and Null2 (dotted black). The

differences between Null1 and FF indicate perturbation effects. The differences

between Null1 and Null2 indicate carryover effects. Vertical bars denote the SE.

Planned comparisons revealed a significant perturbation effect
in the high-inertia direction, in both total [F(1, 24) = 15.92,
p = 0.00054] and longitudinal bias [F(1, 24) = 40.31, p < 0.0001].
In the total bias this effect was only present in the K+ group
[F(1, 6) = 15.13, p = 0.0081] and in the B+ group [F(1, 5) = 7.94,
p = 0.037]. As regards the longitudinal bias, the findings are
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TABLE 2 | ANOVA table for endpoint bias.

Endpoint bias

Total Longitudinal Lateral

Type 0.734 0.694 0.684

Sign 0.741 0.745 0.918

Type × Sign 0.801 0.891 0.850

Phase 0.114 0.002 0.951

Phase × Type 0.612 0.211 0.605

Phase × Sign 0.069 0.162 0.537

Phase × Type × Sign 0.799 0.207 0.765

Time <0.0001 <0.0001 0.106

Time × Type 0.996 0.992 0.959

Time × Sign 0.727 0.328 0.242

Time × Type × Sign 0.315 0.158 0.836

Inertia 0.506 0.214 0.683

Inertia × Type 0.455 0.684 0.764

Inertia × Sign 0.717 0.942 0.265

Inertia × Type × Sign 0.431 0.125 0.475

Phase × Time 0.066 0.011 0.843

Phase × Time × Type 0.022 0.572 0.131

Phase × Time × Sign 0.791 0.114 0.561

Phase × Time × Type × Sign 0.849 0.351 0.992

Phase × Inertia <0.0001 0.002 0.579

Phase × Inertia × Type 0.479 0.214 0.913

Phase × Inertia × Sign 0.25 0.030 0.512

Phase × Inertia × Type × Sign 0.006 0.28 0.034

Time × Inertia <0.0001 0.002 0.476

Time × Inertia × Type 0.284 0.936 0.124

Time × Inertia × Sign 0.322 0.285 0.751

Time × Inertia × Type × Sign 0.128 0.042 0.461

Phase × Time × Inertia 0.016 0.001 0.376

Phase × Time × Inertia × Type 0.686 0.746 0.775

Phase × Time × Inertia × Sign 0.050 0.038 0.119

Phase × Time × Inertia × Type × Sign 0.031 0.003 0.157

Numbers in bold indicate statistically significant effects (p < 0.05).

summarized (high-inertia direction) in Figure 7. Specifically, we
observed a significant perturbation effect (bias decrease) in the
velocity-dependent groups [B+: F(1, 5) = 11.80, p = 0.0185; B−:
F(1, 6) = 13.62, p = 0.0102], but not in the position-dependent
groups.

We also observed a significant carryover effect (difference
between Null1 and Null2 phases) in the high-inertia direction, in
both the total [F(1, 24) = 20.50, p= 0.00014] and the longitudinal
bias [F(1, 24) = 43.13, p < 0.0001]. In the total bias, planned
comparisons only revealed an effect (bias decrease) in both K−
[F(1, 6) = 12.42, p = 0.001], and B+ groups [F(1, 5) = 7.39, p
= 0.0417]. In the longitudinal bias, we observed a significant
carryover effect after perturbation with viscous fields [B+: F(1, 5)
= 12.85, p = 0.0157 and B−: F(1, 6) = 17.08, p = 0.0061]; see
Figure 7B. No carryover effects were observed in the lateral bias.

Figure 7 also suggests that the effect of perturbation is present
in all movement speeds, whereas the carryover effect is more
evident in the “very fast” condition.

FIGURE 6 | Dependence of SAT curves on inertia, in total (left),

longitudinal (middle), and lateral bias (right), for endpoint bias (A) and

endpoint variability (B). Thin and thick lines denote, respectively, low (LI) and

high inertia (HI) directions. Vertical bars denote the SE.

3.3. Endpoint Variability
Even in this case the normality assumption could not be rejected,
thus we could use parametric statistical tests. The ANOVA
results are summarized in Table 3. As before, we first considered
the “structural” factors (Time, Inertia). Similar to bias, in all
components of variability we observed a significant effect of
Time—greater speeds result in greater variability. Also, the SAT
curves for endpoint variability exhibit a strong dependence on
inertia (Time× Inertia interaction), which is observed in the total
and longitudinal, but not in the lateral component. In contrast
to bias, here variability is greater in the low-inertia direction.
Figure 6B summarizes these structural effects.

3.3.1. Perturbation and Carryover Effects
As regards the factors related to the type of perturbation, in
the total and lateral components of variability we found a
significant effect of Sign [total: F(1, 24) = 4.90, p = 0.036; lateral:
F(1, 24) = 4.33, p = 0.048]. Endpoint variability changes in the
different experimental phases, and this effect is significant in all
components [total: F(2, 48) = 13.20, p < 0.0001; longitudinal:
F(2, 48) = 5.80, p = 0.005; lateral: F(2, 48) = 11.41, p < 0.0001]. In
all variability components we found a significant Phase × Type
interaction [total: F(2, 48) = 8.00, p = 0.001; longitudinal: F(2, 48)
= 3.20, p = 0.049; and lateral: F(2, 48) = 6.98, p = 0.002], Phase
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FIGURE 7 | Effect of the force field on the SAT curve (longitudinal

bias, high-inertia direction), for (A) position-dependent and

(B) velocity-dependent field. Curves are averaged over subjects for each

phase and field type. The different colors denote different phases: Null1

(black), Field (red), Null2 (dotted black). The differences between Null1 and FF

indicate perturbation effects. The differences between Null1 and Null2 indicate

carryover effects. Vertical bars denote the SE.

× Sign [total: F(2, 48) = 49.70, p < 0.0001, longitudinal: F(2, 48)
= 26.40, p < 0.0001, and lateral: F(2, 48) = 36.00, p < 0.0001]
and Type × Phase × Sign [total: F(2, 48) = 15.30, p < 0.0001,
longitudinal: F(2, 48) = 9.60, p < 0.0001, and lateral: F(2, 48) =
9.57, p< 0.0001]. Moreover, we observed a significant interaction
between Phase, Inertia, and Sign in longitudinal [F(2, 48) = 5.30,
p= 0.008] and lateral variability [F(2, 48) = 10.28, p < 0.0001].

To further explore the way the SAT curve for endpoint
variability was modified in the different experimental phases,
in the indicators that exhibited a significant effect of phase
we specifically examined (planned comparisons) the differences
between the Null1 and the Force Field phase (perturbation
effect) and the differences between the Null1 and the Null2
phases (carryover effect), for each individual combination of
force field Type and Sign. These observations are summarized in
Figure 8.

Considering the individual force field groups, in total
variability we found significant perturbation effects in the K+,
B+, B− groups [F(1, 24) = 4.51, p = 0.044, F(1, 24) = 6.18, p =

0.020, F(1, 24) = 94.75, p < 0.0001], but not in K−. However,

TABLE 3 | ANOVA table for endpoint variability.

Endpoint variability

Total Longitudinal Lateral

Type 0.236 0.180 0.515

Sign 0.036 0.056 0.048

Type × Sign 0.973 0.573 0.581

Phase <0.0001 0.005 <0.0001

Phase × Type 0.001 0.049 0.002

Phase × Sign <0.0001 <0.0001 <0.0001

Phase × Type × Sign <0.0001 <0.0001 <0.0001

Time <0.0001 <0.0001 <0.0001

Time × Type 0.416 0.469 0.417

Time × Sign 0.842 0.762 0.790

Time × Type × Sign 0.634 0.459 0.893

Inertia <0.0001 <0.0001 0.897

Inertia × Type 0.334 0.238 0.701

Inertia × Sign 0.759 0.472 0.103

Inertia × Type × Sign 0.211 0.958 0.050

Phase × Time 0.244 0.503 0.055

Phase × Time × Type 0.685 0.218 0.902

Phase × Time × Sign 0.211 0.725 0.081

Phase × Time × Type × Sign 0.673 0.735 0.431

Phase × Inertia 0.032 0.008 0.736

Phase × Inertia × Type 0.407 0.130 0.321

Phase × Inertia × Sign 0.724 0.008 <0.0001

Phase × Inertia × Type × Sign 0.568 0.335 0.107

Time × Inertia 0.002 0.016 0.077

Time × Inertia × Type 0.678 0.956 0.316

Time × Inertia × Sign 0.13 0.157 0.405

Time × Inertia × Type × Sign 0.301 0.449 0.633

Phase × Time × Inertia 0.029 0.462 0.002

Phase × Time × Inertia × Type 0.127 0.454 0.109

Phase × Time × Inertia × Sign 0.158 0.400 0.005

Phase × Time × Inertia × Type × Sign 0.331 0.658 0.029

Numbers in bold indicate statistically significant effects (p < 0.05).

when looking at the interaction between Phase, Inertia, and Time,
we found that in B− alone the effect is present in both low [F(1, 6)
= 45.43, p= 0.0005] and high inertia [F(1, 6) = 22.48, p= 0.0032];
see Figure 8. We only observed a significant perturbation effect
in the Viscous field groups [F(1, 24) = 22.93, p = 0.00007], but
not in the Elastic field groups. Adaptation is significant for both
signs, Positive [F(1, 24) = 10.67, p= 0.0033] and Negative [F(1, 24)
= 72.38, p < 0.0001]; see Figure 8. In conclusion, in presence of
force fields the total variability only changes in the B− (increase)
and to a lesser extent, B+ groups (decrease).

As regards longitudinal variability, we observed a significant
effect of the Phase × Inertia interaction in the negative groups,
but not in the positive groups. Specifically, in K− the effect is only
significant in the LI direction [F(1, 7) = 6.71, p= 0.0359] whereas
in B− it is significant in both directions [LI: F(1, 6) = 27.65, p
= 0.0019 and HI: F(1, 6) = 13.62, p = 0.0102]. As regards lateral
variability, we only found significant perturbation effects with
B−, again in both directions [LI: F(1, 6) = 23.35, p = 0.0029 and
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FIGURE 8 | Endpoint Variability vs. Movement Time. Curves are averaged

over subjects for each velocity constraint and for each phase – Null1 (black), FF

(red), and Null2 (dotted black), on the low inertia (left) and the high inertia (right)

direction. We report movements performed with (A) a position-dependent

field, and with (B) a velocity-dependent field. The differences between Null1

and FF indicate perturbation effects. The differences between Null1 and Null2

indicate carryover effects. Vertical bars denote the SE.

HI: F(1, 6) = 18.34, p = 0.0052]. In summary, B− perturbations
cause the greatest effect on endpoint variability, and the effect is
even greater in the LI direction.

As regards carryover, contrast analysis revealed no significant
effects in the total variability; see Figure 8. We only found
significant a carryover effect in the lateral component of
variability, with B− in the HI direction [F(1, 6) = 9.48,
p= 0.0217].

The above results points at a link between the effects of
perturbation on endpoint variability—see Figure 8—and the
carryover effects on endpoint bias—see Figure 7. This relation is
summarized in Figure 9, which suggests that force fields that lead
to a greater variability also lead to a greater carryover effect on the
endpoint bias.

4. DISCUSSION

When dealing with external forces perturbing a movement,
subjects have two options: they may either try to predict the
perturbation or they may just resist to it. A large body of
literature has addressed the mechanisms and the limitations
of sensorimotor adaptation to various types of perturbations,
both position- (Flash and Gurevich, 1991, 1997; Burdet et al.,
2001) and velocity-dependent (Shadmehr and Mussa-Ivaldi,
1994; Huang and Patton, 2011); either stabilizing or destabilizing.
We investigated these strategies by manipulating the speed
requirements of reaching movements. We focused on both
position—and velocity-dependent force fields, directed either
toward or against the movement. We examined path curvature,
smoothness, endpoint error, and the way they are altered by
mechanical perturbations.

FIGURE 9 | Perturbation types that increase endpoint variability result

in a greater carryover effect in the endpoint bias. Triangles and circles

denote, respectively, position-, and velocity-dependent force fields (empty:

positive; filled: negative). Error bars denote standard errors.
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We investigated both the bias and variability components of
the endpoint error, which likely reflect different mechanisms.
We specifically focused on how bias and variability change
with movement speed (SAT curve). Our experimental protocol
cannot dissociate the effects of adaptation from the effects of
the changing speed requirements (the two conditions are not
independently manipulated), therefore we could only examine
the overall changes across the different phases. We specifically
focused on the perturbation effects (changes between Null1 and
FF phase) and the carryover effects (changes between Null1 and
Null2).

4.1. Accuracy Depends on Movement
Speed and on Movement Direction
We found that smoothness, curvature, endpoint bias, and
variability all increase with movement speed. This confirms
previous findings and a body of literature suggesting that
movement accuracy and movement speed are conflicting
requirements; see for instance Plamondon and Alimi
(1997).

In all directions and speed conditions we consistently
observed a positive endpoint bias (overshoot). Bias reflects, at
least in part, the trade-off between maximizing accuracy and
minimizing effort. If movement duration is constrained, as in
our experiments, theories based on optimal control (Todorov
and Jordan, 2002) predict a negative shift (undershoot) in
endpoint position. More emphasis on the accuracy requirements
may reduce this shift, but cannot turn it into an overshoot.
Optimal control models that do not explicitly constrain
movement duration may occasionally predict a positive bias
(Qian et al., 2013). Additional mechanisms may take place.
For instance, overshoot may be a consequence of a mismatch
between actual and predicted body and environment dynamics.
In fact, in a similar experiment, Gordon et al. (1994a)
observed a direction-dependent endpoint (positive) bias and
suggested that the latter is not planned explicitly, but is a
consequence of an inaccurate account of the anisotropy of arm
inertia.

Endpoint variability is a consequence of inaccuracies in both
sensory and motor signals—sensory and motor “noise” (Guigon
et al., 2008). Also, it is affected by the gain of the controller (i.e.,
hand impedance) that is responsible for postural stabilization.
A greater hand stiffness would result in less variability (Gribble
et al., 2003).

In both bias and variability, we found that the dependence
on speed is largely confined to their longitudinal portion. In
other words, the speed requirements mostly affect movement
extent whereas the effect on movement direction is much
smaller. This finding is consistent with the hypothesis
(Gordon et al., 1994b) that movement extent and movement
direction may be controlled by separate mechanisms. “Separate
mechanisms” imply that planning of extent and direction are
characterized by independent noise components. However,
van Beers et al. (2004) suggested that a significant portion of
variability comes from execution noise, which increases with
motor command magnitude (i.e., effort). This component

specifically affects the longitudinal component of endpoint error,
which may explain why the latter increases with movement
speed.

Target direction also affects jerk, path curvature—see
Figure 4—and endpoint variability—see Figure 6B; all the above
are greater in the low-inertia direction. At all speeds, movements
in the high-inertia direction are less sensitive to perturbations
in that direction, suggesting that they are less sensitive to
motor command uncertainty. This finding may have a simple
mechanical explanation—greater inertia plays a stabilizing role
by opposing abrupt changes in muscle forces, just like a damping
element. In fact, the stabilizing role of inertia is explicitly
accounted for in obstacle avoidance tasks (Sabes et al., 1998).
High inertia also requires greater muscle forces and thus a greater
stiffness (Franklin et al., 2003), which also causes a reduction of
endpoint variability (Gribble et al., 2003).

As regards the endpoint bias, at greater speeds we found a
significant direction effect—bias is greater in the high-inertia
direction, see Figure 6A. Directional differences in the endpoint
bias have been reported by several authors, in both actual
(Gordon et al., 1994a; Flanagan and Lolley, 2001) and imagined
movements (Gentili et al., 2004). Direction dependence of the
bias is consistent with optimal control frameworks that account
for the trade-off between accuracy, effort and movement time
(Guigon et al., 2008; Qian et al., 2013). Moving against a greater
inertia requires greater muscle forces, which can be reduced
by allowing for a greater duration (Flanagan and Lolley, 2001;
Gentili et al., 2004) and/or a greater error (Gordon et al.,
1994a and our data). A mismatch between actual and predicted
arm inertia, in particular its anisotropy, is another possible
explanation. Some of the above findings (Flanagan and Lolley,
2001; Gentili et al., 2004; Crevecoeur et al., 2014) suggest
that the anisotropy of arm inertia is accurately accounted for
in movement execution. Other studies—Gordon et al. (1994a)
and ours—point at systematic errors in estimating arm inertia.
Although the nervous system is known to have problems
in developing accurate internal representations of the body’s
inertial properties (Hwang et al., 2006), the sources of the
observed direction-dependent endpoint bias are still a matter of
discussion.

4.2. Dynamic Disturbances Alter the SAT
Curve
As expected, dynamic disturbances significantly alter the SAT
curves.

Moving against force fields that oppose movement is expected
to make movement stop easier, particularly in the directions
where stopping is more difficult (e.g., where the apparent
arm inertia is greater). This should be reflected in a reduced
overshoot in those directions. An opposite effect (bias increase)
is expected with force fields that oppose movement stop. For
instance, positive viscous fields (B+) tend to slow down and
to dampen the movements. This should facilitate stopping and
maintaining a desired posture, thus resulting in a decreased
endpoint error. In contrast, negative viscous fields (B−)
have a destabilizing effect, thus they are expected to oppose
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movement stopping and therefore to increase the endpoint
error.

Our results suggest that in the endpoint bias the effect of
perturbation is relatively modest, and is only significant in the
high-inertia direction. In the high-inertia direction stopping is
more difficult, which may explain the greater bias reduction in
this direction.

As regards field-specific effects, we observed no consistent
effects of negative position-dependent fields (K−). In contrast,
positive fields (K+, B+) reduce the bias; all speed conditions are
affected, but the reduction is greater at higher speeds. In spite
of the destabilizing effect expected in the negative viscous fields
(B−), even in this case we observed a decrease of the longitudinal
component of the bias—greater at lower speeds and in the high
inertia direction.

In summary, all perturbation types cause a decrease in the
longitudinal component of the bias; the effect is greater in the
high inertia direction, and the greatest change is observed in the
B– group. This finding can be explained in terms of optimal
control. All types of perturbations result in extra effort, which
results in more undershoot—or a lower overshoot in case of an
additional overestimation of arm inertia.

We observed a much more systematic effect on endpoint
variability. The observed changes are sensitive to inertia and are
specific to field type. In particular, viscous fields result in a vertical
shift of the variability-SAT curve (downward for B+, upward for
B−)—with a more pronounced effect of the B− group. These
findings are consistent with the notion that B− fields have a
destabilizing effect—hence the error increase—whereas B+ fields
have a stabilizing effect—hence the error decrease. Position-
dependent force fields exhibit a similar trend, but the effect
is only significant in the K+ field (error decrease, greater at
high speeds). Position-dependent fields require an extra force to
maintain the endpoint position. Greater muscle forces imply a
greater motor noise, which would lead to a greater variability.
However, a greater force also implies a greater stiffness (Franklin
et al., 2003), which would lead to a reduction in endpoint
variability (Gribble et al., 2003; Selen et al., 2009). Our results
suggest that the latter effect is prevalent with position-dependent
fields.

4.3. Adaptation to Force Fields has
Carryover Effects
We also examined whether moving under the influence of a force
field has an effect in the movements performed after that the
force field is removed (carryover effect). As mentioned before,
the experimental protocol does not allow to identify inversions
of error directions from early force field onset and early removal
(early Force Field and early Null2 epochs), which are typical signs
of the development of an internal model of the perturbation
(Shadmehr and Mussa-Ivaldi, 1994). Nevertheless, the protocol
allows to detect overall, long-term alterations of the SAT
curve.

We specifically asked whether the SAT curve returned to
baseline after the force fields were removed. With respect to the
baseline, we observed a decrease in the total bias in the B+ and

K– groups, but these effects turned out to be significant only
in the high-inertia directions. When evaluating the individual
components, in the lateral bias we only observed a significant
change (increase) in the K+ group.

We found that the longitudinal bias decreases in both B+ and
B− , but the decrease is greater in B−. In contrast, we found
no significant carryover effects in endpoint variability. After the
force field is removed, the variability-SAT curve does not differ
from that observed before force field onset.

Overall, these findings indicate that the carryover effect on
bias is greater when subjects have been training with force fields
that increase variability, e.g., K− and—much more—B−, see
Figure 9. As discussed above the endpoint bias may reflect, at
least in part, the mismatch between internal representations and
actual body dynamics, in particular inertia anisotropy (Gordon
et al., 1994a). Bias reduction implies an increased accuracy in
the internal representation of arm inertia. In conclusion, greater
movement variability leads to a better dynamics compensation
in subsequent movements. In other words, increasing movement
variability by training with destabilizing fields has a facilitatory
effect on the development or the fine tuning of internal models
of body dynamics. This finding is consistent with the observation
(Wu et al., 2014) that greater variability—and therefore a greater
amount of exploration—leads to more accurate adaptation
to unfamiliar dynamics. Our results are also consistent with
previous observations that training within negative viscous fields
has a facilitatory effect on sensorimotor adaptation (Huang et al.,
2010) and neuromotor recovery from stroke (Huang and Patton,
2011, 2013).

5. CONCLUSIONS

The study results have important implications for
technology-assisted motor learning and possibly neuromotor
rehabilitation.

Specifically, our findings confirm that perturbations alter
endpoint variability in all speed conditions. Also, destabilizing
perturbations result in an increased variability. Conversely,
stabilizing perturbations result in a variability decrease. Training
with destabilizing force fields—particularly negative viscosity
(B−)—increases movement variability and results in a more
accurate account of arm inertia when the field is removed.
In fact we found a direct relation between variability during
perturbed trials and bias dynamics compensation in subsequent
movements. In other words, increasing movement variability by
training with destabilizing fields may have a facilitatory effect on
the development—or the fine tuning—of internal models of body
dynamics.

In addition to confirming previous observations on the
role of destabilizing fields on sensorimotor adaptation and
neuromotor recovery from stroke, this finding suggests that
interaction with robots (Reinkensmeyer and Patton, 2009)
that provide destabilizing fields may be effective to improve
sensorimotor performance, in situations where the latter is
determined by accuracy of internal representation of body
dynamics, like control of dynamic tools (Milot et al., 2010) or
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intermanual transfer of dexterous motor skills (Basteris et al.,
2012).
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