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Abstract

Tissue hypoxia is a consequence of decreased oxygen levels in different inflammatory conditions, many associated with
mast cell activation. However, the effect of hypoxia on mast cell functions is not well established. Here, we have
investigated the effect of hypoxia per se on human mast cell survival, mediator secretion, and reactivity. Human cord blood
derived mast cells were subjected to three different culturing conditions: culture and stimulation in normoxia (21% O2);
culture and stimulation in hypoxia (1% O2); or 24 hour culture in hypoxia followed by stimulation in normoxia. Hypoxia, per
se, did not induce mast cell degranulation, but we observed an increased secretion of IL-6, where autocrine produced IL-6
promoted mast cell survival. Hypoxia did not have any effect on A23187 induced degranulation or secretion of cytokines. In
contrast, cytokine secretion after LPS or CD30 treatment was attenuated, but not inhibited, in hypoxia compared to
normoxia. Our data suggests that mast cell survival, degranulation and cytokine release are sustained under hypoxia. This
may be of importance for host defence where mast cells in a hypoxic tissue can react to intruders, but also in chronic
inflammations where mast cell reactivity is not inhibited by the inflammatory associated hypoxia.
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Introduction

Mast cells have an important role in many inflammatory

diseases, such as asthma, and they are also involved in response to

infections, tumor progression and in conditions related to ischemia

[1,2]. Mast cells are distributed in all vascularised tissues

throughout the body and more abundantly in tissues exposed to

the environment, i.e., lung, gut and skin. This makes them one of

the first cells exposed to allergens, pollutants and pathogens [3].

Oxygen concentrations may vary in cells and tissue but when the

gradient of partial pressure (pO2) drops below the normal level it is

denoted as hypoxic [4]. As a result of the reduced oxygen levels in

tissue the metabolism is shifted to consume less oxygen and at the

same time erythropoiesis and angiogenesis are induced to restore

the limited blood supply [5]. Hypoxia is a prominent feature of

inflamed tissues; including tumors, myocardial infarcts, atheroscle-

rotic plaques, lung of asthmatics, healing wounds and sites of

bacterial infections. Several of these conditions are also associated

with increased number of mast cells [6]. In contrast to the effect of

hypoxia on macrophage functions that is well documented [7], the

effect of hypoxia on mast cell functions is poorly investigated.

In this study we have investigated the effect of hypoxia (1% O2)

per se on human mast cell survival, degranulation and cytokine

secretion. In addition, we have analysed the effect of hypoxia on

mast cell reactivity using external factors known to activate mast

cells under certain conditions, i.e., mast cell activation in chronic

inflammation and tumours (CD30 activation) [8], bacteria

membrane component stimulation (LPS) and increase in calcium

(calcium ionophore A23187). One important question to clarify is

if hypoxia is triggering mast cells and if mast cells become

unresponsive to other triggers during hypoxic conditions. Retained

mast cell responsiveness under hypoxia would be of importance for

their protective role in health and disease.

Results

Mast cell survival is sustained under hypoxia
First we investigated the effect of hypoxia (1% O2) on mast cell

viability. We found that cells cultured in hypoxia sustain a high

viability for up to three days. After five days in hypoxia, a

significant drop to 73% viability was observed (P = 0.024), which

was further decreased to 47% at day seven (Fig. 1). These results

suggest that CBMC are viable in hypoxia for several days and

consequently data from cells cultured up to five days in hypoxia

should not be biased by cell apoptosis or necrosis.

The effect of hypoxia on mast cell degranulation and
cytokine secretion

We next studied if hypoxia per se induces mast cell degranulation

and release of granule mediators such as tryptase. As shown in
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figure 2A we could not observe any increase in the release of

tryptase in cells cultured in hypoxia for 24h compared to

normoxia. We also pre-incubated the cells in hypoxia for 24h

and then transferred them to normoxia to investigate how

reoxygenation for 24h affected the cells. We could not observe

any difference in release of tryptase if cells were pre-treated in

hypoxia compared to normoxia. Thus, hypoxia does not induce

mast cell degranulation by itself (Fig. 2A).

Hypoxia activates HIF-1a which regulates the transcription of

several cytokines and growth factors in, e.g., macrophages [7]. We

therefore measured the effect of hypoxia on cytokine secretion from

mast cells deprived of IL-6 for two days and cultured in hypoxic

conditions for 24 h. The deprivation was performed to avoid

contamination of exogenous added IL-6 to the culture medium. An

antibody array was used to screen for candidate cytokines that could

be regulated by hypoxia. As shown in figure 2B the spontaneous

secretion of several proteins was reduced by hypoxia, whereas only

IL-6 appeared to be induced. The identity of the spots in the array is

provided in Table 1. Our results suggest that hypoxia per se induces

secretion of a limited number of cytokines where the secretion of IL-

6 was the most pronounced of those analyzed.

HIF-1a is activated under hypoxic conditions
Under hypoxic conditions several cellular mechanisms can be

activated. The transcription factor HIF-1a is stabilised under low

oxygen concentrations and can thus activate a variety of genes

involved in the control of cellular metabolism. A mast cell derived

cell line, HMC-1.2, and CBMC were cultured for 24h, both under

normoxic and hypoxic conditions. As a positive control, we used

deferoxamide (DFX), which is a well-described stabiliser of HIF-1a.

Both hypoxic conditions and DFX induced an increased accumu-

lation of the HIF-1a protein in both mast cell types tested (Fig. 3).

Autocrine IL-6 promotes mast cell survival in hypoxia
We first confirmed that IL-6 secretion is induced by hypoxia. As

shown in figure 4A, increased levels of IL-6 could be measured in

supernatants from mast cells cultured in hypoxia for 96h, as

compared to normoxia. In addition, other cytokines were analyzed

using a CBA flex kit. The levels of FGF2, MIP-1b, IL-1b, angiogenin

and GM-CSF were below the detection limit (data not shown).

VEGF and TNF secretion was not consistent in the different donors

analysed (data not shown). Since IL-6 is a survival factor for human

mast cells [9–11] we next investigated if IL-6 released from hypoxic

mast cells could promote mast cell survival in an autocrine fashion.

Mast cells were deprived of SCF and IL-6 for two days before they

were cultured for 96h in hypoxia and normoxia in the presence of an

IL-6 neutralisation antibody or isotype control. IL-6 neutralisation

induced apoptosis with significantly decreased cell viability in

hypoxia compared to cultures treated with the isotype control

antibody, as assessed by trypan blue exclusion (Fig. 4B) and PI/

Annexin V staining (Fig. 4C). Under normal oxygen conditions, the

neutralizing antibody did not have any effect on cell survival

compared to isotype control (data not shown).

Mast cells retain reactivity to different stimuli during and
after hypoxia

One of the most important features of mast cells is their capacity

to react to different stimuli. Since mast cells are distributed in

tissues that may reach transient hypoxia, we next investigated if

mast cells retained reactivity after hypoxia treatment in vitro. To

examine if mast cell reactivity is influenced by hypoxia, cells were

subjected to stimuli known to act on different signalling pathways

under three different conditions: 1) stimulation 24 h in normoxia;

2) stimulation 24 h in hypoxia; and 3) incubation 24 h in hypoxia

and then transferred to normoxia and stimulated for 24 hr. The

cells were stimulated with A23187, LPS or CD30, and the release

of tryptase and IL-8 were measured as markers for reactivity

towards stimuli. As shown in figure 5, only A23187 significantly

induced degranulation assessed as release of tryptase compared to

control. There was no difference in A23187 reactivity between

cells stimulated before normoxia, hypoxia or those cultured in

hypoxia for 24 before stimulation in normoxia (Fig. 5).

Mast cells express CD30 ligand/CD153 and we have previously

shown that activation by CD30-Fc fusion protein induces a

Figure 1. Mast cell viability. Survival of CBMC cultured for 1 to 7 days in) normoxia (21% O2) or hypoxia (1% O2). Cell viability was calculated using
trypan blue exclusion. Two different donors, n = 4, mean 6 SEM. * p,0-05 and ** p,0.01 compared to day 1.
doi:10.1371/journal.pone.0012360.g001

Mast Cells and Hypoxia
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degranulation-independent release of IL-8 [8]. As a negative

control for this experiment we used a CD6-Fc fusion protein. We

also measured the release of IL-8 after treatment with LPS and

A23197. All three stimuli induced IL-8 secretion both in

normoxia, hypoxia and in reoxygenated cultures (Fig. 6). Upon

CD30 and LPS treatment the release was significantly attenuated

in the hypoxic cultures and the reoxygenated cultures, compared

to normoxia (Fig. 6). Thus, although mast cells seem to be less

responsive to activating stimuli after hypoxia and even less

responsive after reoxygenation, as observed from the IL-8 release

data, they are still reactive.

Discussion

Mast cells play important roles in several physiological and

pathological processes [1]. Several chronic inflammations are

associated with an accumulation and activation of mast cells, such

as in asthma, rheumatic diseases and tumours [12–14]. During

Figure 2. Mast cell mediator release. A Mast cell tryptase release before or after hypoxia, three different donors, n = 3, mean 6 SEM. B Antibody
array: Protein secretion in response to normoxia and hypoxia. The identity of some of the proteins included in the array is indicated. A complete
description of the array is found in Table 1.
doi:10.1371/journal.pone.0012360.g002
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these conditions, the tissues are also typically exposed to prolonged

or intermittent hypoxia. Although this implies that mast cells are

viable and reactive under hypoxic conditions, very little data exists

today that supports this hypothesis [15–17].

Our data suggests that mast cells are unresponsive to transient

hypoxia. First, CBMC were viable for several days in hypoxia

(Fig. 1), secondly there was no spontaneous degranulation in

response to hypoxia (Fig. 2A), and thirdly mast cells were still

reactive to stimuli under hypoxia. This confirms that mast cells are

stable to certain physical environmental changes [18,19]. In order

to exclude that the results were biased by pH differences we also

analysed the pH of the medium in hypoxia and normoxia after

24–96 h and found no differences in pH levels between the two

conditions (data not shown).

In other cell types, persistent hypoxia can result in cell death [20]

or mediate a shift in mediator release and disturb cell functions

[21,22]. In macrophages, hypoxia regulates cell functions in

inflammation and in contrast to our results macrophages respond

rapidly to hypoxia by altering gene expression and release of

cytokines [7].

Our data shows that hypoxia provokes IL-6 secretion in mast

cells (Fig. 2B). IL-6 is important for mast cell proliferation [23] and

to promote human mast cell survival [9,10]. In a previous study,

neutralisation of IL-6 in human lung mast cell cultures significantly

decreased the cell viability after seven days in normoxia [11],

implicating that mast cells may induce their own survival in an

autocrine/paracrine fashion. Further, stimulation with IgE

promoted the survival of human lung mast cells and this relation

was dose dependent and hindered by an anti-IL-6 antibody [11].

In the present study we found that anti-IL-6 treatment of mast

cells in hypoxia decreased their survival. Thus, our data support

previous reports that IL-6 produced by mast cells can act as an

autocrine/paracrine survival factor.

One may expect that hypoxia per se would induce secretion of a

subset of cytokines and growth factors, e.g., those regulated by

HIF-1a. In our study we found an accumulation of HIF-1a when

cells were cultured under hypoxia (fig. 3), but we did not see a

consistent increase in cytokine secretion (fig. 2B). Recently,

interesting data supporting the notion that mast cells are rather

unresponsive to hypoxia was reported, where it was described that

additional signalling pathways are needed to induce HIF-1a
expression in human mast cells [24]. Ionomycin, C5a and

substance P, but not mastoparan, was shown to induce HIF-1a
expression. Furthermore, the induction was dependent on a

calcineurin-NFAT binding site in the HIF1A promoter region for

accumulation of HIF-1a and induction of target genes [24]. This

may explain our low response to hypoxia compared to normoxia

and also the low response in combination with other stimuli.

The only cytokine found to be significantly induced by hypoxia

was IL-6. IL-6 is not a classical hypoxia-induced gene, but is

probably regulated by other transcription factors under hypoxic

conditions. Hypoxia-mediatied induction of IL-6 in myocytes has

been shown to be regulated by NFkB and NF-IL6 [25].

Furthermore, IL-6 was induced in human mast cell line HMC-1

upon treatment with DFX, an induction that was partly inhibited

by pre-treatment with a NFkB-inhibitor [16]. There might also be

other pathways involved in the regulation of cellular responses to

hypoxia. One example is change in redox balance that might effect

the activity of the cells. Another interesting finding is that mast cell

degranulation appears not be affected by redox changes induced

by hypoxia [26]. However, the effect on cytokine synthesis and

secretion has not been studied.

Since mast cells are stable in hypoxia we believe that they may

have an important function in innate responses to inflammation

and bacteria, virus, and parasite infections [27]. Though mast cells

often respond to different stimulus with release of mediators, they

also tend to be very stable to environmental factors that affect

many other haematopoietic cells. For example, both human and

mouse mast cells are unaffected by gamma radiation and can be

activated after radioactive exposure with an equal amount of

release compared to non radiated cells [18]. Thus, mast cells

constitute an important defence mechanism to pathogens even

after radiation. Furthermore, ultraviolet B irradiation had no effect

on release of granulae stored mediators of human mast cells [19].

In line with these data we hypothesise that mast cells are refractory

Table 1. Identity of the spots in the antibody array used in figure 2.

a b c d e f g h i j k l m n

1 +ctrl +ctrl +ctrl +ctrl blank Ang BDNF BLC BMP-4 BMP-6 CK b 8-1 CNTF EGF Eotaxin

2 2ctrl 2ctrl 2ctrl 2ctrl blank Ang BDNF BLC BMP-4 BMP-6 CK b 8-1 CNTF EGF Eotaxin

3 Eotaxin-2 Eotaxin-3 FGF-6 FGF-7 Flt-3 Lig Fractalkine GCP-2 GDNF GM-CSF I-309 IFN-c IGFBP-1 IGFBP-2 IGFBP-4

4 Eotaxin-2 Eotaxin-3 FGF-6 FGF-7 Flt-3 Lig Fractalkine GCP-2 GDNF GM-CSF I-309 IFN-c IGFBP-1 IGFBP-2 IGFBP-4

5 IGF-1 IL-10 IL-13 IL-15 IL-16 IL-1a IL-1b IL-1ra IL-2 IL-3 IL-4 IL-5 IL-6 IL-7

6 IGF-1 IL-10 IL-13 IL-15 IL-16 IL-1a IL-1b IL-1ra IL-2 IL-3 IL-4 IL-5 IL-6 IL-7

7 Leptin LIGHT MCP-1 MCP-2 MCP-3 MCP-4 M-CSF MDC MIG MIP-1d MIP-3a NAP-2 NT-3 PARC

8 Leptin LIGHT MCP-1 MCP-2 MCP-3 MCP-4 M-CSF MDC MIG MIP-1d MIP-3a NAP-2 NT-3 PARC

9 PDGF-BB RANTES SCF SDF-1 TARC TGF-b1 TGF-b3 TNF-a TNF-b blank blank blank blank blank

10 PDGF-BB RANTES SCF SDF-1 TARC TGF-b1 TGF-b3 TNF-a TNF-b blank blank blank +ctrl +ctrl

doi:10.1371/journal.pone.0012360.t001

Figure 3. HIF-1a accumulation under hypoxia. HMC-1.2 and
CBMC were cultured for 24 h under hypoxia or normoxia. HIF-1a
accumulation was determined by western blot. DFX was used as a
positive control. The figure is representative of three independent
experiments.
doi:10.1371/journal.pone.0012360.g003
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to effects of transient hypoxia with no or very little impact on

mediator secretion.

Hypoxia is related to conditions with limited blood flow as in

inflammatory diseases such as asthma and joint inflammation but also

in tumour progression [4]. Subjects with airway mucous plugging can

reach low oxygen levels downstream in the bronchial tree and

hypoxic conditions in the lung may result in hypertrophy and

increased airway smooth muscle accumulation [21]. For patients with

an active lung disease mast cells may be important for the clearance of

pathogens. The reactivity of mast cells under low oxygen pressure

would then be essential for host defence under these conditions.

There are also several studies on the role of mast cells in

ischemia and reperfusion injury, e.g., myocardial infarction [28].

Mast cell degranulation has been detected in models of ischemia-

reperfusion models, but this mast cell activation might be a result

of complement activation of mast cells [29]. Thus, in these models

mast cells might not be activated directly by hypoxia or the

reperfusion, but through indirect mechanisms.

As outlined in previous studies, mast cells can be very selective

in their mediator secretion [30] and our results show that this is

also true for stimuli acting on different signalling pathways under

hypoxia. A23187, but neither CD30 nor LPS activation, induced

release of tryptase (Fig. 4). The effect of A23187 was not affected

by hypoxia. Cytokine production was in some cases influenced by

hypoxia in combination with different stimuli. In response to

CD30 and LPS stimulation, the release of IL-8 was decreased in

hypoxia and after reoxygenation compared to normoxia (Fig. 5).

CD30 is expressed in Hodgkin lymphoma, atopic dermatitis and

psoriasis, diseases where mast cells are the predominant cell type

expressing CD153 [8,31]. The effect of hypoxia on CD30-mediated

stimulation was more pronounced compared to the effect on LPS or

A23187 reactivity. This implies that CD30-activation of mast cells

in hypoxic tissues is attenuated in these diseases.

Our results show that mast cells survive and can be activated

during hypoxia. Thus, mast cells retain reactivity to external

triggering factors. This suggests that mast cells can play important

roles in host defence even in a tissue with low oxygen pressure.

Understanding the effect of hypoxia on mast cell functions is

critical to understand the role of mast cells in diseases, such as

cancers and asthma that are affected by hypoxia.

Methods

Preparation of cord blood derived mast cells (CBMC)
Isolation and preparation of cells was performed as previously

described [32]. Briefly, mononuclear cells were isolated from

heparinised human umbilical cord blood. CD34+ cells were

selected from the mononuclear cells with MACS MicroBeads

(Miltenyi Biotech, Germany) and cultured for 3–5 weeks in

StemPro serum free medium (Invitrogen life technologies, USA)

(week 1, 20 000 cells/ml, following weeks, 2000 00 cells/ml)

supplemented with 10 ng/ml IL-3 (on the first week of culture)

(Peprotech, UK), human recombinant stem cell factor (SCF),

100 ng/ml and 10 ng/ml human recombinant IL-6 (both kindly

provided by Amgen, Thousand Oaks, USA). When cells were

.95% tryptase positive they were transferred to RPMI 1640

medium (Sigma, USA) with supplements including heat inactivat-

ed FCS (10%), SCF (100 ng/ml) and IL-6 (10 ng/ml) and kept at

a 16106 cells/ml cell density. Medium was changed weekly and

these cells were designated as cord blood derived mast cells

(CBMC). Cultures were kept in 37uC, 5% CO2 and 1% (hypoxia)

or 21% (normoxia) O2 (Sanyo incubator). For all treatments, cells

were cultured in 24 well plates before collection of supernatants

and cell analysis. If nothing else stated, cells were stimulated in

RPMI medium with supplements including 10% FCS.

Culture of HMC-1.2 cells
The human mast cell line HMC-1.2 cells was maintained as

previously described [33]. Briefly, cells were kept in IMDM, L-

glutamine (HyClone, South Logan, UT, USA) medium supple-

mented with 10% heat-inactivated FCS (Life Technologies,

Paisley, UK), a-monothioglycerol, 100 IU/ml penicillin and

50 mg/ml streptomycin (Sigma).

Cell death detection
Cell viability and apoptosis were analysed by trypan blue

exclusion and/or by fluorescence-activated cell sorting (FACS)

using propidium iodide (PI) and FITC-conjugated Annexin V

(Becton Dickinson, Sweden) staining of cells. Data was analysed by

Figure 4. IL-6 is a mast cell survival factor. A Mast cell IL-6
secretion after 96 h culture in hypoxia. B–C Mast cell viability after 96 h
culture in hypoxia as analysed with B trypan blue exclusion (B) and
Annexin V, PI staining (C). Cells were treated with a neutralising anti-IL-6
or isotype control antibody (1.0 ug/ml). n = 3, mean 6 SEM.** P,0.01,
*** P,0.001.
doi:10.1371/journal.pone.0012360.g004
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FACScalibur and CellQuest software and viable cells were

calculated as percent of total cell amount.

Western blot
CBMC and HMC-1.2 were cultured for 24h under normoxia or

hypoxia at 16106 cells/ml cell density, total cells 46106. As a

positive control, cells were treated with 100 mM DFX (Sigma).

Cells were lysed using 100 ml of a solution of SDS+DTT. Samples

were loaded on a NuPage 4–12% Bis-Tris gel (Invitrogen) and run

for 1h at 200 V. Gel was blotted to a Hybond-ECL nitrocellulose

membrane (Amersham, Sweden). Membrane was blocked with

5% fat-free milk in TBS-T 0.1% for 1h at room temperature,

Figure 5. Mast cell degranulation. Tryptase release 24 h after stimulation in response to different stimuli. Cells were cultured in 24 well plates and
treated with stimuli in normoxia, hypoxia or after hypoxia for 24 h. Supernatants were analysed for the content of tryptase in three different donors,
n = 3, mean 6 SEM.
doi:10.1371/journal.pone.0012360.g005

Figure 6. IL-8 secretion. IL-8 release 24 h after stimulation in response to different stimuli. Cells were cultured in 24 well plates and treated with
stimuli in normoxia, hypoxia or after hypoxia for 24 h and then transferred to normoxia and stimulated for 24 h. Supernatants were analysed for the
content of IL-8 in three different donors, n = 3, mean 6 SEM and * P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0012360.g006
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followed by overnight incubation with anti-human HIF-1a-HRP

(Novus Bio, UK) 1:500 in TBS-T-5% BSA solution. Protein was

detected using Lumiglo (Cell Signalling Technology) and lumi-

nescence detected using Hyperfilm-ECL (Amersham).

Analysis of degranulation
To assess the degree of degranulation, the release of tryptase

was measured by ImmunoCAPTM (Phadia AB, Uppsala, Sweden).

Antibody array
Secretion of multiple cytokines in cell supernatants was detected

by human cytokine antibody Arrays VI and VII (Chemicon,

Sweden). Briefly, cell supernatants were added to a solid array

membrane coated with antibodies against specific cytokines. All

cell incubations were performed with 0.2% BSA instead of serum

for minimisation of false positive data. A biotin conjugated

primary antibody together with HRP-Streptavidin substrate was

used for detection of analytes. The membranes were exposed to x-

ray film and detected by a chemiluminescence imaging system. A

complete description of the cytokines analyzed with the antibody

array can be found in Table 1.

Analysis of cytokines and chemokines
Cell supernatants were analysed with ELISA for the content of

IL-8 (BioSource, Camarillo, USA) and IL-6 (R&D systems,

Stockholm, Sweden). The assays were performed with a double

sandwich ELISA as described by the manufacturer. A CBA flex set

assay of seven different beads detecting cytokines and chemokines

(FGF2, MIP-1b, IL-1b, VEGF, TNF, angiogenin and GM-CSF)

was used (Becton Dickinson, Sweden). Preparation of beads was

performed according to manufacturer’s instructions. Data was

collected with FACSAria and analysis was performed with

FACSDiva and FCAPArray software (Beckton Dickinson).

Neutralisation of IL-6
Cells were cultured in RPMI with supplements but without IL-

6, or without IL-6 and SCF, for two days before further treatment.

After two days, soybean protease inhibitor (100 mg/ml, Sigma-

Aldrich, Sweden), anti-human IL-6 (1.0 mg/ml, R&D systems,

Sweden) or IgG1 isotype control (1.0 mg/ml) were added. Cells

were incubated for 24, 48 and 96 h in hypoxia or normoxia.

Treatment with CD30, CD6, LPS and A23187
Cells were treated with immobilized CD30 (10 mg/ml), or CD6

(10 mg/ml, R&D systems), LPS (1 mg/ml, Sigma-Aldrich) or

A23187 (0.5 mM, Sigma-Aldrich) for 24 h. All reagents were

dissolved in PBS or dH2O with the exception of A23187 which

was used with a maximum of 0.5% DMSO. Cells were cultured in

supplemented RPMI with 0.2% BSA.

Statistical analyses
SigmaStat software was used to perform the statistical analysis.

Comparisons between more than two groups were made with

parametric tests (One Way Repeated Analysis of Variance).

Further pair wise comparisons were performed with a student’s

paired t-test. Difference was regarded as significant if P,0.05. All

data are expressed as mean 6 SEM.
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