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Abstract: The clearance of apoptotic cancer cells by macrophages, known as efferocytosis, fuels
the bone-metastatic growth of prostate cancer cells via pro-inflammatory and immunosuppressive
processes. However, the exact molecular mechanisms remain unclear. In this study, single-cell
transcriptomics of bone marrow (BM) macrophages undergoing efferocytosis of apoptotic prostate
cancer cells revealed a significant enrichment in their cellular response to hypoxia. Here, we show
that BM macrophage efferocytosis increased hypoxia inducible factor-1alpha (HIF-1α) and STAT3
phosphorylation (p-STAT3 at Tyr705) under normoxic conditions, while inhibitors of p-STAT3 reduced
HIF-1α. Efferocytosis promoted HIF-1α stabilization, reduced its ubiquitination, and induced HIF-1α
and p-STAT3 nuclear translocation. HIF-1α stabilization in efferocytic BM macrophages resulted in
enhanced expression of pro-inflammatory cytokine MIF, whereas BM macrophages with inactive
HIF-1α reduced MIF expression upon efferocytosis. Stabilization of HIF-1α using the HIF-prolyl-
hydroxylase inhibitor, Roxadustat, enhanced MIF expression in BM macrophages. Furthermore, BM
macrophages treated with recombinant MIF protein activated NF-κB (p65) signaling and increased
the expression of pro-inflammatory cytokines. Altogether, these findings suggest that the clearance
of apoptotic cancer cells by BM macrophages triggers p-STAT3/HIF-1α/MIF signaling to promote
further inflammation in the bone tumor microenvironment where a significant number of apoptotic
cancer cells are present.

Keywords: hypoxia-inducible factor; efferocytosis; bone marrow macrophages; inflammation

1. Introduction

The process of clearing apoptotic cancer cells by macrophages, known as efferocytosis,
commonly occurs during tumor progression and fuels the bone-metastatic growth of cancer
cells via subsequent pro-inflammatory and immunosuppressive activity [1,2]. Our previous
published work reported that bone marrow (BM) macrophage-dependent efferocytosis of
apoptotic prostate cancer cells supported skeletal tumor growth through the secretion of
pro-inflammatory cytokines, resulting in an immunosuppressive response [3,4]. Recently,
a single-cell RNA sequencing study reported that peritoneal macrophage efferocytosis of
apoptotic T cells displayed heterogeneous transcriptional activity, including genes associ-
ated with a predisposition for efferocytosis, macrophage differentiation, locomotion, and
inflammation [5]. However, the precise molecular mechanisms involved in BM macrophage
response to the efferocytosis of apoptotic cancer cells remains to be elucidated.
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The majority of solid tumors present in areas of permanent or transient hypoxia due to
poor vascularization and blood supply [6]. Hypoxic conditions activate hypoxia-inducible
factor (HIF) signaling, which has a crucial role in pro-tumorigenic inflammatory processes
via cytokine secretion, reactive oxygen species (ROS) production, and angiogenesis [7].
HIFs are heterodimers consisting of an oxygen labile alpha (α) subunit and a stable beta (β)
subunit. There are three isoforms of HIF-α, including HIF-1α, HIF-2α (EPAS1), and HIF-3α
(IPAS) [8]. HIF-1α upregulates glycolytic genes, such as phosphoglycerate kinase (PGK)
and lactate dehydrogenase A (LDHA), whereas HIF-2α induces the expression of genes
related to oxygen supply improvement in hypoxic regions, such as erythropoietin [9]. HIF-
1α has been identified as a key regulator of proliferative, invasive, and immunosuppressive
mechanisms that favor tumor progression [10,11]. Under hypoxic conditions, HIF-1α hy-
droxylation by prolyl hydroxylase is reduced. This inhibits the HIF-1α–von Hippel-Lindau
(VHL) interaction and consequent HIF-1α degradation by the ubiquitin E3 ligase com-
plex [12]. Therefore, HIF-1α is stabilized in the cytosol and translocated to the nucleus to
promote the transcription of multiple target genes [13]. HIF-1α is strikingly upregulated
under hypoxic conditions; however, HIF-1α can also be regulated at transcriptional, trans-
lational, and post-translational levels under normoxic conditions [14]. HIF-1α is expressed
and stabilized in immune cells via hypoxia or other factors, such as inflammation, cancer,
and infectious micro-organisms [15,16]. HIF-1α is crucial for myeloid cell-mediated in-
flammation [17] and it has been demonstrated that tumor-associated macrophages (TAMs)
also express HIF-2α under hypoxic conditions [18,19]. Various studies have shown a rela-
tionship between HIF-1α induction and signal transducer and activator of transcription
3 (STAT3) activation at transcriptional and post-translational levels [20–23].

Previous reports have shown that low oxygen concentrations in tumors promote the
secretion of cytokines and chemokines that recruit pro-tumorigenic Tregs, tumor-associated
macrophages, neutrophils, B cells, and myeloid-derived suppressor cells (MDSCs) to sup-
port tumor growth [24–26]. One of these cytokines is macrophage migration inhibitory
factor (MIF), which is a direct target gene of HIF-1α [27] and a hypoxia-induced gene in
colon and breast cancer cells [28,29]. MIF acts as an autocrine or paracrine cytokine, is
upregulated in several types of cancer [30,31], and its expression correlates with disease
malignancy and invasiveness [32]. Studies have consistently demonstrated that MIF pri-
marily signals through CD74 in association with CD44, CXCR2, CXCR4, and CXCR7 to
activate the ERK/MAP kinase cascade [33,34]. Finally, MIF signaling induces the activation
and secretion of pro-tumorigenic cytokines to support tumor growth [35,36].

Using single-cell transcriptomic sequencing, we investigated the signature changes in
BM macrophage gene expression during the efferocytosis of apoptotic prostate cancer cells.
We found that BM macrophages engulfing apoptotic prostate cancer cells promoted HIF-1α
stability and subsequent HIF-1α and p-STAT3 nuclear translocation to induce the expression
of the pro-inflammatory cytokine MIF. These findings suggest that p-STAT3/HIF1α/MIF
signaling in tumor-associated BM macrophages may promote inflammation in the prostate
cancer bone microenvironment.

2. Materials and Methods
2.1. Animals and Cell Lines

All animal experiments were performed with approval from the University of Michi-
gan Institutional Animal Care and Use Committee. Immunocompetent C57BL/6J, FVB/NJ,
B6.129P2-Lyz2tm1(cre)Ifo/J (LysMCre), B6.129-Hif1atm3Rsjo/J (Hif1aflox/flox) [37], and
Epas1tm1Mcs/J (Epas1flox/flox) [38] mice were purchased from the Jackson Laboratory (Bar
Harbor, ME, USA). The Hif1aflox/flox and Epas1flox/flox (HIF-2αflox/flox) mice were crossed
consecutively with LysMCre mice to achieve the Hif1aflox/flox-LysMCre+/− (Hif1amut) and
Epas1flox/flox-LysMCre+/− (Epas1mut) mice that exhibit HIF-1α and HIF-2α inactivation in
myeloid cells, including BM macrophages. Hif1aflox/flox and Epas1flox/flox mice were used
as experimental controls (WT).
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RM1 is a (Ras+Myc)-induced prostate cancer cell line developed in C57BL/6J mice
and was a gift from Timothy C. Thompson (Baylor College of Medicine, Houston, TX,
USA) [39,40]. The Myc-CaP prostate cancer cell line is derived from a prostate carcinoma
from Hi-Myc FVB/NJ mice and was donated by Russell Taichman and Frank Cackowski
(University of Michigan, Ann Arbor, MI, USA) [41]. Both cell lines were cultured in RPMI
1640 medium containing 10% fetal bovine serum (FBS) and grown at 37 ◦C with ambient
O2 and 5% CO2.

2.2. Murine Efferocytosis In Vitro Model

Bone marrow macrophages (MΦs, in Figures) were isolated from 4–6-week-old male
C57BL/6J, FVB/NJ, Hif1amut, Epas1mut, Hif1aflox/flox, and Epas1flox/flox mice via flushing of
the femur and tibia with minimum essential medium eagle—alpha modification (αMEM)
supplemented with L-glutamine, antibiotic-antimycotic 1×, and 10% fetal bovine serum
(FBS). BM macrophages were cultured in αMEM (L-glutamine, antibiotic-antimycotic 1×,
10% FBS) in the presence of macrophage colony stimulating factor (M-CSF) (30 ng/mL,
#315-02, Peprotech, Rocky Hill, NJ, USA). After four days in culture, BM macrophages
were independently plated in 2 × 106 cells/well with αMEM (L-glutamine, antibiotic-
antimycotic 1×, 0.25% FBS) for co-culture experiments. RM1 and Myc-CaP cells were
exposed to UV light for 30 min to induce apoptosis. Apoptotic (a) cells (>90% trypan blue
incorporation) were co-cultured with BM macrophages at a 1:1 ratio in αMEM (L-glutamine,
0.25% FBS) for 16–18 h. BM macrophages from mutant mice were compared with those
from respective littermate controls.

Prolyl hydroxylase inhibition in efferocytic and non-efferocytic BM macrophages was
performed using 10µM Roxadustat (FG-4592) (Cayman Chemical, Ann Arbor, MI, USA,
15294) for 16–18 h. STAT3 inhibition in efferocytic and non-efferocytic BM macrophages
was performed using 5 µM Stattic (Cayman Chemical, 14590) or 60 µM S3I-201 (Millipore
Sigma, Burlington, MA, USA, SML0330) for 10 min and then medium was replaced and
BM macrophages were further incubated with apoptotic cancer cells for 2 h. Proteasome
inhibition in efferocytic and non-efferocytic BM macrophages was performed using 10 µM
MG-132 (Cayman Chemical, 10012628) for 1 h. BM macrophages alone were treated with
200 ng/ml of recombinant MIF protein (#50066-M08H, Sino Biological, Chesterbrook, PA,
USA) for either 2 h for Western blot analysis or 8 h for RNA expression analysis.

2.3. Single-Cell Library Preparation and RNA Sequencing

A modified murine efferocytosis in vitro model was used. Apoptotic RM1 cells were
labeled with CellTrace™ CFSE (#C34554, ThermoFisher Scientific, Waltham, MA, USA)
and then co-cultured with BM macrophages for 16–18 h. Efferocytic and non-efferocytic
BM macrophages were collected and incubated in fluorescence-activated cell sorter (FACS)
staining buffer (phosphate buffered saline-1X, 0.2% bovine serum albumin). F4/80 antibody
and isotype control were added and incubated for 30 min at 4 ◦C. F4/80+ only (non-
efferocytic BM macrophages) and F4/80+CFSE+ (efferocytic BM macrophages) were sorted
using a BD FACSAriaTM III (BD biosciences, San Jose, CA, USA). Antibody information is
available in Supplementary Table S1.

The single-cell RNA-sequencing (scRNA-Seq) libraries were prepared at the University
of Michigan Advanced Genomics Core using a 10X Genomics Chromium Next GEM
Single Cell 3′ Kit v3.1 (part number 1000268) following the manufacturer’s protocol. Cell
suspensions were diluted to target a recovery of 10,000 cells per sample. The libraries were
run on an Agilent TapeStation 4200 (part number G2991BA) for library quality control before
sequencing. Libraries were sequenced at a depth of 50,000 reads/cell on a NovaSeq6000
with the following run configuration: Read 1—150 cycles; i7 index read—8 cycles; Read
2—150 cycles.
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2.4. Single-Cell RNA-Sequencing Analysis and Visualization

The scRNA-Seq data were processed using 10X Genomics CellRanger software suite
v3.0.0. Briefly, fastq files from each of the samples were mapped to the mouse genome
mm10 and genes were counted using CellRanger software and STAR aligner [42]. The
barcode-gene matrices were further analyzed using the Seurat R package (v3.1) [43]. To
remove low-quality cells, cells that expressed less than 200 genes or less than 1000 tran-
scripts or cells that had greater than 10% mitochondrial genes were filtered from the
datasets following standard practices (Supplementary Table S1). For genes, only the top
5000 variable genes were included for downstream analysis. Samples were then normalized
and integrated according to the Seurat-suggested pipeline. To reduce the dimensionality
of the samples, we first performed a principal component analysis (PCA). The number of
principal components for further downstream applications were 20 and uniform manifold
approximation and projection (UMAP) was employed for final dimensionality reduction
and visualization of the data.

2.5. Differential Expression and Gene Ontology Analysis

Differential expression analysis was conducted using the DESingle R package [44].
Genes with a false discovery rate-adjusted p-value < 0.05 were considered differentially
expressed. For pathway analysis, we used PANTHER analysis [45,46] with the gene
ontology database [47,48]. Only genes differentially expressed and upregulated in the
efferocytic BM macrophages in both experiments were included in the GSEA analysis.

2.6. Western Blot Analysis, Immunoprecipitation, and Subcellular Fractionation Assays

Whole cell lysates were extracted in Cell Lysis Buffer 1X (#9803, Cell signaling Tech-
nology, Danvers, MA, USA) containing 1X protease and phosphatase inhibitor cocktail
(#78440, ThermoFisher Scientific, Waltham, MA, USA). Estimation of protein concentration
was performed using the Bradford assay (#5000006, BioRad, Hercules, CA, USA). Samples
(15 µg each) were diluted using 1X Laemmli Sample Buffer (#1610747, 4X stock, BioRad,
Hercules, CA, USA) with 10% β-Mercaptoethanol (#M3148, Millipore Sigma, Burlington,
MA, USA). Protein lysates were separated using 4–20% Mini-PROTEAN® TGX Stain-Free™
gels (#4568096, BioRad, Hercules, CA, USA) and transferred to PVDF membrane using
the Trans-Blot Turbo RTA kit (#1704272, BioRad, Hercules, CA, USA). The membrane
was blocked with 5% milk in 1X TBS with 0.1% Tween for 1 h at room temperature and
then incubated with primary antibodies in 5% BSA overnight at 4 ◦C. Secondary antibody
was diluted in 5% milk in 1X TBS with 0.1% Tween. For immunoprecipitation assays,
macrophage and apoptotic prostate cancer cell co-cultures were lysed on ice with 1% Triton
X-100 in 1X PBS with a 1X protease and phosphatase inhibitor cocktail. Whole cell lysates
were immunoprecipitated using anti-HIF-1α rabbit antibody and protein A-magnetic beads
(#73778, Cell Signaling Technology, Danvers, MA, USA) during an overnight incubation
at 4 ◦C. Binding and washing were performed in the same lysis buffer. HIF-1α immuno-
complex was resuspended in Laemmli sample buffer (30 µL), and 15 µL was processed for
immunoblotting with anti-ubiquitin mouse antibody. For subcellular fractionation assays
efferocytic and non-efferocytic BM macrophages were collected and processed using a Cell
Fractionation Kit, following the manufacture’s protocol (#9038, Cell Signaling Technology,
Danvers, MA, USA). Blots were developed using SuperSignal™ West Femto Maximum
Sensitivity Substrate (#34095, ThermoFisher Scientific, Waltham, MA, USA). Protein gels
used for protein normalization and blots were imaged using the ChemiDoc™ MP Imaging
System (#12003154, BioRad, Hercules, CA, USA). Antibody information is available in
Supplementary Table S1.

2.7. Efferocytic and Non-Efferocytic BM Macrophage Isolation and Culture

Apoptotic RM1 cells were labeled with CellTracker™ DeepRed Dye (#C34565, Ther-
moFisher Scientific, Waltham, MA, USA) and then co-cultured with BM macrophages
for 16 h. Efferocytic and non-efferocytic BM macrophages were collected in fluorescence-
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activated cell sorter (FACS) staining buffer (phosphate buffered saline-1X, 0.2% bovine
serum albumin) using F4/80-FITC antibody and isotype control for 30 min at 4 ◦C. F4/80+

non-efferocytic BM macrophages and F4/80+DeepRed+ efferocytic BM macrophages (en-
gulfing RM1) were sorted using a BD FACSAriaTM III (BD bio-sciences, San Jose, CA,
USA). Antibody information is available in Supplementary Table S1. Efferocytic and non-
efferocytic BM macrophages from each mouse were quantified and plated in 8 × 104 cells
per well in a 96-well plate for 6 h in 150 µL of low-serum medium (0.25% FBS) containing
M-CSF (as described in 2.2). The culture medium from each well was collected and cen-
trifuged at 1500 rpm for 10 min to separate from any floating cell and 12 µL of medium
from each sample was analyzed by Western blotting, as described in 2.6.

2.8. RT-qPCR

Cells were harvested using an RNeasy Mini Kit (#74106, Qiagen, Germantown, MD,
USA) and RNA was eluted with nuclease-free water and then quantified using a NanoDrop
2000 (Thermo Scientific, Waltham, MA, USA). cDNA was synthetized with 1µg of RNA in
a 20 µL reaction mixture using a High-Capacity cDNA Reverse Transcription Kit (#4368814,
ThermoFisher Scientific, Waltham, MA, USA). RT-qPCR was performed using TaqMan®

probes and Gene Expression qPCR Assays TaqMan Gene Express (#4369016, ThermoFisher
Scientific, Waltham, MA, USA) with 40 cycles on an ABI PRISM 7700 (Applied Biosystems,
Waltham, MA, USA, USA). The analysis was performed using the 2−∆∆CT method [49].
TaqMan® probe information is available in Supplementary Table S1.

2.9. Statistics

All experiments with BM macrophages were obtained from at least 3 independent mice
per group. Results were normalized to the BM macrophage-only control group and data
from independent experiments were pooled together. Statistical analyses were performed
using GraphPad Prism 9 (GraphPad Software, version 9.1.0, San Diego, CA, USA) using
ordinary and repeated measures one-way analysis of variance (ANOVA) with Tukey’s
multiple comparison and unpaired t-test analyses, with a significance of p < 0.05. No power
analysis was performed. No outliers’ results were excluded in any experiment. The code
used for the scRNA-Seq analysis is included in the ‘submission_code_log.R’ file. The file
‘DE_genes_roca45_and_roca67.csv’ contains the full list of results for the differential gene
expression analysis for both experiments.

Details for experiments and number of independent mice used can be found in the fig-
ure’s description. The specifics of the statistical methods used are detailed in these sections.

3. Results
3.1. Single-Cell Analyses of BM Macrophages Engulfing Apoptotic Prostate Cancer Cells Showed a
Distinct Transcriptional Signature and Activation of Hypoxia-Related Genes

Published findings suggest that macrophages induce distinctive tumor-promoting
signaling in response to the efferocytosis of apoptotic cancer cells [3,4,50,51]. However,
the mechanisms that govern these specific responses in connection to tumor acceleration
are not completely understood. To further investigate efferocytosis-mediated signaling in
macrophages, primary BM macrophages from immunocompetent C57BL/6J mice (~90%
F4/80+, as shown in Appendix A—Figure A6) were co-cultured with CFSE+ (pre-labeled)
apoptotic prostate cancer RM1 cells. BM macrophages engulfing (efferocytic) these apop-
totic cancer cells were compared to non-engulfing (non-efferocytic) BM macrophages by
scRNA-Seq upon sorting by flow cytometry (Figure 1A). After the identification of high
quality sequenced single cells (Appendix A—Table A1), UMAP [52] was applied for the
dimension reduction of single-cell analysis and visualization of the transcriptional data
for efferocytic and non-efferocytic BM macrophages. As shown in Figure 1B, the cell dis-
tribution in two UMAP projections depicts differential cluster enrichments in efferocytic
vs. non-efferocytic BM macrophages from two independent experiments (Exp. 1 and
Exp. 2). For example, efferocytic BM macrophages showed an enriched cluster in the
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direction of increased UMAP-2-projection while the opposite is observed in non-efferocytic
BM macrophages, shown in the split visualization of these cells (Figure 1B). These results
correlate with distinct transcriptional heatmaps in efferocytic relative to non-efferocytic
BM macrophages (Figure 1C), where the great majority of differentially expressed genes
(DEGs) were significantly changed in the same direction (3277 vs. 482) in both experiments,
as visualized in the Venn diagram in Figure 1D. DEGs commonly upregulated in efferocytic
BM macrophages in both experiments were further processed using the PANTHER anal-
ysis [45,46] and a gene ontology (GO) database [47,48] to identify the relevant biological
pathways. Among the identified significantly enriched GO-biological processes, we found
pathways related to the innate immune system and wound healing responses, which are
related to the phagocytosis of apoptotic cells, inflammation, and regeneration (Figure 1E,
list of enriched GO terms in Appendix A—Table A1) [53,54]. Intriguingly, biological pro-
cesses related to hypoxia were identified even though these experiments were performed
under normoxia (normal oxygen conditions), which suggests that efferocytosis-mediated
activation and upregulation of factors directly related to cellular hypoxia is independent of
the oxygen concentration (Figure 1E,F).

3.2. Efferocytosis of Apoptotic Cancer Cells Stabilized HIF-1α in BM Macrophages and Is Mediated
by the Activation of STAT3

Single-cell analysis of efferocytic BM macrophages identified upregulated molecules
associated with the “cellular hypoxia” gene ontology (GO) term (Figure 1E). To investigate
these findings in the overall macrophage population, co-cultures of BM macrophages
with apoptotic prostate cancer RM1 cells (workflow Figure 1A, without sorting) were
analyzed. Selected hypoxia-GO-associated genes showing significant upregulation by
sc-RNAseq were investigated by RT-qPCR from total RNA isolated from co-cultures of
independent BM populations. Fold changes in efferocytic relative to control non-efferocytic
BM macrophages were calculated and plotted in Figure 2A. The majority of analyzed genes
showed a significant mRNA increase in efferocytic BM macrophages relative to the control,
corroborating the sc-RNAseq results. Some of these molecules are crucial components of
glycolysis, including Pdk1, Pgk1, and Ldha, and are known targets of hypoxia-inducible
factor 1a (HIF-1α), a master transcriptional regulator of the cellular response to hypoxia
that promotes a metabolic switch to glycolysis [21,55]. Hif1a mRNA was upregulated
in the overall population of efferocytic BM macrophages (although it was not identified
as an upregulated gene in the single-cell experiments). Contrary to the results observed
by single-cell experiments, the hypoxia-inducible transcription factor Epas1 (HIF-2α) [18]
showed a small but significant decrease in mRNA expression via efferocytosis.

Because HIF-1α is largely regulated post-transcriptionally resulting in a protein tar-
geted for degradation under normoxic conditions [12,56], HIF-1α protein was further
evaluated by Western blot analysis. As shown in Figure 2B, Western blot analysis of effe-
rocytic BM macrophages (co-cultured for 16–18 h with apoptotic RM1 cells) evidenced a
significant increase in HIF-1α induced by efferocytosis. These findings were corroborated
in efferocytic BM macrophages co-cultured with murine prostate cancer Myc-CaP cells,
which share several molecular characteristics of human prostate cancer [57,58]. As Myc-
CaP cancer cells were obtained from FVB/NJ mice, primary macrophages were obtained
from the bone marrow of the same strain. Similar results were observed using this model
(Figure 2C). These results suggest that HIF-1α is stabilized in BM macrophages engulfing
apoptotic cancer cells.

The potential mechanism inducing HIF-1α stabilization was further investigated. Pre-
vious findings suggested that one potential mechanism leading to HIF-1α stabilization
is interaction with activated (phosphorylated) STAT3 [20,22,23,59]. Moreover, nuclear
cooperative translocation of HIF-1α and p-STAT3 has been observed in the tumor microen-
vironment [60,61]. Since STAT3 activation is sustained in efferocytic BM macrophages and
considered a hallmark macrophage response to engulfing apoptotic cancer cells, it was hy-
pothesized that STAT3 activation (phosphorylation at Tyr705) is critical in HIF-1α stabiliza-
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tion by efferocytosis. We investigated this hypothesis using two well-characterized STAT3
phosphorylation inhibitors: Stattic and S3I-201 [62,63]. Both inhibitors significantly reduced
the activation of STAT3 after a short treatment of BM macrophages, followed by 2 h of incu-
bation with apoptotic cancer cells. This treatment also impacted the stabilization of HIF-1α
(Figure 2D–G and Appendix A—Figure A1). Similarly, these findings were observed in BM
macrophage efferocytosis of apoptotic Myc-CaP cells (Appendix A—Figure A2). These re-
sults strongly support the hypothesis that STAT3 activation is a critical signal that mediates
the stabilization of HIF-1α via efferocytosis.
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Figure 1. Single-cell experiments comparing efferocytic BM macrophages (engulfing apoptotic cancer
cells) vs. control (non-engulfing BM macrophages). (A) BM macrophages (MΦ) were isolated
from 4 wk old C57BL/6J mice and co-cultured with apoptotic RM1(a) cells (CFSE labeled) for
16–18 h. Efferocytic (F4/80+CFSE+) and control BM macrophages (F4/80+) were sorted and used
for single-cell libraries followed by scRNA-Seq. (B) UMAP of all cells analyzed (blue: efferocytic
BM macrophages; red: non-efferocytic BM macrophages). (C) Heatmap of the most differentially
expressed genes in either experiment. (D) Venn diagram of all differentially expressed genes and their
overlap between both experiments. (E) Cleveland plot of the most enriched pathways in efferocytic
BM macrophages. (F) Dot plots of hypoxia-related genes in both experiments. Size relates to the
percentage of macrophage cells expressed each gene. Color denotes the average expression for each
gene across all expressing cells. Additional results are shown in Appendix A—Tables A1–A3.
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Figure 2. BM macrophage efferocytosis of apoptotic cancer cells promotes HIF-1α stabilization 
through STAT3 activation. BM macrophages (MΦ) were isolated from 4 wk old C57BL/6J or FVB/NJ Figure 2. BM macrophage efferocytosis of apoptotic cancer cells promotes HIF-1α stabilization

through STAT3 activation. BM macrophages (MΦ) were isolated from 4 wk old C57BL/6J or FVB/NJ
mice and co-cultured with apoptotic RM1(a) or Myc-CaP(a) cells for 16–18 h. (A) mRNAs isolated
from efferocytic and control BM macrophages were analyzed by real time quantitative PCR (RT-qPCR)
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for a set of genes involved in the cellular response to hypoxia (n = 9/group). (B,C) Protein lysates from
C57BL/6J (n = 9) and FVB/NJ (n = 6) efferocytic BM macrophages were analyzed by Western blotting
using HIF-1α antibody. Protein lysates from C57BL/6J efferocytic and control BM macrophages
(n = 3) treated with 5 µM Stattic and 60 µM S3I-201 STAT3 phosphorylation inhibitors were analyzed
by Western blotting for 2 h using (D,F) p-STAT3 antibody and (E,G) HIF-1α antibody. (H) Cell
lysates from efferocytic and non-efferocytic BM macrophages were immunoprecipitated (IP) with
HIF-1α antibody and immunoblotted with ubiquitin antibody. The graph depicts the calculated
signal of Ub-HIF-1α (ubiquitinated HIF-1α) to total HIF-1α (IP). Ub-HIF-1α signal was measured in
the yellow box around the corresponding HIF-1α molecular weight from independent experiments
(n = 3). (I) Cytoplasmic and nuclear fractions from efferocytic and non-efferocytic BM macrophages
were analyzed by Western blotting using HIF-1α, p-STAT3, and Histone H3 antibodies. The graph
shows independent experiments where nuclear HIF-1α and p-STAT3 intensities were normalized to
total protein and to the corresponding non-efferocytic BM macrophages (n = 2). Increased nuclear
protein in the efferocytic fractions is shown for each experiment. (B,C,H,I) Representative Western
blot images. Plotted data are shown as mean± SEM, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001,
ns = not significant (ordinary one-way ANOVA; Tukey’s multiple comparison test and unpaired
t-test). Additional results are shown in Appendix A—Figures A1–A4.

To assess how HIF-1α ubiquitination (Ub) levels are affected by the ubiquitin-mediated
proteasomal degradation pathway, HIF-1α immunoprecipitation assays were performed
using protein lysates from BM macrophages co-cultured with apoptotic prostate cancer
RM1 cells vs. control. The immunoprecipitated samples were analyzed by Western blotting
using a ubiquitin-specific antibody. The blot showed reduced ubiquitin levels in effero-
cytic vs. non-efferocytic BM macrophages after normalization to immunoprecipitated
HIF-1α protein. This reduction was statistically significant when BM macrophages were
treated with MG-132, a degradation inhibitor of ubiquitin-conjugated proteins (Ub-HIF-1α)
(Figure 2H). To further investigate these findings, cytoplasmic and nuclear fractions were
isolated from efferocytic and non-efferocytic BM macrophages. Protein lysates from each
fraction were analyzed by Western blotting and the results showed a higher expression
of HIF-1α and p-STAT3 in the nuclear factions of efferocytic BM macrophages (Figure 2I).
Histone H3 immunoblot was used as a nuclear marker to demonstrate the efficacy of the
nuclear fractionation. These results suggest that macrophage efferocytosis promotes HIF-1α
stabilization along with co-activation of p-STAT3.

3.3. Efferocytosis of Apoptotic Cancer Cells Stimulated the Expression of Pro-Inflammatory MIF
Cytokine in BM Macrophages

Accumulating experimental evidence suggests that efferocytosis of apoptotic cancer
cells accelerates tumor progression and metastatic growth by fostering an inflammatory
and immunosuppressive microenvironment [64,65]. Single-cell data identified the negative
regulation of the immune system process (GO: 0002683; related to the immunosuppressive
response) as one of the GO terms upregulated in efferocytic BM macrophages. Using
STRING, a database of known and predicted protein–protein interactions, we identified
a strong network association between this immune response and the biological process
of hypoxia (GO: 0071456) (Figure 3A, GO gene list in Appendix A—Tables A2 and A3).
Although not identified by single-cell analysis, STAT3 was added because of its key role in
the stabilization of HIF-1α, as shown in Figure 2. Central nodes identified in this network
are HIF-1α, Myc, and STAT3 and the findings show direct or indirect interactions between
hypoxia and the negative immune regulation processes. Furthermore, single-cell analysis
identified the cytokine macrophage migration inhibitory factor Mif as upregulated in effe-
rocytic BM macrophages (p < 10−6) (Figures 1F and 3B and Appendix A—Figure A5). Mif
belongs to both GO: 0002683 and GO: 0071456 [48] and mediates both immunosuppres-
sion and inflammation and has been associated with increased tumorigenesis and disease
progression in different cancer types including prostate cancer [66].
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(G) Western blot analysis of conditioned media from non-efferocytic and efferocytic BM macro-
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ferocytosis of apoptotic cancer cells and not by apoptotic normal epithelial cells, HIF-1α 
stabilization, STAT3 phosphorylation, and MIF expression were assessed in BM macro-
phages co-cultured with apoptotic RM1 prostate cancer cells and compared to BM macro-
phages co-cultured with apoptotic mPEC normal prostate epithelial cells. Western blot 
analysis showed that HIF-1α is highly stable in RM1-efferocytic BM macrophages and this 
is significantly increased in relation to mPEC-efferocytic BM macrophages (Figure 4A). 

Figure 3. BM macrophage efferocytosis induces MIF expression. (A) Protein–protein interaction
network between the immune pathway regulation and the hypoxia-related pathway. Biological
Process GO terms of selected genes upregulated by efferocytosis (GO:0002683, all genes; GO:0071456,
25 out of 33 genes). BM macrophages (MΦ) were isolated from 4 wk old C57BL/6J or FVB/NJ mice
and co-cultured with apoptotic RM1(a) or Myc-CaP(a) cells for 16–18 h. (B) scRNA-Seq analysis plot
shows Mif distribution in efferocytic and non-efferocytic clusters of BM macrophages. (C) Mif mRNA
expression in efferocytic BM macrophages assessed by RT-qPCR (n = 9). Western blot analysis of
protein lysates from (D) C57BL/6J BM macrophages co-cultured with apoptotic RM1 prostate cancer
cells (n = 3) and (E) FVB/NJ efferocytic and control BM macrophages were analyzed by Western
blotting using MIF antibody (n = 6). (F) C57BL/6J efferocytic (F4/80+DeepRed+ (in green)) and
control non-efferocytic BM macrophages (F4/80+ (in salmon)) were sorted, seeded, and incubated
for 6 h. (G) Western blot analysis of conditioned media from non-efferocytic and efferocytic BM
macrophages (n = 3/group). The Western blot shown in E is a representative image. Plotted data
are shown as mean ± SEM of quantified signal after normalization to total protein and to control
BM macrophages, ** p < 0.01, **** p < 0.0001 (unpaired t-test). Additional results are shown in
Appendix A—Figure A5.

MIF changes were investigated in the overall macrophage population co-cultured with
apoptotic RM1 prostate cancer cells by RT-qPCR and Western blot analysis. In correlation
with single-cell results, both Mif mRNA (Figure 3C) and MIF protein increased in BM
macrophage efferocytosis of apoptotic RM1 cells (Figure 3D). Similarly, BM macrophages
isolated from FVB mice upregulated MIF protein upon the efferocytosis of Myc-CaP
prostate cancer cells (Figure 3E). Secreted MIF was further analyzed in the efferocytic
BM macrophages and compared to the control BM macrophages. To differentiate be-
tween the newly secreted endogenous MIF and the potential MIF present in the media
from cancer cells, BM macrophages engulfing apoptotic RM1 (efferocytic) from three in-
dependent BM macrophage co-cultures were sorted by flow cytometry (double positive
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F4/80-FITC+/RM1(a)-DeepRed+) and compared to F4/80+ non-engulfing BM macrophages
(non-efferocytic, also sorted by flow cytometry) (Figure 3F). Both populations were cultured
for 6 h and the conditioned media from each sample were analyzed by Western blotting.
The analysis revealed a significant increase in secreted MIF detected in the conditioned me-
dia from efferocytic relative to non-efferocytic BM macrophages (Figure 3G). These results
indicate that efferocytosis induces MIF secretion by BM macrophages to the extracellular
microenvironment.

Altogether, these findings indicate MIF is part of the signaling response of BM
macrophages to the engulfing of apoptotic prostate cancer cells and suggests a network
connection with the activation of hypoxia-related molecules by efferocytosis.

To investigate if the pro-inflammatory response is induced by BM macrophage effero-
cytosis of apoptotic cancer cells and not by apoptotic normal epithelial cells, HIF-1α stabi-
lization, STAT3 phosphorylation, and MIF expression were assessed in BM macrophages
co-cultured with apoptotic RM1 prostate cancer cells and compared to BM macrophages
co-cultured with apoptotic mPEC normal prostate epithelial cells. Western blot analy-
sis showed that HIF-1α is highly stable in RM1-efferocytic BM macrophages and this is
significantly increased in relation to mPEC-efferocytic BM macrophages (Figure 4A). More-
over, while STAT3 phosphorylation was increased in both RM1- and mPEC-efferocytic BM
macrophages, p-STAT3 levels were significantly higher in BM macrophage efferocytosis of
apoptotic RM1 cancer cells vs. mPECs (Figure 4B). Finally, MIF expression was significantly
upregulated only in RM1-efferocytic BM macrophages (Figure 4C).
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Figure 4. HIF-1α, p-STAT3, and MIF expression is increased in apoptotic RM1-efferocytic BM
macrophages. BM macrophages (MΦ) were isolated from 4 wk old C57BL/6J mice and co-cultured
with apoptotic RM1(a) or mPEC(a) cells for 16–18 h. (A–C) Western blot analysis of protein lysates
using HIF-1α, p-STAT3 and MIF antibody (n = 3). Plotted data are shown as mean ± SEM, * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = not significant (ordinary one-way ANOVA test).

These data confirm that BM macrophage efferocytosis of apoptotic cancer cells pro-
motes a unique pro-inflammatory response and that this feature may contribute to cancer
cell growth in the tumor microenvironment.

3.4. HIF-1α Mediated the Expression of MIF Cytokine in Efferocytic BM Macrophages

The implication of HIF-1α in tumor-promoting inflammation, immunosuppression,
and metastasis has been documented in different cancer models in relation to hypoxia [7].
We hypothesized that the stabilization of HIF-1α in BM macrophages by the clearance
of apoptotic cancer cells induces the expression of key pro-inflammatory cytokines. This
was investigated by crossing LysMCre mice with Hif1aflox/flox mice to obtain mutated
HIF-1α myeloid lineage-mutant mice (Hif1amut). These mice have a null allele in the Cre-
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expressing cells (myeloid) that lacks the exon 2 of Hif1a and were used to obtain Hif1amut

BM macrophages.
WT and Hif1amut BM macrophages were characterized by flow cytometry. No changes

were observed in the BM macrophage expression profile of surface marker F4/80
(Appendix A—Figure A6). In addition, the efferocytic capability (measured by the per-
cent of engulfment of apoptotic RM1) was no different between WT and Hif1amut BM
macrophages (Appendix A—Figure A7). Efferocytosis induced a significant increase in the
CD206high population in WT BM macrophages, suggesting increased M2-like polarization
(Appendix A—Figure A8). This trend increase (although not significant; p = 0.0516) was
also observed in Hif1amut BM macrophages. However, Hif1amut BM macrophages alone also
showed a slight increase in the CD206high population when compared to WT, suggesting a
shift in M2-like polarization induced by the loss of HIF-1α function in BM macrophages.
However, no differences were found in CD86, an M1-marker, in these BM macrophages.

Relative Hif1a gene expression was quantified with a probe that specifically targets
Hif1a exon 2. RT-qPCR analysis showed the upregulation of Hif1a mRNA in the efferocytic
WT BM macrophages relative to the controls (Figure 5A). A significant decrease in the Hif1a
mRNA containing the exon 2 was observed in Hif1amut BM macrophages relative to the
control WT BM macrophages, with no efferocytic response noted (Figure 5A). In addition,
the characterization of Hif1amut BM macrophages by Western blot analysis demonstrated a
lower molecular weight of HIF-1α in Hif1amut, which corresponds with the deletion of the
DNA binding domain encoded by the exon 2 (Figure 5C) by Cre-induced recombination
and renders a non-functional Hif1amut protein. However, even this mutant protein was
stabilized by efferocytosis as shown by quantitative Western blot analyses, which suggests
that STAT3-mediated stabilization is independent of HIF-1α binding to the hypoxia re-
sponse element (HRE) DNA (Figure 5C). Notably, STAT3 activation remained unaffected in
Hif1amut BM macrophages (Appendix A—Figure A9).

Previous studies suggest a link between HIF-1α and MIF in different cell models,
including macrophages [67,68]. We investigated the expression of MIF and other pro-
inflammatory factors as potential targets of HIF-1α. These included critical inflammatory
cytokines previously found upregulated in efferocytic BM macrophages: CXCL1, CXCL5,
IL6, and CXCL4 (also known as platelet factor 4, Pf4) [69]. From the selected cytokines, it
was found that Mif and Cxcl4 expression was significantly reduced in Hif1amut efferocytic
BM macrophages relative to the wild type (WT) after normalization to their respective con-
trol (non-efferocytic BM macrophages) (Figure 5B). There was a significant reduction in MIF
protein expression and no upregulation was observed by efferocytosis in the Hif1amut BM
macrophages relative to WT (Figure 5D). In contrast, upregulation of MIF by efferocytosis
was found in WT BM macrophages as previously shown in Figure 3D–E.

To address the specificity of HIF-1α in the control of MIF regulation, similar ex-
periments were performed with Epas1-myeloid lineage-mutant (Epas1mut) mice. These
mice were obtained by crossing LysMCre mice with Epas1flox/flox mice. Mutant mice ex-
pressed significantly lower levels of Epas1 mRNA by RT-qPCR using the primer/probe set
corresponding to the deleted exon2 (Appendix A—Figure A10A). RT-qPCR analysis of pro-
inflammatory cytokines showed a significant decrease in Cxcl1 in the Epas1mut mice, with
no changes in Mif and Cxcl4 (Appendix A—Figure A10B), which differs from the observed
HIF-1α-mediated regulation in BM macrophages (Figure 5B). Quantitative protein analysis
of Epas1mut BM macrophages revealed no change by efferocytosis in HIF-1α stabilization
in the Epas1mut BM macrophages relative to WT control (Appendix A—Figure A10C),
nor in MIF expression when comparing Epas1mut vs. WT (Appendix A—Figure A10D).
Furthermore, relative to the control Epas1mut BM macrophages, efferocytic Epas1mut BM
macrophages showed a significant increase in MIF (Appendix A—Figure A10D), while no
change was observed in efferocytic Hif1amut BM macrophages (Figure 5D). These results
highlight the specificity in the regulation of MIF expression by HIF-1 relative to EPAS1, a
similar hypoxia-inducible transcription factor.
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Plotted data are shown as mean ± SEM; * p < 0.05, ** p < 0.01, **** p < 0.0001, ns = not significant 
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3.5. MIF Activateds Inflammation in BM Macrophages 
CD74 is a critical receptor for MIF signal transduction in cells; however, CD74 lacks 

kinase activity and requires a complex formation with other co-receptors, including CD44 
and CXCR4 [33,71,72]. Results from single-cell data analyses identified a significant down-
regulation of CD74 in efferocytic compared to non-efferocytic BM macrophages (Figure 

Figure 5. HIF-1α depletion in efferocytic BM macrophages reduces MIF expression. (A) Hif1a mRNA
expression levels in Hif1aflox/flox (WT) and Hif1amut BM macrophages (MΦ). (B) mRNA from effero-
cytic and control BM macrophages from Hif1aflox/flox and Hif1amut mice were analyzed by RT-qPCR
for the specified inflammatory cytokine genes (n = 12). (C,D) Protein lysates from efferocytic and
control BM macrophages from Hif1aflox/flox (WT) and Hif1amut mice were analyzed by Western blot
with HIF-1α and MIF antibodies (n = 9). The Western blots shown in (C,D) are representative images.
Fold change was calculated relative to WT non-efferocytic BM macrophages (A,C,D) or to its own
non-efferocytic BM macrophage control (B). Plotted data are shown as mean ± SEM. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = not significant (ordinary one-way ANOVA;
Tukey’s multiple comparison test and unpaired t-test). Additional results are shown in
Appendix A—Figures A6–A8.

HIF-1α-mediated MIF regulation was further investigated by using a HIF-prolyl-
hydroxylase inhibitor FG-4592 (also known as Roxadustat) [70]. FG-4592 was used in
efferocytosis assays and a strong correlation was observed between the stabilization of
HIF-1α and MIF protein expression. FG-4592 alone stabilized HIF-1α, revealed by the
upregulation of MIF protein in non-efferocytic BM macrophages. Intriguingly, when the
inhibitor was used in efferocytic BM macrophages a further increase in HIF-1α and MIF
protein was observed (Figure 6A). RT-qPCR analysis showed a significant increase in
Mif mRNA induced by FG-4592 relative to the control; however, no further increase was
observed in efferocytic BM macrophages (Figure 6B).

Altogether, these findings suggest that HIF-1α mediates the expression of MIF, where
HIF-1α stabilization via efferocytosis or prolyl-hydroxylase inhibitor significantly upregu-
lates MIF expression in BM macrophages.

3.5. MIF Activateds Inflammation in BM Macrophages

CD74 is a critical receptor for MIF signal transduction in cells; however, CD74 lacks
kinase activity and requires a complex formation with other co-receptors, including CD44
and CXCR4 [33,71,72]. Results from single-cell data analyses identified a significant down-
regulation of CD74 in efferocytic compared to non-efferocytic BM macrophages (Figure 7A,
Appendix A—Figure A11), while no significant differences were detected in the co-receptors
CD44 or CXCR4. The downregulation of CD74 was also evident in the overall efferocytic
BM macrophages relative to the control, demonstrated by RT-qPCR analyses (Figure 7B).
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Figure 6. Efferocytic BM macrophages stabilize HIF-1α and induce MIF expression. BM macrophages
(MΦ) were isolated from C57BL/6J mice and co-cultured alone or with apoptotic RM1(a) cells and
treated with FG-4592 (Roxadustat, a HIF prolyl-hydroxylase inhibitor (10 µM)) or vehicle control for
16–18 h. (A) Protein lysates from co-cultures were analyzed by Western blotting with HIF-1α and MIF
antibodies (n = 12/group). (B) mRNAs were isolated from co-cultures and analyzed by RT-qPCR for
Mif expression (n = 9/group). Graphs show the fold change of each group relative to vehicle-treated
BM macrophage control. The Western blots shown in A are representative images. Plotted data are
shown as mean ± SEM; * p < 0.05, ** p < 0.01, **** p < 0.0001, ns = not significant (repeated measures
one-way ANOVA; Tukey’s multiple comparison test).

Although these results do not rule out a potential endocrine signaling, they sug-
gest that MIF secreted from efferocytic BM macrophages (Figure 3F) could induce potent
paracrine signaling in non-efferocytic BM macrophages and other cells. To evaluate the
MIF-induced signaling in BM macrophages, a purified recombinant MIF protein expressed
in mammalian cells was used. BM macrophages (from C57BL/6J and FVB/NJ mice) were
incubated for 2 h with MIF and then signaling activation was analyzed by Western blotting
with specific phospho-peptide antibodies. A hallmark the MIF transducing signal, resulting
in the activation (sustained phosphorylation) of the extracellular signal-related kinase
ERK1/2 MAPK [66,73], was found highly upregulated in BM macrophages treated with
recombinant MIF (Figure 7C). Furthermore, an increase in the critical inflammatory NF-kB
signaling (phospho-p65) was observed in BM macrophages treated with MIF (Figure 7C).

This potent inflammation-transduced signaling pathway was further correlated with
the increased expression of several pro-inflammatory factors in MIF-activated BM
macrophages (from C57BL/6J), including: Ccl5, Cxcl5, Il6, Cxcl1, Cxcl4, IL1b, and Tnf,
as well as the glucose transporter Glut1 (Figure 7D). Previous studies have demonstrated
that these cytokines mediate a pro-inflammatory macrophage activation in different en-
vironments [74–76]. Similar results were observed in FVB BM macrophages, where MIF
activated the expression of pro-inflammatory factors, except for Cxcl4 and the Glut1 trans-
porter (Figure 7F). In contrast, from the tested anti-inflammatory signatures, only CD36 was
upregulated in C57BL/6J BM macrophages, while CD206 was downregulated in the FVB
BM macrophages. The activation of pro-inflammatory cytokines has also been detected in
BM macrophages engulfing prostate cancer cells and functions to accelerate tumor growth
in bone, as previously shown [2]. Altogether, these results suggest that STAT3–HIF-1α–MIF
is a potent signaling axis induced by BM macrophage efferocytosis of apoptotic cancer cells,
which may act via paracrine signaling to induce macrophage-mediated inflammation in
the bone tumor milieu.
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BM macrophages (C) C57BL/6J and (E) FVB/NJ treated with MIF (200 ng/ml) and vehicle control 
were analyzed by Western blotting with total ERK, p-ERK, total p65, and p-p65 antibodies (n = 
3/group). mRNAs were isolated from BM macrophages (D) C57BL/6J and (F) FVB/NJ treated with 
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Figure 7. MIF induces a pro-inflammatory response in BM macrophages. BM macrophages (MΦ)
were isolated from C57BL/6J mice and treated for 2 h with 200 ng/ml of MIF protein or vehicle
control for Western blot analysis and 8 h for mRNA analysis. (A) scRNA-Seq analysis plot shows
Cd74 distribution in efferocytic and non-efferocytic clusters of BM macrophages. (B) Cd74 mRNA
expression in whole efferocytic BM macrophages assessed by RT-qPCR (n = 6/group). Protein lysates
from BM macrophages (C) C57BL/6J and (E) FVB/NJ treated with MIF (200 ng/ml) and vehicle
control were analyzed by Western blotting with total ERK, p-ERK, total p65, and p-p65 antibodies
(n = 3/group). mRNAs were isolated from BM macrophages (D) C57BL/6J and (F) FVB/NJ treated
with MIF and vehicle control and analyzed by RT-qPCR for the specified pro- and anti-inflammatory
factors (n = 6/group). Data are shown as mean ± SEM; * p < 0.05, ** p < 0.01, *** p < 0.001, ns = not
significant (unpaired t-test). Additional results are shown in Appendix A—Figure A11.

4. Discussion

Inflammation has a major impact on cancer progression and metastasis in various
organs [77–79]. One of the inflammatory mechanisms that promotes tumor growth is the
secretion of cytokines and chemokines by cancer and immune cells in the tumor microenvi-
ronment [80,81]. Tumor-associated macrophages play a critical role in accelerating tumor
progression in different cancer types [82,83]. In bone, apoptotic cancer cell efferocytosis
by macrophages generates a unique inflammatory milieu rich in cytokines, which pro-
mote and support tumor progression [3,4]. Here, the molecular mechanisms that induce
this tumor-promoting inflammatory response in bone marrow macrophages during the
efferocytosis of apoptotic prostate cancer cells were investigated.
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Analysis of the single-cell transcriptomics of sorted BM macrophages engulfing apop-
totic prostate cancer RM1 cells (efferocytic, F4/80+CFSE+) vs. sorted BM macrophages
alone (non-efferocytic, F4/80+) by flow cytometry (Figure 1A) revealed two distinctive clus-
ters of cells, each with a unique gene expression profile. GO term enrichment analysis of the
upregulated genes in efferocytic BM macrophages identified several biological pathways
including those directly related to macrophage functions, such as “response to wounding”,
“innate immune response”, and “regulation of vasculature development” [84]. Although
the efferocytosis experiments in vitro were conducted under normoxic levels, the analysis
identified GO terms related to “cellular responses to hypoxia” or “decreased oxygen levels”
in efferocytic BM macrophages, these terms included genes that are known targets of
HIF-1, a master transcriptional regulator of the cellular response to hypoxia [85]. Although
HIF-1α is known to be critically regulated by oxygen-dependent hydroxylation leading to
ubiquitination and subsequent proteasome degradation [13], several factors could induce
its stabilization under normoxic conditions. For example, in macrophages activated by
inflammatory stimuli and in tumor-associated macrophages, normoxic stabilization of
HIF-1α may be induced by metabolites, including succinate and lactate [86,87]. In cancer
cells, HIF-1α may also be regulated by inducing high transcriptional and translational
activity via different pathways: MAPK/ERK, JAK/STAT, and PI3K/AKT/mTOR [88]. The
hypoxia-independent expression of HIF-1α has been observed in prostate cancer tumors,
in correlation with recurrence following surgery or therapy, increased chemoresistance,
and accelerated metastatic progression, suggesting that alternative mechanisms of post-
translational stabilization could lead to its accumulation and transcriptional activity in
non-hypoxic environments [89,90]. Here, we found that efferocytic BM macrophages pro-
moted HIF-1α stabilization and induced a strong and sustained phosphorylation of STAT3
under normoxic conditions. A short treatment with two specific STAT3 inhibitors signifi-
cantly reduced HIF-1α in BM macrophages after a 2 hr incubation with apoptotic cancer
cells; however, HIF-1α stabilization was not completely abrogated. A plausible explanation
is that the short treatment of inhibitors on BM macrophages and then their removal from
culture (to prevent side effects) may have resulted in the reactivation of STAT3 signaling.
As shown by Western blot analysis, STAT3 is not completely inactivated. A proposed
mechanism suggests that activated STAT3 interacts with HIF-1α to inhibit von Hippel-
Lindau (VHL) binding to HIF-1α, leading to decreased ubiquitination and stabilization [22].
However, these experiments were performed by overexpressing STAT3 and, in our hands,
we attempted without success to show a direct interaction between endogenous p-STAT3
and HIF-1α. Nevertheless, by blocking HIF-1α proteasomal degradation, the immunopre-
cipitation experiments demonstrated a reduced HIF-1α ubiquitination via efferocytosis,
which correlates with HIF-1α accumulation in efferocytic BM macrophages. Altogether,
these results suggest that the stabilization of HIF-1α is mediated by p-STAT3 in efferocytic
BM macrophages. This stabilization leads to a subsequent nuclear translocation, along
with p-STAT3, which correlates with previous studies [60,61]. However, other mechanisms
(described above) acting in parallel with STAT3 may also contribute to HIF-1α stabilization.

Previous reports have associated the expression of HIF-1α and its target genes with
immunosuppressive functions in the tumor microenvironment [91,92]. Here, a single-cell
analyses of efferocytic BM macrophages identified a strong protein network association
between the genes related to “cellular response to hypoxia” and “negative regulation of
the immune response”, suggesting that HIF-1α signaling in efferocytic BM macrophages
may exert immunosuppressive functions in the tumor microenvironment. It has been re-
ported that HIF-1α promotes the secretion of cytokines and chemokines, such as CXC motif
chemokine ligand 5 (CXCL5), CXC motif chemokine ligand 12 (CXCL12), chemokine ligand
28 (CCL28), and macrophage migration inhibitory factor (MIF) [24–26,93]. One of the genes
included in the network analysis was Mif. MIF is a pro-inflammatory cytokine expressed
by monocytes, macrophages, blood dendritic cells, B cells, neutrophils, eosinophils, mast
cells, and basophils and its expression is involved in both innate and adaptive immune
processes, as well as in response to hypoxia. Several studies have shown that MIF me-
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diates inflammatory processes, such as sepsis and cancer [94,95]. We demonstrated that
Mif mRNA as well as intracellular and secreted MIF protein levels were increased in BM
macrophages upon the efferocytosis of apoptotic cancer cells. It was found that HIF-1α
but not HIF-2α (EPAS1) depletion in BM macrophages reduced the expression of the
pro-tumorigenic inflammatory cytokines Mif and Cxcl4 after being exposed to apoptotic
prostate cancer cells when compared to WT BM macrophages. In addition, HIF stabilization
by the prolyl-hydroxylase inhibitor Roxadustad further stabilized HIF-1α and induced
higher MIF protein expression in efferocytic BM macrophages. However, the upregulation
of MIF protein did not completely reflect the Mif mRNA where no significant differences in
the inhibitor-treated efferocytic versus control BM macrophages were found. This discrep-
ancy may be explained by additional MIF stabilization due to intracellular protein–protein
interactions, as suggested in previous studies [27,96,97].

Furthermore, it was found that BM macrophage efferocytosis of apoptotic cancer
cells promotes higher HIF-1α stabilization when compared to apoptotic normal prostate
epithelial cells. In correspondence with the identified mechanism, the efferocytosis of
apoptotic prostate cancer cells induced a more robust activation of STAT3 and MIF expres-
sion compared to the efferocytosis of apoptotic normal cells. Such strong STAT3 signaling
is required to induce a significant stabilization of HIF-1α. However, how apoptotic can-
cer cells activate significant STAT3 signaling in BM macrophages and how this signal is
maintained remains to be elucidated where a potential amplification loop could be critical.
Altogether, these findings suggest that HIF-1α specifically regulates MIF expression in
efferocytic BM macrophages.

Studies in cancer show that MIF supports tumor progression via different mechanisms.
For example, HIF-1α regulates MIF secretion in breast cancer cells to promote tumor
proliferation, angiogenesis, and metastasis [29]. In colorectal cancer, it was shown that MIF
promoted macrophage recruitment and angiogenesis to accelerate tumor progression [96].
In a model of breast cancer, elevated MIF expression supported tumor growth while a loss
of MIF promoted the anti-tumor immune infiltration of CD4+/CD8+ T cells producing
IFNγ, which supported the MIF immunosuppressive function [98]. In other studies, in
head and neck squamous carcinoma, the HIF-1α–MIF axis contributed to the recruitment of
myeloid (CD11b+-Gr-1+) cells to enhance tumor growth and angiogenesis [26]. In prostate
cancer patients, MIF expression is highly elevated, which has been associated with higher
severity and poor outcome [99].

MIF signals through its ligand binding receptor CD74 and its co-receptors (signal
transducers) CD44, CXCR2, or CXCR4 [33,71,72]. MIF/CD74 activity promotes immuno-
suppressive signaling in macrophages and dendritic cells and inhibition of this signaling
re-establishes the antitumor immune response in metastatic melanoma [100,101]. Moreover,
MIF/CD74 signaling also activates the NF-κB signaling pathway in chronic lymphocytic
leukemia [102,103]. CD74/CD44 activation by MIF is followed by the phosphorylation of
the proto-oncogene tyrosine-protein kinase (SRC), extracellular signal-related kinase 1/2
(ERK1/2), phosphoinositide 3-kinase (PI3K), and protein kinase B (AKT) [33,71,104,105].
These kinases promote the activation of transcription factors, such as nuclear factor-kappa B
(NF-κB, p65), which induces the secretion of pro-inflammatory cytokines, such as IL-6, IL-8,
CCL2, and CCL5 [102,106–109]. Here, we found that Cd74 expression is downregulated in
efferocytic BM macrophages, suggesting potential paracrine signaling in non-efferocytic BM
macrophages. Recombinant MIF protein treatment of non-efferocytic BM macrophages acti-
vated the ERK1/2 and the p65 pathways and increased the expression of pro-inflammatory
factors, such as Il1b, Tnf, Cxcl1, Cxcl5, Il6, and Ccl5. Furthermore, it was found that MIF in-
creased STAT3 activation and HIF-1α protein (Appendix A—Figure A12A,B). However, no
differences were observed in Hif1a nor in Mif gene expression (Appendix A—Figure A12C)
evaluated 6 h after the detection of HIF-1α protein (Appendix A—Figure A12B), which
suggests that recombinant MIF treatment may induce a transient stabilization of HIF-1α
that is insufficient to increase Mif gene expression in BM macrophages.
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In B cells, a mechanism has been elucidated where the binding of MIF to CD74 initiates
its intramembrane cleavage and generates a 42aa domain that binds to cytoplasmic p65
and facilitates its transport to the nucleus to activate transcriptional activity [110]. A similar
mechanism could be activated in macrophages; however, to our knowledge, it has yet to
be investigated. Such as in the MIF-induced activation of NF-κB (p65) and the expression
of potent pro-inflammatory factors in BM macrophages, the observed downregulation of
Cd74 by efferocytosis could function to restrain the autocrine MIF-induced inflammatory
response. For example, no mRNA expression differences between CXCL1, CXCL5, and
IL-6 were detected in BM macrophages with depleted HIF-1α (Hif1amut) relative to WT.

Altogether, these findings reveal a new regulatory mechanism of HIF-1α in BM
macrophages during the efferocytosis of apoptotic prostate cancer cells where the p-
STAT3/HIF-1α/MIF signaling pathway induces inflammation, a mechanism that would
be activated in the bone tumor microenvironment comprising a significant number of
apoptotic cancer cells.
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Appendix A

Table A1. Features of the data included in the single-cell RNA sequencing analysis.

Sample # of Cells # of Unique
Genes Per Cell

# of Transcripts
Per Cell

Ave.
Mitochondrial %

Non-efferocytic MΦ (1) 7813 3029 12,837 3.39
Efferocytic MΦ (1) 6262 3726 19,768 3.18

Non-efferocytic MΦ (2) 10,612 2909 11,326 2.89
Efferocytic MΦ (2) 7984 3800 17,984 3.27

https://www.mdpi.com/article/10.3390/cells11233712/s1
https://www.mdpi.com/article/10.3390/cells11233712/s1
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Table A2. Selected GO terms (Figure 1E) enriched in efferocytic bone marrow macrophages.

GO Term Biological Process # of Genes in
Term

# of Go Term
Genes in

Upload List
Expected Fold

Enrichment
Raw

p-Value FDR Value

Regulation of innate immune response
(GO:0045088) 287 16 6.08 2.63 6.38 × 104 3.89 × 102

Cellular response to hypoxia (GO:0071456) 82 13 1.74 7.49 8.25 × 108 2.90 × 105

Cellular response to decreased oxygen
levels (GO:0036294) 86 13 1.82 7.14 1.36 × 107 4.20 × 105

Cellular response to oxygen levels
(GO:0071453) 101 14 2.14 6.55 1.18 × 107 3.80 × 105

Translational initiation (GO:0006413) 54 13 1.14 11.37 1.02 × 109 9.44 × 107

Regulation of protein stability
(GO:0031647) 278 17 5.89 2.89 1.58 × 104 1.44 × 102

Positive regulation of vasculature
development (GO:1904018) 200 17 4.23 4.02 3.13 × 106 5.38 × 104

Regulation of response to wounding
(GO:1903034) 187 14 3.96 3.54 8.34 × 105 8.73 × 103

Response to oxidative stress (GO:0006979) 338 23 7.16 3.21 2.22 × 106 4.27 × 104

Negative regulation of immune system
process (GO:0002683) 469 23 9.93 2.32 3.04 × 104 2.35 × 102

Table A3. List of upregulated genes from GO terms shown in Figure 1E and Table A2.

GO Term Biological Process Upregulated Genes in Efferocytic BM Macrophages

Regulation of innate immune
response (GO:0045088)

Cadm1, Ccr1, Ube2k, Adam8, Hsp90aa1, Rala, Arg1, Mmp12, Psmd14, Psmd1, Psmd7, Psmd12,
Psmc5, Psmb5, Psmb6, Nr1h3, Psmd2

Cellular response to hypoxia
(GO:0071456)

Egln3, Hyou1, Ak4, Ppargc1a, Eno1, Pgk1, Ndnf, Epas1, Rbpj, Stub1, Commd1, Adam8, Pdk1, Lmna,
Eif4eb1, Myc, Plau, Cpeb1, Mif, Dnmt3a, Hilpda, Phb2, Higd1a, Ccnb1, Bcl2l1, Psmd14, Psmd7,

Psmd12, Psmc5, Psmb5, Psm6, Psm2, Psmd1

Cellular response to decreased
oxygen levels (GO:0036294)

Egln3, Hyou1, Ak4, Ppargc1a, Eno1, Pgk1, Ndnf, Epas1, Rbpj, Stub1, Commd1, Adam8, Pdk1, Lmna,
Eif4eb1, Myc, Plau, Cpeb1, Mif, Dnmt3a, Hilpda, Phb2, Higd1a, Ccnb1, Bcl2l1, Psmd14, Psmd7,

Psmd12, Psmc5, Psmb5, Psm6, Psm2, Psmd1, Atf4

Cellular response to oxygen levels
(GO:0071453)

Egln3, Hyou1, Ak4, Ppargc1a, Eno1, Pgk1, Ndnf, Epas1, Rbpj, Stub1, Commd1, Adam8, Pdk1, Lmna,
Eif4eb1, Myc, Plau, Cpeb1, Mif, Dnmt3a, Hilpda, Phb2, Higd1a, Ccnb1, Bcl2l1, Psmd14, Psmd7,

Psmd12, Psmc5, Psmb5, Psm6, Psm2, Psmd1, Atf4, Atp6v1a

Translational initiation
(GO:0006413) Eif4a1, Denr, Eif3b, Eif4e2, Eif4ebp1, Eif5a, Eif6, Eif1a, Eif4g1, Eif4e, Eif1ax, Ago2, Eif2s1, Atf4, Atf3

Regulation of protein stability
(GO:0031647)

Hypk, Rnf128, Stub1, Commd1, Hip1, Hsp90aa1, Phb2, Rnf149, Plpp3, Cct8, Hspd1, B4galt5, Lmna,
Ptges3, Flna, Cct3, Ank2, Ppargc1a

Positive regulation of vasculature
development (GO:1904018) Kdr, Mydgf, Itgax, Fgf2, Hyal1, Ago2, Sphk1, Il1a, Pkm, Lgals3, Hspa4, Angpt2, Nrp1, Hmga2

Regulation of response to
wounding (GO:1903034) Plau, Cd109, Anxa1, Cd9, Fgf2, Cd36, Anxa2, Rtn4r, Flna, Pdgfa, Spp1, Mif, F7, Plpp3, Plaur

Response to oxidative stress
(GO:0006979)

Ndufa12, Prdx1, Sod2, Gsr, Srxn1, Ppargc1a, Nme2, Apex1, Anxa1, Epas1, Selenos, Gpx1, Atf4,
Cd36, Hyal1, Rwdd1, Arl6ip5, Eif2s1, Pdk1, Ndufs8, Sphk1, Psmb5, Pon2, Cygb, Pcna, Hspd1, Mif,

Il1a, Hk3, Ldha, Bcl2l1, Arg1, Cycs, G6pdx, Atf1, Scara3, Por

Negative regulation of immune
system process (GO:0002683)

Cb1b, Nme2, Anxa1, Selenos, Ccr1, Gpnmb, Cd200r1, Mif, Il7r, Nr1h3, Hspa9, Rala, Gpx1, Arg1,
Cd200, Mmp12, Myc, Nme1, Cd300lf, Lgals3, Npy, Id2, Iglc1
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Figure A1. p-STAT3 inhibition in C57BL/6J in BM macrophage efferocytosis of apoptotic prostate 
cancer RM1 cells. BM macrophages (MΦ) were isolated from 4 wk old C57BL/6J mice and co-cul-
tured with apoptotic RM1(a) cells for 16–18 h (n = 3). (A,B) Western blot of protein lysates from 
efferocytic and control BM macrophages treated with 3µM Stattic (p-STAT3 inhibitor) using p-
STAT3 and HIF-1α antibodies. (C,D) Western blot of protein lysates from efferocytic and control 
BM macrophages treated with 30 µM S3I-210 (p-STAT3 inhibitor) using p-STAT3 and HIF-1α anti-
bodies. Plotted data are shown as mean ± SEM, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns 
= not significant (ordinary one-way ANOVA; Tukey’s multiple comparison test). 
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tate cancer Myc-CaP cells.BM macrophages (MΦ) were isolated from 4 wk old FVB/NJ mice and co-
cultured with apoptotic Myc-CaP(a) cells for 16–18 h (n = 3). (A,B) Western blot of protein lysates 
from efferocytic and control BM macrophages treated with 60 µM S3I-210 (p-STAT3 inhibitor) using 
p-STAT3 and HIF-1α antibodies. Plotted data are shown as mean ± SEM, ** p < 0.01, *** p < 0.001, 
**** p < 0.0001, ns = not significant (ordinary one-way ANOVA; Tukey’s multiple comparison test). 

 
Figure A3. Ubiquitin detection in HIF-1α immunoprecipitated (IP) from efferocytic and non-ef-
ferocytic BM macrophages. BM macrophages (MΦ) were isolated from 4 wk old C57BL/6J mice and 

Figure A1. p-STAT3 inhibition in C57BL/6J in BM macrophage efferocytosis of apoptotic prostate
cancer RM1 cells. BM macrophages (MΦ) were isolated from 4 wk old C57BL/6J mice and co-cultured
with apoptotic RM1(a) cells for 16–18 h (n = 3). (A,B) Western blot of protein lysates from efferocytic
and control BM macrophages treated with 3µM Stattic (p-STAT3 inhibitor) using p-STAT3 and HIF-1α
antibodies. (C,D) Western blot of protein lysates from efferocytic and control BM macrophages
treated with 30 µM S3I-210 (p-STAT3 inhibitor) using p-STAT3 and HIF-1α antibodies. Plotted data
are shown as mean ± SEM, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = not significant
(ordinary one-way ANOVA; Tukey’s multiple comparison test).
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Figure A2. STAT3 inhibition in FVB/NJ bone marrow macrophage efferocytosis of apoptotic prostate
cancer Myc-CaP cells.BM macrophages (MΦ) were isolated from 4 wk old FVB/NJ mice and co-
cultured with apoptotic Myc-CaP(a) cells for 16–18 h (n = 3). (A,B) Western blot of protein lysates
from efferocytic and control BM macrophages treated with 60 µM S3I-210 (p-STAT3 inhibitor) using
p-STAT3 and HIF-1α antibodies. Plotted data are shown as mean ± SEM, ** p < 0.01, *** p < 0.001,
**** p < 0.0001, ns = not significant (ordinary one-way ANOVA; Tukey’s multiple comparison test).
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ferocytic BM macrophages. BM macrophages (MΦ) were isolated from 4 wk old C57BL/6J mice and Figure A3. Ubiquitin detection in HIF-1α immunoprecipitated (IP) from efferocytic and non-
efferocytic BM macrophages. BM macrophages (MΦ) were isolated from 4 wk old C57BL/6J mice and
co-cultured with apoptotic RM1(a) cells for 4 h and treated with 10 µM MG-132 (degradation inhibitor
of ubiquitin-conjugated proteins) for 1 h (n = 2). Cell lysates from efferocytic and non-efferocytic
BM macrophages were immunoprecipitated (IP) with HIF-1α antibody and immunoblotted with
ubiquitin and HIF-1α antibodies as shown in (A) Experiment 2 and (B) Experiment 3. Ub-HIF-1α
(ubiquitinated HIF-1α) signal was measured in the yellow box around the corresponding HIF-1α
molecular weight.
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Figure A6. Flow cytometry analysis of F4/80+ expression in efferocytic and non-efferocytic BM
macrophages from Hif1aflox/flox (WT) and Hif1amut mice. BM macrophages (MΦ) were isolated
from 4 wk old Hif1aflox/flox (WT), Hif1amut mice and co-cultured with apoptotic RM1(a) cells for
16–18 h. Efferocytic and non-efferocytic macrophages were labeled with F4/80-APC or isotope control
antibodies and analyzed by flow cytometry. Graphs show the percentage of F4/80+ population in
(A) non-efferocytic and (B) efferocytic macrophages from WT (n = 3) and Hif1amut (n = 4) mice.
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Figure A7. Analysis by flow cytometry of BM macrophages from wildtype and Hif1amut mice
engulfing apoptotic RM1 cells. BM macrophages (MΦ) were isolated from 4 wk old Hif1aflox/flox

(WT), Hif1amut mice and co-cultured with apoptotic CFSE labeled RM1(a) cells for 16–18 h. Efferocytic
macrophages were labeled with F4/80-APC or isotope antibodies and analyzed by flow cytometry.
Graph indicates the percentages of efferocytic (F4/80-APC+/RM1(a)-CFSE+ (engulfing)) population
in WT (n = 4) and Hif1amut (n = 4) BM macrophages. Each plot is representative of cells gated from
F4/80+ populations. Plotted data are shown as mean ± SEM, ns = not significant (unpaired t-test).
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Figure A8. Analysis by flow cytometry of CD86 and CD206 expression in efferocytic BM macrophages
from WT and Hif1amut mice. BM macrophages (MΦ) were isolated from 4 wk old Hif1aflox/flox

(WT) (n = 3), Hif1amut (n = 4) mice and co-cultured with apoptotic RM1 cells (RM1(a)) for 16–18 h.
Efferocytic and non-efferocytic macrophages were labeled with F4/80-APC, CD86-FITC, CD206-FITC
or isotope antibodies and analyzed by flow cytometry. Graphs show the percentages of CD86+ (A)
or CD206+ (B) cells in F4/80+ populations of efferocytic (MΦ + RM1(a)) and non-efferocytic (MΦ)
BM macrophages from WT and Hif1amut mice. Each plot is representative of cells gated from F4/80+

populations. Plotted data are shown as mean± SEM, * p < 0.05, ns = not significant (ordinary one-way
ANOVA; Tukey’s multiple comparison test).
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Figure A9. STAT3 phosphorylation in efferocytic Wildtype (WT) and Hif1amut BM macrophages. BM
macrophages (MΦ) were isolated from 4 wk old Hif1aflox/flox (WT), Hif1amut mice and co-cultured
with apoptotic RM1cells (RM1(a)) for 16–18 h. Cell lysates from efferocytic and non-efferocytic
macrophages were analyzed by Western blot using p-STAT3 antibody. Graph shows p-STAT3 fold
change in efferocytic BM macrophages from WT and Hif1amut mice relative to controls (MΦs alone).
** p < 0.01, ns = not significant (ordinary one-way ANOVA; Tukey’s multiple comparison test).
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Figure A10. HIF-2α depletion (Epas1mut) effect in efferocytic bone marrow macrophages. BM
macrophages (MΦ) were isolated from 4 wk old Epas1flox/flox (WT), Epas1mut mice and co-cultured
with apoptotic RM1cells (RM1(a)) for 16–18 h. (A) Epas1 mRNA expression in Epas1flox/flox (WT) and
Epas1mut BM macrophages (MΦ). (B) mRNA from efferocytic and control BM macrophages from WT
(n = 7) and Epas1mut (n = 9) mice were analyzed by RT-qPCR for the specified inflammatory cytokine
genes. (C,D) Protein lysates from efferocytic and control BM macrophages from WT (n = 4) and
Epas1mut (n = 3) mice were analyzed by Western blot with HIF-1α and MIF antibodies. Fold change
was calculated relative to WT non-efferocytic BM macrophages (A,C,D) or to its own non-efferocytic
BM macrophage control (B). Plotted data are shown as mean ± SEM. ** p < 0.01, **** p < 0.0001,
ns = not significant (ordinary one-way ANOVA; Tukey’s multiple comparison test and unpaired
t-test).
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Figure A11. Single-cell plots of Cd74 expression in efferocytic BM macrophages. scRNA-Seq analysis
plots show Cd74 distribution in efferocytic and non-efferocytic (control) clusters of BM macrophages
(MΦ) corresponding to Experiment 1 in Figure 1B.
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Figure A12. p-STAT3 and HIF-1α protein expression in MIF treated BM macrophages. BM macro-
phages (MΦ) were isolated from 4 wk old C57BL/6J mice and treated with 200 ng/mL recombinant 
MIF for 2 h (protein analysis) and 8 h (mRNA analysis). (A) Western blot analysis of cell lysates 
from MIF and vehicle treated BM macrophages using p-STAT3 antibody (n = 3). (B) Western blot 
analysis of cell lysates from MIF and vehicle treated BM macrophages using HIF-1α antibody (n = 
3). (C) mRNAs from MIF and vehicle treated BM macrophages were analyzed by RT-qPCR using 
Hif1a and Mif probes (n = 6). Plotted data are shown as mean ± SEM. * p < 0.05, *** p < 0.001, ns = not 
significant (unpaired t-test). 
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Figure A12. p-STAT3 and HIF-1α protein expression in MIF treated BM macrophages. BM
macrophages (MΦ) were isolated from 4 wk old C57BL/6J mice and treated with 200 ng/mL re-
combinant MIF for 2 h (protein analysis) and 8 h (mRNA analysis). (A) Western blot analysis of cell
lysates from MIF and vehicle treated BM macrophages using p-STAT3 antibody (n = 3). (B) Western
blot analysis of cell lysates from MIF and vehicle treated BM macrophages using HIF-1α antibody
(n = 3). (C) mRNAs from MIF and vehicle treated BM macrophages were analyzed by RT-qPCR using
Hif1a and Mif probes (n = 6). Plotted data are shown as mean ± SEM. * p < 0.05, *** p < 0.001, ns = not
significant (unpaired t-test).
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