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Abstract

Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic
function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with
cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA
modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain
development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such
as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable
already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1
expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-
transcriptional events occur on OPHN1, a gene playing an important role in brain function and development.
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Introduction

The human Oligophrenin-1 (OPHN1) gene is located on

chromosome Xq12, encompasses 25 exons and is translated into

a protein of 802 amino acids (corresponding to exons 2–24).

OPHN1 encodes for a Rho-GTPase-activating protein that

promotes GTP hydrolysis and regulates the activity of Rho

proteins [1]. Rho subfamily members are key mediators of

cytoskeletal remodelling, which affects several cellular functions

including neuronal cell migration and synaptic morphogenesis [2].

OPHN1 was first identified in a female patient showing mild

intellectual disability and carrying a (X;12)(q11;q15) translocation

[1]. Since then, a number of mutations of this gene have been

reported in X-linked intellectual disability (XLID) associated with

cerebellar hypoplasia [3,4]. The importance of OPHN1 for brain

development/function has also been demonstrated in mice, where

ophn1-defective neurons show dendritic spine immaturity and

alterations in synaptic function [5]. Indeed, oligophrenin-1

downregulates the RhoA/Rho-kinase signalling pathway, repress-

ing its inhibitory activity on synaptic vesicle recycling and AMPAR

internalization [6]. Moreover, Ophn1 interacts with Rev-erba, an

orphan nuclear receptor involved in the murine hippocampus

circadian clock regulation, inducing its localization in dendrites

and spines [7].

In mammals, genes are highly processed after transcription by

different post-transcriptional mechanisms, such as alternative

splicing and RNA editing. However, while splicing implies a cut-

and-paste mechanism of nucleotide portions encoded by DNA,

RNA editing alters the RNA sequences generating molecules

different from those coded by DNA [8–10]. The most frequent

type of RNA editing in mammals is the deamination of adenosines

(A) into inosines (I) within double-stranded RNAs (dsRNAs),

through the action of ADAR (adenosine deaminase acting on

RNA) enzymes [8–10]. ADARs recognize dsRNA structures

through their RNA binding domains (RBDs) at the amino

terminus and convert adenosine into inosine by their highly

conserved deaminase domain (DM) at the carboxy terminus [8–

10]. In mammals, there are three ADAR proteins: ADAR1-3.

ADAR1 and ADAR2 are active enzymes expressed in many

different tissues, while ADAR3 seems to be inactive and expressed

exclusively in the brain [8–10]. Usually, editing at a specific site is

not 100% efficient; therefore, both the edited and the unedited

RNA variants coexist within a cell. Since inosine is recognised as

guanosine by both splicing and translation machineries, RNA

editing has the potential to alter splicing sites and amino acid

codons, increasing the number of RNA and protein isoforms [9].

Bioinformatics studies and next generation sequencing have

revealed that in humans the majority of A-to-I RNA editing events

(corresponding to A-to-G changes in the cDNA) lay within non-

coding portions of pre-mRNAs, such as introns and untranslated

regions (UTRs) [11–14]. Specifically, it has been shown that RNA
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editing events are frequent in inverted Alu repeats, usually folded

in dsRNA structures, located in introns and UTRs [9,15].

A-to-I RNA editing plays an essential role in brain development

in both Drosophila and mammals [16–18]. In Drosophila, several

genes involved in synaptic vesicle release machinery are targets of

the dADAR enzyme (e.g. endophilin A) [19]. In mammals, ADAR2-

mediated editing is crucial for the activity of many proteins

expressed in the Central Nervous System (CNS) and important for

normal brain function, such as FLNA (Filamin A), CYFIP2

(cytoplasmic FMR1 interacting protein 2), GluR-B (a-amino-3-

hydroxy-5-methylisoazol-4-propionate (AMPA)-receptor subunit)

and 5HT2C (serotonin receptor) [20–22]. Furthermore, Adar22/2

knockout mice become prone to seizures and die at a post-natal

stage due to the editing loss at the Q/R site within the GluR-B

transcript [17]. Notably, it has been shown that alterations of

ADAR2 editing activity are involved in several human diseases

affecting the CNS [10,23].

In the present study, we demonstrate that OPHN1, a Rho-

GTPase-activating protein essential for neuronal development and

synaptic function, undergoes post-transcriptional modification

events such as A-to-I RNA editing and alternative splicing during

human brain development.

Materials and Methods

Cell lines
Human astrocytoma cell lines U118 MG (HTB-15TM) and

U87 MG (HTB-14TM) were obtained from American Type

Culture Collection (ATCC) and kindly supplied by Dr. S. Galardi

(University of Tor Vergata, Rome, Italy). U118 and U87 cell lines

stably overexpressing the active or the inactive ADAR2 enzyme

were generated as previously reported [24]. U118 and U87 cells

stably silenced for ADAR1 enzyme were generated using the

BLOCK-iT Inducible Pol II miR RNAi Expression Vector Kit

with EmGFP (K4939-00 - Invitrogen, Carlsbad, CA, USA),

according to the manufacturer’s instructions. All cell lines were

grown in Dulbecco’s modified Eagle’s medium supplemented with

10% fetal calf serum (10270 - Gibco-Life Technologies, Glasgow,

UK) plus antibiotics, at 37uC in 5% CO2.

Tissues
Human normal spinal cord (NICHD, Brain and tissue bank,

USA), human normal brain (obtained from a pediatric patient

undergoing focal brain resection for head injury sequelae) and

human normal skin (obtained from a biopsy) tissues were used to

compare the cDNA sequence to its corresponding gDNA. Total

RNA from pools of different subjects was also used for RNA

editing analysis. Specifically, we used total RNA from human

adult brain (a pool of 3 individuals, AM6000 - Ambion-Life

Technologies), human fetal brain (a pool of 2 individuals, 18th

gestation week, 540157 - Stratagene-Agilent, La Jolla, CA, USA),

human fetal brain (a pool of 59 individuals, 20th–33rd gestation

week, 636526 - Clontech, Palo Alto, CA, USA), human

cerebellum (a pool of 10 individuals, 636535 - Clontech), human

kidney (a pool of 3 individuals, AM6000 - Ambion-Life

Technologies), and human thyroid (a pool of 3 individuals,

AM6000 - Ambion-Life Technologies).

RNA isolation, reverse transcription (RT-PCR), sequencing
and RNA editing analysis

Total RNA and genomic DNA were isolated using TRIzol

reagent (Invitrogen) according to the manufacturer’s instructions.

Each RNA sample was DNase treated (Recombinant DNase I

(RNase free), AM2235 - Ambion) and quantified by NanoDrop

2000 (Thermo Scientific, Philadelphia, PA, USA). cDNAs were

generated by ImProm-II Reverse Transcription System (A3800 -

Promega, Madison, WI, USA) or Superscript II reverse transcrip-

tase (18064 - Invitrogen) using random hexamers or transcript-

specific oligonucleotides. Three independent RT-PCRs (reverse

transcriptase-polymerase chain reactions) were performed for each

sample. The cDNAs were amplified by PCR reactions using

Expand high fidelity Plus PCR System (03300226001 - Roche,

Sydney, Australia). Direct sequencing (ABI 3500 Genetic Analyz-

er, Applied Biosystems-Life Technologies) was performed on

cDNA pools and editing levels were calculated as previously

described [25,26]. Briefly, editing was quantified dividing the

height of the G peak by the sum of the A and G peaks of the

analyzed site. All primer sequences used for these studies are

shown in Table S1 see File S1.

Analysis of mRNA expression levels
Gene-specific exon-exon boundary PCR products (TaqMan

gene expression assays, Applied Biosystems) were measured by

means of a PE Applied Biosystems PRISM 7700 sequence

detection system during 40 cycles. b-actin mRNA was used for

normalization and relative quantification of gene expression was

performed according to the 2-DDCt method. Expression levels

were represented in arbitrary units calculated as a relative-fold

increase compared to the control sample arbitrarily set to 1.

Quantitative RT-PCRs were repeated in triplicates from at least

two independent experiments.

The primers were supplied by Applied Biosystems: OPHN1, ID

Hs00609994_m1; ADAR1, ID Hs00241666_m1; ADAR2, ID

Hs00953730_m1; b-actin, ID Hs99999903_m1. All the qRT-

PCR data was also confirmed using the SYBR green method

(Invitrogen) (data not shown).

Statistical analysis
A non-paired Student’s T-test was used for statistical evaluation.

A two-sided p value lower than 0.05 was accepted to indicate

statistical significance.

Ethics Statement
The study was revised and approved by the local Institutional

Review Board (IRB) of Bambino Gesù Children’s Hospital of

Rome, regulating the use of human samples for experimental

studies. Informed written consent to use the biological samples for

research purposes was obtained from all the patients’ parents.

Results

New A-to-I editing events in OPHN1 pre-mRNA
In order to identify possible A-to-I RNA editing events within

the OPHN1 transcript, we interrogated the available editing

database (http://darned.ucc.ie) [27]. No editing site has been

detected within the human OPHN1 coding region, as also

confirmed by direct sequencing of the OPHN1 cDNA (exon 2–

24) in human brain and spinal cord tissues (data not shown). We

only detected a single G/A change in the exon 2 of the OPHN1

genomic sequence and in the corresponding cDNA of our samples,

already reported as a single nucleotide polymorphism (SNP)

(rs41303733, nucleotide position ChrX:67652748 in

GRCh37.p10, corresponding to the V39I amino acid change) in

different databases (www.ensembl.org; https://www.ncbi.nlm.nih.

gov/SNP/).

Then we looked for inverted Alu repeats with low degree of

divergence as previously described [11]. Potential editing sites

were predicted in silico in the OPHN1 pre-mRNA within an Alu

Post-Transcriptional Modifications of OPHN1
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element (AluJo) (intron 9–10), 459 nt downstream of exon 9

(Figure 1A). The AluJo cDNA sequence generated from human

brain tissue, using OPHN1 intronic specific primers (Table S1 in

File S1), showed 14 A-to-G changes representing new potential

editing sites (Figure 1B). Indeed, no A-to-G changes were found at

the same positions in the corresponding AluJo genomic sequence

(Figure S1 in File S1). It is well-established that ADARs need to

bind a dsRNA structure to edit. Indeed, we identified a

complementary inverted Alu repeat (AluSz) within the same

intron 9–10, ,1 Kb downstream AluJo (Figure 2A). AluSz can

base-pair with the AluJo region creating a long dsRNA structure

(Figure 2B) with a DG = 2260 free energy, as predicted by the

Zuker algorithm [28]. Actually we found that also AluSz

undergoes editing, with a total of 33 new editing events within

both AluJo and AluSz sequences, as analysed by PCR sequencing

reactions of human brain cDNA and gDNA (Figure 2C and data

not shown).

Although OPHN1 plays an essential role in neuronal plasticity,

it is expressed in several tissues [1]. Therefore, we searched for

OPHN1 editing events in randomly selected human tissues: spinal

cord, skin, kidney and thyroid. All the tissues analysed showed the

presence of editing events in the AluJo, even if the percentages of

RNA editing levels vary between the different tissues, with the

highest values observed in human brain and spinal cord and the

lowest observed in skin and thyroid (Figure 3 and Table 1).

However, despite differences in editing levels among these tissues

(Table 1), the general editing pattern was preserved, with some

hot-spot sites (site 1-8-9-11) always showing high editing values in

all the tissues analysed (Table 1).

Both ADAR1 and ADAR2 enzymes edit the OPHN1
transcript

In order to identify which ADAR (ADAR1 and/or ADAR2)

was responsible for the editing events found in the OPHN1

transcript, we took advantage of the astrocytoma cell lines (U118

and U87) available in our laboratory, in which we stably modulate

the expression of the ADAR enzymes. Of note, previous studies

have already reported that OPHN1 is expressed in astrocytoma/

GBM tumors [29].

Astrocytoma cell lines show RNA editing activity mediated by

ADAR1 (as observed at the hotspot ADAR1-specific editing site

within the miniB13 transgene [17]) and a low/null ADAR2

editing activity (as observed at the GluR-B Q/R ADAR2-specific

editing site within the miniB13 transgene [17]) (Figure S2 in File

S1), as previously reported [24,25,30]. In view of the above data,

we investigated the editing profile of OPHN1 in these cell lines

either stably silenced for ADAR1 (70–80% at protein level, Figure

Figure 1. Editing events in the human OPHN1 transcript. (A) Sequence of an intronic portion of OPHN1 pre-mRNA (intron 9–10), with AluJo
region in blue and adenosines undergoing editing in red capital letters. In grey, primers used for PCR amplifications (AluJo Fw and AluJo Rev, Table
S1, see File S1). (B) Chromatogram of the AluJo region isolated from human brain cDNA, showing the newly identified editing sites, named as 1 to 14
and represented as a double peak of adenosine (green) and guanosine (black). The same positions (1–14) in the corresponding human brain gDNA
sequence are only adenosine (Figure S1 in File S1).
doi:10.1371/journal.pone.0091351.g001

Post-Transcriptional Modifications of OPHN1
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S3 in File S1) or stably overexpressing ADAR2 or its inactive

version (ADAR2 E/A) [24,25]. In our cell lines, we found that

both ADAR enzymes are able to edit OPHN1. Specifically, we

found that the sites 3, 4 and 10 are preferentially edited by

ADAR2 (Table 2 upper panel, sites in bold) and the sites 7, 8 and

9 are preferentially edited by ADAR1 (Table 2 lower panel, sites in

bold). The sites 1 and 11 (represented in bold and underlined in

the Table 2) are significantly modulated by both ADAR enzymes

in U118 and U87 cell lines (Table 2).

ADAR2-mediated editing and expression of OPHN1 are
correlated in vitro

We monitored OPHN1 expression and editing in both U118 and

U87 cells upon ADARs modulation. Comparing astrocytoma cell

lines overexpressing active (ADAR2) and inactive ADAR2

(ADAR2 E/A), we observed a significant OPHN1 increase (at

both mRNA and protein levels) only when the active ADAR2 was

present (Figure 4A–B, Figure S4 in File S1 and data not shown),

along with a significant increase of editing values at the ADAR2-

specific editing sites (sites 3-4-10) (Figure 4A–B and Table 2).

Notably, no statistical differences were detected in OPHN1 levels

upon ADAR1 silencing (Figure 4C–D), despite a significant

fluctuation of editing values at the ADAR1-specific sites (sites 7-8-

9) was present (Figure 4C–D and Table 2).

OPHN1 editing and expression significantly increase
during human brain development

Due to the importance of OPHN1 for brain development and

cerebellar function, we investigated whether - and at which extent

- editing events occur also in human fetal brain and cerebellum.

To this aim, we sequenced the AluJo cDNA in fetal brain at an

early stage of development (18th gestation week, GW18, pool of 2

subjects), fetal brain at a later stage of development (20th–33rd

gestation week, GW20–33, pool of 59 subjects), adult brain (pool

of 3 subjects) and cerebellum (pool of 10 subjects). Editing analysis

showed that OPHN1 undergoes A-to-I editing events in fetal brain

Figure 2. Human OPHN1 gene and transcript organization. (A) Schematic representation of OPHN1 gene with exons represented as light grey
rectangles and introns as black lines. Blue arrows indicate AluJo and AluSz within intron 9–10. (B) The predicted dsRNA secondary structure (by Zuker
algorithm) formed by the AluJo and AluSz sequences. In detail a portion of the dsRNA structure with red rectangles indicating the edited adenosines.
(C) OPHN1 pre-mRNA sequence of the intron 9–10, showing the AluJo and AluSz regions and the 33 adenosines that undergo editing in grey boxes.
doi:10.1371/journal.pone.0091351.g002

Post-Transcriptional Modifications of OPHN1
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already at GW18 (Figure 5 and Table 3). Interestingly, at GW20–

33 the editing activity increases at all sites, with values comparable

to those observed in the adult brain (Table 3). In cerebellum we

detected editing levels similar or even higher (at sites 3-4-5-10-12)

to those found in adult brain, suggesting that the highest ADAR

activity over OPHN1 occurs in this specific brain area (Figure 5

and Table 3).

Considering the importance of ADARs and OPHN1 during

brain development [3,5,17,31] and the significant increase of

OPHN1 editing from the fetal to the adult brain (Table 3), we

extended our analysis of OPHN1 editing/expression performed in

vitro (Figure 4) to different stages of human brain development

(GW18 and GW20–33) compared to the adult brain. We

considered all the OPHN1 editing sites, excluding the ones with

editing levels lower than 10% (sites 12–14, Table 1), as it would be

unlikely to detect fluctuations at these sites. Both ADAR1 and

ADAR2 mRNA expression increased significantly from the early to

the late stage of brain development (Figure 6A). Moreover, the

brain at an early stage (GW18) showed low levels of OPHN1

expression and editing, when compared to the adult brain

(Figure 6B). Interestingly, in the late stage of brain development

(GW20–33), we found a boost of OPHN1 expression and editing,

reaching values similar to those found in adult brain (Figure 6C).

Altogether, our data indicated that ADARs activity and OPHN1

editing and expression are correlated during brain development.

We also observed that there is a correlation between ADAR2

and OPHN1 editing/expression in cerebellum compared to adult

brain. Specifically, OPHN1 and ADAR2 expression are higher in

the cerebellum when compared to the adult brain (Figure S5 in

File S1), with a significant increase of OPHN1 editing at the

ADAR2-specific sites (sites 3-4-10) (Figure S5 in File S1).

Differently, no significant differences in ADAR1 expression or

editing at the ADAR1-specific sites (sites 7-8-9) of OPHN1 were

observed (Figure S5 in File S1). These findings indicated that in

cerebellum ADAR2 may play a major role over OPHN1 editing/

expression, similarly to what was observed in vitro (Figure 4).

Novel OPHN1 splicing isoforms in brain
We investigated whether OPHN1 transcript undergoes alterna-

tive splicing events in proximity of exons 8–11 in which we

identified multiple editing sites (AluJo and AluSz). We found that,

Figure 3. Partial sequence chromatograms of the OPHN1 intron
(AluJo) isolated from different human tissues (brain, spinal
cord, skin). For each tissue both the gDNA and the corresponding
cDNA are shown. Arrows indicate selected edited positions (site 1, 2, 8,
9, 10 and 11) and the corresponding editing levels of the sequence
chromatograms are reported above each site as percentages (%).
Editing appears as a double peak of adenosine (green) and guanosine
(black) in cDNA sequences, whereas only adenosines are present in the
gDNA. A representative experiment out of three is shown. Editing levels
at all the AluJo editing sites as found in human brain, spinal cord, skin
as well as kidney and thyroid are reported in Table 1.
doi:10.1371/journal.pone.0091351.g003

Table 1. OPHN1 RNA editing levels in human tissues.

OPHN1 Brain Spinal Cord Skin Kidney Thyroid

site 1 46.76 (60.83) 52.95 (62.96) 20.32 (64.01) 33.03 (60.9) 24.25 (60.85)

site 2 17.14 (62.27) 20.39 (62.02) 6.74 (63.39) 16.16 (61.13) 8.48 (61.24)

site 3 15.91 (61.53) 17.92 (62.1) 3.30 (63.3) 6.93 (60.12) 9.17 (60.47)

site 4 22.85 (64.02) 21.02 (64.03) 5.46 (63.67) 8.22 (61.18) 0

site 5 17.79 (61.49) 19.64 (62.02) 1.69 (61.69) 8.07 (60.98) 3.26 (63.26)

site 6 26.56 (61.82) 31.52 (62.27) 1.91 (61.9) 8.16 (60.7) 13.58 (61.73)

site 7 26.91 (61.21) 29.48 (61.58) 7.54 (63.78) 8.16 (60.7) 13.58 (61.73)

site 8 51.45 (61.69) 54.19 (64.37) 23.61 (63.23) 41.62 (61.21) 38.03 (61.4)

site 9 54.35 (63.09) 68.55 (64.51) 27.17 (62.83) 40.26 (60.29) 37.42 (60.05)

site 10 35.31 (61.46) 32.78 (64.65) 7.89 (64.34) 10.12 (60.16) 15.74 (61.78)

site 11 79.80 (61.17) 80.14 (62.61) 54.92 (66.19) 56.21 (60.32) 47.76 (60.91)

site 12 7.29 (62.23) 2.06 (62.75) 2.67 (62.67) 0 1.94 (61.94)

site 13 4.08 (62.64) 10.18 (63.80) 0 0 0

site 14 1.69 (61.69) 0 0 0 0

RNA editing levels of the AluJo sequence in OPHN1 pre-mRNA (sites 1–14) in human adult brain, spinal cord, skin, kidney and thyroid tissues. All the editing percentages
are expressed as mean 6 s.e.m. (n = 3).
doi:10.1371/journal.pone.0091351.t001
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in cancer cells (astrocytomas) and brain tissues, OPHN1 is

alternatively spliced in this region (Figure 7A). The first splicing

event skips exons 9 and 10, leading to an in-frame mRNA, 231

nucleotides shorter than the full length transcript (called isoform 8–

11) (Figure 7B). This alternative transcript might be translated into a

shorter protein of 725 amino acids instead of the 802 amino acids

full length OPHN1 (Figure 7D). The second splicing event skips

exon 10 (101 nt) and leads to an mRNA with an internal frameshift

and a downstream stop codon (called isoform 9–11) (Figure 7B).

This splicing variant can generate a hypothetical mini-protein of

301 amino acids, carrying the BAR dimerization domain plus 33

amino acids at its COOH terminal that are not present in the full

length protein (Figure 7C and D). These two novel variants have not

been previously reported or annotated in public databases.

Specific semi-quantitative RT-PCRs (Table S1 in File S1) were

performed to detect these two novel OPHN1 splicing isoforms in

human brain tissues at different development stages. We observed

that the isoform 8–11 is not expressed at the early stage of brain

development (GW18), while it appears at the later stage GW20–33

and further increases in the adult brain (Figure S6 in File S1). The

isoform 9–11 was expressed at similar levels at both the early

(GW18) and later (GW 20–33) stages of brain development and

increased in the adult brain (Figure S6 in File S1).

Discussion

The OPHN1 encodes for a Rho-GTPase-activating protein that

promotes GTP hydrolysis of Rho subfamily members. OPHN1

Table 2. Editing profile of OPHN1 in astrocytoma cell lines overexpressing ADAR2 or silenced for ADAR1.

Astrocytoma cell lines overexpressing ADAR2

OPHN1 U118 E/A U118 Ad2 p values U87 E/A U87 Ad2 p values

site 1 19.96 (63.64) 35.60 (62.44) 0.0287 14.63 (63.97) 30.61 (61.41) 0.0053

site 2 2.10 (62.10) 0 0.2856 2.71 (61.66) 3.88 (62.57) 0.7120

site 3 2.87 (62.87) 21.41 (63.72) 0.0141 1.54 (61.54) 13.41 (62.03) 0.0016

site 4 3.86 (63.86) 46.69 (65.76) 0.0024 5.39 (62.28) 29.73 (64.82) 0.0019

site 5 6.30 (63.20) 18.26 (63.44) 0.0576 3.01 (61.94) 6.69 (63.07) 0.3391

site 6 7.02 (63.66) 14.75 (61.91) 0.1445 2.33 (62.33) 8.82 (62.42) 0.1006

site 7 8.50 (64.25) 17.92 (61.56) 0.0657 12.28 (61.49) 16.40 (61.22) 0.0645

site 8 21.04 (64.26) 16.13 (62.46) 0.3347 17.29 (64.34) 18.22 (63.08) 0.8653

site 9 23.96 (65.21) 17.18 (61.08) 0.1955 20.64 (64.49) 21.57 (63.06) 0.8691

site 10 8.38 (64.68) 50.75 (68.40) 0.0107 6.56 (62.15) 27.31 (66.53) 0.0166

site 11 39.38 (68.11) 69.41 (65.91) 0.0274 35.75 (66.64) 59.44 (62.92) 0.0143

site 12 0 9.42 (63.77) 0.1163 0 7.96 (63.40) 0.0776

site 13 0 0 nd 0 0 nd

site 14 0 0 nd 0 0 nd

Astrocytoma cell lines silenced for ADAR1

OPHN1 U118 scr U118 siAd1 p values U87 scr U87 siAd1 p values

site 1 24.27 (60.95) 10.18 (63.53) 0.021 23.70 (63.06) 7.72 (62.06) 0.0105

site 2 5.23 (61.96) 1.91 (61.91) 0.2705 3.69 (62.14) 0 0.2052

site 3 0 0 nd 0 3.08 (63.08) 0.2856

site 4 0 0 nd 0 1.74 (61.74) 0.2856

site 5 0 0 nd 2.61 (62.61) 0 0.4366

site 6 3.41 (63.41) 0 0.3559 5.0 (63.50) 0 0.2815

site 7 11.51(61.26) 0.97 (60.97) 0.0006 13.29 (60.39) 3.18 (61.66) 0.0010

site 8 19.87 (62.87) 9.06 (63.13) 0.0437 25.28 (60.70) 3.57 (63.57) 0.0009

site 9 23.46 (62.58) 11.37 (63.95) 0.0429 27.59 (62.41) 4.40 (64.40) 0.0042

site 10 3.68 (62.25) 0 0.15 5.0 (63.11) 6.33 (63.18) 0.7821

site 11 48.61 (63.55) 19.93 (61.42) 0.004 50.6 (61.62) 25.95 (63.34) 0.0008

site 12 0 0 nd 0 0 nd

site 13 0 0 nd 0 0 nd

site 14 0 0 nd 0 0 nd

Editing analysis of OPHN1 pre-mRNA (AluJo, sites 1–14) in U118 and U87 astrocytoma cell lines overexpressing ADAR2 or silenced for ADAR1. The sites preferentially
edited by a specific enzyme are indicated in bold and the sites edited by both ADARs are in bold and underlined. The sites 7-8-9 are mainly edited by ADAR1 (as a strong
decrease of editing values at these sites is visible after ADAR1 silencing, whilst ADAR2 overexpression does not cause modifications). The sites 3-4-10 are specifically
edited by ADAR2 (as a significant increase of editing percentages at these sites is visible in ADAR2 overexpressing cells, whilst no change appears after ADAR1
silencing). Sites 1 and 11 are significantly modulated by both the ADAR enzymes. The RNA editing levels are expressed as percentages (mean 6 s.e.m, n = 3). nd = not
determined.
doi:10.1371/journal.pone.0091351.t002
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carries at the N-terminus a Bin/Amphiphysin/Rvs (BAR)

dimerization domain, followed by the Pleckstrin homology (PH)

domain that is able to bind membrane lipids and at the C-terminus

there are the GAP (Rho-GTPase activating protein) and the

Proline Rich (PR) domains. OPHN1 regulates the activity of the

Rho proteins, key mediators of several cellular functions including

cytoskeleton remodelling, cell migration and synaptic morpho-

genesis [2,32]. Specifically, OPHN1 downregulates the RhoA/

Rho-kinase signalling pathway, repressing its inhibitory activity on

endocytosis and actin-myosin contractility; disruption of Ophn1 in

mice results in altered synaptic plasticity and morphology with

reduced synaptic vesicle recycling and AMPA receptor internal-

ization [5,6].

A-to-I RNA editing strongly affects coding and non-coding

RNAs by changing adenosine to inosine within RNA, bypassing

genomic information [10,33]. Several studies have connected

Figure 4. OPHN1 RNA editing and expression in astrocytoma cell lines. (A) OPHN1 mRNA expression (left panel) and editing levels at ADAR2-
specific sites (right panel) in U118 ADAR2 E/A (light grey) and U118 ADAR2 (dark grey) cells. The expression levels were calculated as a relative-fold
increase compared to inactive ADAR2 (E/A) arbitrarily set to 1. Each sample was normalized to b-actin mRNA levels. Mean 6 s.d. (n = 3), ** p,0.01. (B)
The same experiments showed in (A) were performed in the U87 cell line. (C) OPHN1 mRNA expression (left panel) and editing levels at the ADAR1-
specific sites (right panel) in U118 scramble (light grey) and U118 siADAR1 (dark grey) cells. The expression levels of the samples were calculated as a
relative-fold increase compared to the scramble arbitrarily set to 1. Each sample was normalized to b-actin mRNA levels. Mean 6 s.d. (n = 3). (D) The
same experiments showed in (C) were performed in the U87 cell line.
doi:10.1371/journal.pone.0091351.g004

Figure 5. Editing analysis of OPHN1 (AluJo) during human brain
development and in the cerebellum. Partial sequence chromato-
grams of the AluJo isolated from a pool of fetal brains at the 18th

gestation week (GW18), a pool of fetal brains at the 20th–33rd gestation
weeks (GW20–33), a pool of adult brains and a pool of cerebella are
shown. Selected sites and the corresponding editing values (%) of one
out of three representative experiments are shown. Editing percentages
of sites 1–14 are reported in Table 3.
doi:10.1371/journal.pone.0091351.g005

Table 3. OPHN1 RNA editing levels during human brain
development and in cerebellum.

OPHN1 GW18 GW20–33 Adult brain Cerebellum

site 1 20.84 (65.33) 44.45 (61.06) 46.76 (60.83) 50.51 (63.11)

site 2 5.25 (60.57) 11.36 (62.63) 17.14 (62.27) 12.83 (61.2)

site 3 4.7 (62.46) 11.6 (60.53) 15.91 (61.53) 21.07 (60.82)

site 4 9.4 (60.91) 13.73 (60.26) 22.85 (64.02) 42.95 (66.43)

site 5 3.17 (61.99) 19.19 (61.32) 17.79 (61.49) 25.30 (62.28)

site 6 6.95 (63.49) 26.49 (60.63) 26.56 (61.82) 27.23 (63.64)

site 7 5.94 (63.02) 26.23 (60.43) 26.91 (61.21) 24.38 (61.54)

site 8 30.92 (67.35) 46.32 (60.55) 51.45 (61.69) 48.68 (63.58)

site 9 39.37 (66.55) 54.86 (61.78) 54.35 (63.09) 49.27 (62.65)

site 10 9.04 (65.17) 30.59 (60.29) 35.31 (61.46) 50.30 (66.67)

site 11 61.76 (62.76) 81.43 (60.55) 79.80 (61.17) 84.46 (62.1)

site 12 2.19 (62.19) 4.05 (62.03) 7.29 (62.23) 17.33 (61.76)

site 13 8.02 (60.59) 9.15 (61.63) 4.08 (62.64) 6.67 (66.7)

site 14 2.63 (62.63) 8.29 (60.69) 1.69 (61.69) 6.77 (66.7)

RNA editing levels (%) of OPHN1 pre-mRNA (AluJo, sites 1–14) in human fetal
brain 18th gestation week (GW18), fetal brain 20th–33rd gestation weeks (GW20–
33), adult brain and cerebellum are expressed as mean 6 s.e.m (n = 3).
doi:10.1371/journal.pone.0091351.t003
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RNA editing to brain function [17,34–36]; indeed A-to-I RNA

editing takes place mostly in the brain compared to other tissues

[37,38], where it modulates the function of several glial/neuronal

proteins [34,39]. Thanks to the recent advances in next generation

sequencing methodologies, it has been observed that a huge

number of RNAs undergo editing especially in Alu elements often

localized within introns and UTRs of transcripts [11,12,40].

Herein, we showed that OPHN1 pre-mRNA, an important

transcript for brain function and development, undergoes A-to-I

RNA editing within two inverted Alu repeats (AluJo and AluSz),

located in intron 9–10. We demonstrated that this transcript

undergoes editing in several human tissues, with brain and spinal

cord displaying the highest editing percentages (Table 1). Inter-

estingly, cerebellum alone shows editing values resembling the

ones observed in the adult brain (Table 3), suggesting that ADAR

enzymes are particularly active over this transcript in the

cerebellum. Interestingly, OPHN1 is highly expressed in cerebel-

lum compared to the brain (Figure S5 in File S1) and mutations in

this gene are associated with cerebellar hypoplasia [41,42].

It has been suggested that a possible consequence of multiple

RNA editing in long dsRNA structures, as the one found within

OPHN1, is their destabilization [43]. Indeed, ADAR-mediated

editing of an adenosine in an A-U base pair produces a less stable

I-U pair, whereas deamination of A:C mismatches leads to more

stable I-C pairs. Looking at the best complementary alignment

within the OPHN1 transcript (AluJo-AluSz dsRNA structure) using

the Zuker algorithm [28], we found that 70% of the 33 newly

detected editing sites were in an A-U pair context (with editing

unwinding the dsRNA structure) and that only 15% of the editing

events occur in A-C mismatches and 3% in A-G mismatches, with

the remaining adenosines located within loops in the dsRNA

structure. This indicates that the Adenosines preferentially edited

are not randomly distributed along the predicted OPHN1 dsRNA,

but are restricted to positions that alter the dsRNA shape, as

previously observed [12]. Changes in dsRNA structures by RNA

editing may alter the binding of proteins (ssRNA/dsRNA-binding

proteins) involved in the splicing/maturation/localization/amount

of transcripts with embedded Alu sequences [44–47].

Both ADAR1 and ADAR2 are able to edit OPHN1 transcript

(Table 2). Moreover, we reported that editing and expression of

OPHN1 increase when ADAR2 is expressed in astrocytoma cell

lines (U118 and U87) (Figure 4). On the contrary, modulation of

Figure 6. OPHN1 RNA editing and expression during human brain development. (A) ADAR2 (left panel) and ADAR1 (right panel) expression
analysis in the early (GW18, in red) and late (GW20–33, in light grey) stages of brain development and in adult brain (in dark grey). (B) OPHN1
expression (left panel) and editing profile (right panel) in human GW18 fetal brain (in red) compared to adult brain (in dark grey). Editing percentages
are expressed as mean 6 s.e.m. (n = 3), p,0.01 at all the editing sites, with the exception of the site 4 in which p,0.05 (n = 3). (C) OPHN1 expression
(left panel) and editing profile (right panel) in human GW20–33 fetal brain (in light grey) compared to adult brain (in dark grey). Mean 6 s.e.m. (n = 3).
The mRNA levels of the samples in A, B, C were calculated as a relative-fold increase compared to the adult brain arbitrarily set to 1. Each sample was
normalized to b-actin mRNA levels. Mean 6 s.d. (n = 3), ** p,0.01. Red dots represent editing percentages of the GW18, light grey dots represent
editing percentages of the GW20–33 and dark grey dots represent editing percentages of adult brain.
doi:10.1371/journal.pone.0091351.g006
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ADAR1 in the same cells did not affect OPHN1 mRNA level,

despite the significant fluctuation of editing at the ADAR1-specific

sites (Figure 4). Additionally, we observed that editing of OPHN1

progressively increases during brain development concomitantly

with its expression (Figure 6).

A link between editing and RNA expression has been suggested

by several studies [17,48–50]. However, for only a few of these

editing substrates the molecular mechanism involved has been

described [51]. Moreover, only recently, it has been shown that

the majority of editing events lies within Alu sequences, like the

ones reported herein, and it has been suggested that this type of

editing is important for gene expression, despite the mechanisms

are still not clear [11,24,44,45,47,52]. We previously reported that

ADAR2-mediated editing increases the CDC14B mRNA/protein

levels both in vitro and in vivo [24]. Herein we show that another

transcript (OPHN1), known to be involved in human disease,

undergoes RNA editing within Alu elements that seems to be

linked to its expression in human tissues and cell lines. How

ADARs enhance CDC14B and OPHN1 expression is not clear at

present and further studies are necessary to address these

questions. Of note, A-to-I RNA editing has the potential to alter

pre-mRNA specific sequences that are important for RNA splicing

and, therefore, for the final amount of the mature RNA

[11,51,53]. Differences between ADAR1 and ADAR2-mediated

effects on OPHN1 expression could be due to differences among

ADAR-specific editing sites that may affect in a different way

OPHN1 maturation.

OPHN1 and ADAR2 are important proteins during brain

development [3,5,17,31,54]. We observed a progressive enrich-

ment of ADAR2 expression and OPHN1 expression/editing from

the early stage (GW18) to the later stage (GW20–33) of brain

development with values similar (OPHN1 editing/expression,

Figure 7. Novel OPHN1 splicing isoforms. (A) Schematic representation of the OPHN1 pre-mRNA region (exons 8–11) undergoing alternative
splicing events. (B) Partial sequence chromatograms of cDNAs (left side) with the corresponding schematic representations (right side) of the full
length OPHN1 (upper sequence) and of the two novel OPHN1 alternative isoforms (middle and bottom sequences). (C) The putative protein
sequence, derived from the skipping of exon 10 (isoform 9–11) carrying a novel COOH portion, is shown. (D) Protein domains of OPHN1 isoforms. The
isoform 8–11 carries the BAR and the PH domains at a closer proximity compared to the full length, with possible consequences on protein
conformation/activity. The isoform 9–11 carries only the BAR domain. As both the Rho-GTPase activity domain and the PR domains are lost in this
isoform, the downstream signalling and the interaction with the actin cytoskeleton could be affected. This isoform displays a new COOH terminal
portion of 33 amino acid (shown in blue in the cartoon), with still unknown functions and displaying no homology with known proteins (data not
shown). BAR = Bin/Amphiphysin/Rvs, PH = Pleckstrin Homology, GAP = Rho-GTPase Activating Protein, PR = Proline Rich.
doi:10.1371/journal.pone.0091351.g007
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Figure 6C) or even higher (ADAR2 mRNA expression, Figure 6A)

to those found in adult brain. Intriguingly, OPHN1 controls

synapse maturation and plasticity by stabilizing AMPA channel

receptors [31], whose Ca2+ permeability depends on ADAR2

editing activity [17,55].

In addition to editing, we also identified two novel splicing

events that skip either exon 10 (isoform 9–11) or exons 9 and 10

(isoform 8–11). The isoform 8–11 may be translated into a shorter

OPHN1 protein isoform with the BAR and the PH domains in a

closer proximity compared to the full length protein (Figure 7D).

The 9–11 isoform may be translated into a truncated protein

carrying only the BAR dimerization domain that could act as a

dominant negative protein and compete with the full length

OPHN1 [56] (Figure 7D). Indeed, recent studies showed that the

N-terminal region of OPHN1 seems to affect its GAP function,

suggesting that this part of the protein itself could act as a regulator

of GAP activity, either by an autoinhibitory mechanism or by

binding of a second inhibitory protein [57]. Notably, we found

that these alternative splicing isoforms are differently expressed

during brain development. In particular, the 8–11 isoform is

absent at the early stage of brain development (GW18), it appears

at stage GW20–33 and boosts in adult brain; while the 9–11

isoform expression is already detectable at GW18 and strongly

increases in adult brain (Figure S6 in File S1). Of note, a few

OPHN1 mutations causing disease map in the BAR domain,

which is common to all the splicing variants we identified [58–60].

Additional mutations were found also in the PH or GAP domains,

which are common to both the full length and the 8–11 OPHN1

variant [41]. Further molecular and biochemical studies will be

necessary to disclose how and to which extent RNA editing and

the novel alternative splicing isoforms we identified affect OPHN1

protein expression and activity.

In summary, we report that during human brain development

OPHN1 transcript undergoes profound posttranscriptional modi-

fications in brain already at stage GW18, as we observed the

presence of OPHN1 editing (Figure 6B) and the appearance of a

new alternative splicing isoform (isoform 9–11). With the

progression of brain development (GW20–33), OPHN1 editing

and expression strongly increase reaching values similar to the

ones observed in adult brain (Figure 6C). Concomitantly an

additional alternative splicing isoform (isoform 8–11) starts to be

expressed (Figure S6 in File S1). Notably, synaptogenesis starts at

GW20 and neuronal migration is largely completed by GW33

[61,62].

A recent study in Drosophila shows that FMRP (fragile X mental

retardation protein 1), responsible for the most common heritable

form of intellectual disability, is able to modulate dADAR activity

by a direct protein-protein interaction [63], with Fmr1 mutant flies

showing both altered synaptic development and aberrant A-to-I

RNA editing [63]. Dysregulation of RNA editing has recently

been found in the Prader-Willi syndrome, a neurodevelopmental

disorder [35,64]. Altered RNA editing levels of both the glutamate

receptor GRIK2 and the tryptophan hydroxylase TPH2 were also

found in the brain of patients with psychiatric disorders [65,66]

and intellectual disability has been reported in patients with

ADAR1 mutations [67]. Considering the above, it is intriguing to

speculate that altered OPHN1 editing/splicing could also play an

important role in the pathogenesis of intellectual disability.

Supporting Information

File S1 Includes Figure S1–S6 and Table S1. Figure S1.
Partial sequence chromatogram of the AluJo region

(intron 9–10) isolated from the gDNA of a human brain
tissue. The editing sites (1–14) identified in the corresponding

cDNA isolated from the same individual (Figure 1) appear as

adenosines. Figure S2. ADAR-mediated RNA editing events
within miniB13 transgene. U118 and U87 astrocytoma cell

lines were transiently transfected with miniB13 transgene and

editing activity was tested at the GluR-B Q/R site and at the

hotspot (+1) site of the miniB13, 48 h post transfection. Percentage

(%) of editing is shown. The Q/R site is edited by ADAR2, whilst

the hotspot is edited by ADAR1. Figure S3. ADAR1
expression in U118 and U87 cell lines stably silenced
for ADAR1. (A) ADAR1 mRNA expression levels of the samples

were calculated as a relative-fold increase compared to the

untreated cells arbitrarily set to 1. Each sample was normalized to

b-actin. Mean 6 s.d. (n = 3), **p,0.01 (siAd1 versus untreated and

scramble). (B) ADAR1 protein levels by immunoblotting of total

protein extract from U118/U87 untreated, scramble (scr) and

siAdar1 (siAd1) cell lines. No modification of ADAR2 protein level

was observed upon ADAR1 silencing in the same cell lines (data

not shown)’’. Figure S4. ADAR2 overexpression increases
OPHN1 protein levels. (A) OPHN1 immunoblotting of total

protein extract from untreated, ADAR2 and ADAR2 E/A U118

cell lines. A representative experiment out of two is shown. (B)

Quantitative densitometric analysis of protein levels. Each sample

was normalized to GAPDH and compared to the untreated cells

arbitrarily set to 1. Mean 6 s.e.m. (n = 2), *p,0.05, ** p,0.01.

Figure S5. RNA editing and expression of OPHN1 in
cerebellum and adult brain. (A) OPHN1 expression in adult

brain (dark gray) and cerebellum (black). The mRNA levels of the

samples were calculated as a relative-fold increase compared to the

adult brain and arbitrarily set to 1. Each sample was normalized to

b-actin mRNA. Mean 6 s.d. (n = 3), **p,0.01. (B) ADAR2 (left

panel) and ADAR1 (right panel) expression analysis in adult brain

(dark gray) and cerebellum (black). The mRNA levels of the

samples were calculated as a relative-fold increase compared to the

adult brain and arbitrarily set to 1. Each sample was normalized to

b-actin mRNA. Mean 6 s.d. (n = 3), **p,0.01. (C) OPHN1

ADAR2-editing sites (left panel) and ADAR1-editing sites (right

panel) (see Table 3). Mean 6 s.e.m. (n = 3), **p,0.01, *p,0.05.

Figure S6. Semi-quantitative RT-PCR analysis of OPHN1
alternative isoforms. (A) PCR reaction of the new alternative

splicing isoforms 8–11 and 9–11 during brain development stages

(GW18, GW 20–33 and adult), with GAPDH used for normali-

zation. (B) Quantitative densitometric analysis of OPHN1 alterna-

tive isoforms 8–11 and 9–11: RNA levels were calculated as a

relative-fold increase compared to the adult brain arbitrarily set to

1. Table S1. Primers used for sequencing analysis of OPHN1.

(PDF)

Methods S1 Includes Supporting Information Methods.

(PDF)
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