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Abstract: Recent studies have suggested that contrast medium (CM) volume is associated with acute
kidney injury (AKI) after transcatheter aortic valve replacement (TAVR). However, in a high-risk
elderly TAVR population, the prognostic value and ideal threshold of CM dosage for AKI is unclear.
Data of 532 successive TAVR patients (age 81.1 ± 6.8 years, EuroSCORE II 4.8% ± 6.0%) were therefore
retrospectively analyzed. Based on a recently published formula, the renal function (preprocedural
serum creatinine: SCr) corrected ratio of CM and body weight (CM*SCr/BW) was calculated to
determine the risk of postprocedural contrast-associated AKI. AKI occurred in 94 patients (18.3%) and
significantly increased 1-year all-cause mortality (23.4% vs. 13.1%; p = 0.001). A significant correlation
between AKI and 30-day as well as 1-year all-cause mortality was observed (p = 0.001; p = 0.007).
However, no association between CM dosage or the CM*SCr/BW ratio with the occurrence of AKI
was seen (p = 0.968; p = 0.442). In our all-comers, all-access cohort, we found no relationship between
CM dosage, or the established risk ratio model and the occurrence of postprocedural AKI. Further
research needs to be directed towards different pathophysiological causes and preventive measures
as AKI impairs short- and long-term survival.
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1. Introduction

Acute kidney injury (AKI) is common in patients undergoing transcatheter aortic valve replacement
(TAVR) and can lead to a substantial increase in mortality and hospitalization length [1–4].

The relationship between contrast medium (CM) application and renal impairment has been
studied in percutaneous coronary intervention (PCI) [5–7], and set the groundwork for investigating
AKI after TAVR by providing several models to draw from [6,8]. However, the prognostic value and
threshold dosage of CM for AKI in TAVR remains uncertain. Conflicting results were published so far
regarding the association of CM dosage and AKI in TAVR patients [1,8–16].
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The possibility of CM dosage having a negligible effect on AKI development has precedent
in related fields. No significant difference in AKI incidence between those who received CM and
those who did not was found in patients with an estimated glomerular filtration rate (eGFR) greater
than 30 mL/min/1.73 m2, undergoing computed tomography scanning [17–19]. Previous studies
had already indicated these findings, with research groups suggesting that other factors including
the underlying disease as the cause for AKI and nephropathy among patients receiving CM [20,21].
The latest consensus statement by the American College of Radiology also noted that risk of developing
AKI after administering intravenous CM in renally impaired patients was overstated [22]. Given the
different weighting that the risk of CM appears to have on AKI development depending on the
procedure and route of administration, it is important to evaluate whether current practices regarding
CM administration in TAVR are reasonable.

Despite efforts to reduce CM dosages in pre-TAVR computed tomography (CT) protocols [23],
operators may ultimately still be faced with the decision whether to limit the administered CM
volume (to prevent renal complications) at the expense of reduced imaging quality both pre- and
periprocedurally. Determining whether CM dosage translates to meaningful changes in TAVR outcomes
would help the clinical team prioritize the most important factors predisposing patients to AKI.

Our study therefore examined the relationship between CM volume and postprocedural AKI in
the VIenna CardioThOracic Aortic Valve RegistrY (VICTORY) in order to determine cut-off values for
CM dosages whilst simultaneously quantifying the effects of AKI on short- and long-term mortality.

2. Materials and Methods

A total of 532 patients from the VICTORY-Registry on whom a transapical (n = 266) or transfemoral
TAVR (n = 266) was performed between June 2009 and December 2016 at the Heart Center Hietzing
in Vienna (Austria) were investigated. TAVR procedures were performed when indicated by the
institutional heart team in patients at high surgical risk. The parameters that defined the aforementioned
risk were: a logistic European System for Cardiac Operative Risk Evaluation (Logistic EuroSCORE)
>10% or, a Society of Thoracic Surgeons Predictive Risk of Mortality (STS) score or EuroSCORE II >4%.

A total of 514 patients were examined in the study as 18 patients had to be excluded due to their
AKI incidence being invalid or immeasurable. The excluded population included 13 patients who
died within 72 h of the TAVR, four who received regular hemodialysis prior to the procedure, and one
patient that had been fast-tracked for discharge without post-interventional blood samples.

Following approval of the study protocol by the Ethics Committee of the City of Vienna
(EK18-027-VK), a retrospective analysis of the patients’ information was carried out. Informed consent
was waived due to the retrospective nature of the study.

TAVR procedures have already been described in detail [24]. The CM chosen during the TAVR
procedure were: Iopamidol (300 mg of iodine/mL; 616 mOsmol/kg of water (Jopamiro, Bracco, Vienna,
Austria))—a nonionic, low-osmolar monomer CM, and Iodixanol for patients with iodine intolerance
or allergy (150 mg of iodine/mL; 290 mOsm/kg of water (Visipaque, GE Healthcare, Wädenswil,
Switzerland))—a nonionic, iso-osmolar dimer [25,26].

Patients were diagnosed with a compromised renal function when their estimated glomerular
filtration rate (eGFR) was <60 mL/min/1.73 m2, with eGFR being calculated using the Modification
of Diet in Renal Disease (MDRD) equation [27]. Independent of left ventricular function, additional
intravenous fluid therapy was administered in such patients in the form of 1000 mL of Ringer’s lactate
solution over 3 h leading up to the procedure.

Blood samples were taken 24 h before the operation and then daily for 72 h following the operation.
Procedural complications and AKI incidence were assessed in line with Valve Academic Research
Consortium-2 criteria (VARC-2). AKI incidence was guided by the criteria’s cut-offs for changes in
creatinine [28].
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2.1. CM Volume Models

The risk of a post-procedural AKI based on CM dosage was calculated using our institutional and
various previously published risk ratio models:

Heart Team Vienna: CM × SCr/BMI
Cigarroa et al.: (CM × Body Weight in kg)/SCr in mg per dL [6,29]
Mehran et al.: See Figure 1 [7]
Yamamoto et al.: CM × SCr/BW [8]
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Figure 1. Risk Stratification Score Model designed by Mehran et al. to predict contrast induced
nephropathy (CIN) following percutaneous coronary intervention (PCI) [7].

2.2. Statistical Analysis

Based on the distribution of continuous variables, their data were either expressed as a median
and interquartile range (IQR) or a mean and standard deviation (+/−SD) and they were compared
using the Student’s t-test or the Mann–Whitney-U-test, respectively. Categorical data were expressed
as absolute numbers and percentage, and compared with a Chi2-test or the Fisher’s exact test.

The study population was separated into two cohorts according to AKI occurrence. A univariate
analysis was run with all patient variables measured and those whose odds ratio also yielded
a p-value < 0.05 were included into a multivariate analysis. Survival rates for each cohort were
calculated using Kaplan–Meier survival estimates and differences were compared using the log-rank
test. CM dosage was compared between different AKI-stages (as defined by VARC-2) using the
Kruskal–Wallis test (H-Test).

To examine the association between AKI and overall 1-year mortality, a Cox proportional hazards
model was used to estimate hazard ratios and 95% confidence intervals (CI). Person-time was calculated
from the date of the implantation to either death or the last available follow-up. The hazard ratio
was stratified by the occurrence of postprocedural AKI and adjusted for baseline and procedural
characteristics, including age, sex, body-mass index, dyslipidemia, hypertension, insulin-dependent
diabetes, preprocedural renal impairment and serum creatinine levels, the EuroSCORE II, STS-score,
and the left ventricular ejection fraction in a stepwise fashion.

Statistical analysis was completed using SPSS version 24.0 (IBM Corp, Armonk, NY, USA), and the
reported p-values are 2-sided with an alpha level set at <0.05 for statistical significance.
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3. Results

3.1. Baseline Characteristics

Of the 514 patients analyzed, 94 patients developed an AKI following the procedure of which
72 were stage one and 22 were stage three. The clinical characteristics of both the AKI and non-AKI
cohort are presented in Table 1. Relative to the control group, the AKI cohort had a higher proportion
of individuals suffering from dyslipidemia (67% vs. 56.9%; p = 0.026) and diabetes mellitus (24.5%
vs. 14%; p = 0.012). Additionally, both the logistic EuroSCORE and the CHADS-VASC Score of AKI
patients was significantly higher compared to their unaffected counterparts (21.6 ± 28.9 vs. 17.4 ± 19.6;
p = 0.032 and 5.8 ± 1.4 vs. 5.2 ± 1.4; p = 0.014).

Table 1. Baseline clinical characteristics of AKI and non-AKI patients.

Overall
n = 514

AKI
n = 94

Non-AKI
n = 420 p Value

Demographics

Age, mean (±SD) 81.3 (7.0) 82.9 (5.5) 81.0 (7.0) 0.385
Female, n (%) 323 (62.8) 61 (64.9) 262 (62.4) 0.370

Body mass index kg/m2, median (IQR) 25.9 (6.7) 26.7 (7.4) 24.7 (5.1) 0.369

Risk Profile

EuroSCORE II, median (IQR) 4.8 (6.0) 6.6 (10.4) 5.4 (6.2) 0.103
Logistic EuroSCORE, median (IQR) 17.8 (20.4) 21.6 (28.9) 17.4 (19.6) 0.032

STS score, median (IQR) 4.5 (3.3) 5.8 (4.7) 4.6 (3.2) 0.288
Incremental risk score, median (IQR) 3 (8) 3 (9) 5 (11.5) 0.889

HAS-BLED score, median (IQR) 1 (1) 1 (1) 1 (1) 0.085
CHADS-VASC Score, mean (±SD) 5.3 (1.4) 5.8 (1.4) 5.2 (1.4) 0.014

Chronic health Conditions and Risk Factors

Hypertension, n (%) 443 (86.2) 83 (88.3) 360 (85.7) 0.160
Dyslipidaemia, n (%) 302 (58.8) 63 (67) 239 (56.9) 0.026

Diabetes mellitus (IDDM), n (%) 82 (16.0) 23 (24.5) 59 (14) 0.012
COPD, n (%) 108 (21.0) 15 (16.0) 93 (22.1) 0.209

Peripheral vascular disease, n (%) 100 (19.5) 19 (20.2) 81 (19.3) 0.433
Cerebrovascular accident, n (%) 63 (12.3) 12 (12.8) 51 (12.1) 0.478

NYHA class III/IV, n (%) 442 (86.0) 79 (84.0) 363 (86.4) 0.908
Renal impairment eGFR < 60 mL/min/1.73 m2, n (%) 87 (16.9) 16 (17.0) 71 (16.9) 0.891

eGFR mL/min/1.73 m2, mean (±SD) 54.2 (25.6) 58.4 (25.6) 58.4 (26.7) 0.478
Creatinine mg/dL, median (IQR) 1.1 (0.6) 1.0 (0.4) 1.1 (0.6) 0.143

Creatinine clearance mL/min, mean (±SD) 48.7 (19.9) 52 (18.3) 51.5 (22.2) 0.841
Hematocrit %, median (IQR) 36.0 (6.7) 35.2 (6.0) 36.2 (6.9) 0.298

Dialysis, n (%) 1 (0.2) 0 (0) 1 (0.2) 0.820
Permanent pacemaker, n (%) 83 (16.1) 18 (19.1) 65 (15.5) 0.233

Prior myocardial infarction, n (%) 73 (14.2) 13 (13.8) 60 (14.3) 0.558
Prior PCI, n (%) 139 (27.0) 28 (29.8) 111 (26.4) 0.256

Previous CABG, n (%) 78 (15.2) 14 (14.9) 64 (15.2) 0.569
Previous valve surgery, n (%) 44 (8.6) 5 (5.3) 39 (9.3) 0.161

Preoperative Echocardiographic Data

LVEF %, median (IQR) 55 (15) 55 (12.5) 55 (20) 0.565
Aortic valve area, mean (±SD) 0.7 (0.3) 0.8 (0.6) 0.7 (0.2) 0.368

Mean pressure gradient, mean (±SD) 46.7 (16.2) 49.8 (18.4) 46.3 (15.8) 0.154
Peak velocity m/sec, median (IQR) 4.2 (0.8) 4.2 (0.95) 4.19 (0.86) 0.875

sPAP, mean (±SD) 41.1 (20.7) 39 (23.1) 42.1 (20.1) 0.361

AKI—acute kidney injury; CABG—coronary artery bypass graft; CHA2DS2-VASc—congestive heart failure,
hypertension, age >75 years, diabetes mellitus, stroke, or embolic event, vascular disease, age 65 to 74 years, sex;
COPD—chronic obstructive pulmonary disease; eGFR—estimated glomerular filtration rate; EuroSCORE—European
System for Cardiac Operative Risk Evaluation; IDDM—insulin dependent diabetes mellitus; IQR—interquartile
range; HAS-BLED—hypertension, abnormal renal or liver function, elderly, stroke, prior major bleeding or
predisposition, labile INR, drugs; Max.—maximum; LVEF—left ventricular ejection fraction; NYHA—New York
Heart Association; PCI—percutaneous coronary intervention; SCr—serum creatinine; SD—standard deviation;
sPAP—systolic pulmonary artery pressure; STS—Society of Thoracic Surgeons Predictive Risk of Mortality;
TAVR—transcatheter aortic valve replacement.
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3.2. Procedural Characteristics

An overview of the procedural characteristics of patients is provided in Table 2. With respect to
the secondary endpoints, the CM dose (AKI: 171 ± 136.3 vs. Non-AKI: 157 ± 127 mL; p = 0.968) was
neither significantly different in all AKI patients nor between stage one and stage three AKI patients
(p = 0.400; Figure 2). None of the models were found to be significantly different between the AKI
and non-AKI patients, and the proportion of individuals exceeding the suggested cutoff level of 5
for the CM × SCr/BW ratio was in fact higher in the non-AKI cohort (AKI: 6.4% vs. Non-AKI: 13.6%;
p = 0.030). Transfemoral-TAVR patients specifically had a higher incidence of AKI and received a larger
CM dosage, but there was still no association between CM volume and AKI when transfemoral-TAVR
and transapical-TAVR patients were analyzed separately.

Table 2. AKI risk models and procedural clinical characteristics of AKI and non-AKI patients.

Overall
n = 514

AKI
n = 94

Non-AKI
n = 420 p Value

Contrast Medium Dose and AKI Risk Ratio Models

CM dose ml, median (IQR) 174.5 (131.3) 171 (136.3) 157 (127) 0.968
CM × SCr, median (IQR) 197.2 (163.2) 198.7 (155.3) 186.3 (166.5) 0.271

CM × SCr/BW ratio, median (IQR) 2.3 (2.7) 2.6 (2.7) 2.7 (2.3) 0.543
CM × SCr/BW ratio > 5, n (%) 63 (12.3) 6 (6.4) 57 (13.6) 0.030

CM × SCr/BMI ratio, median (IQR) 6.2 (7.8) 6.9 (6.8) 7.3 (6.8) 0.422
Risk Stratification Score Model, median (IQR) 12 (7) 12 (8) 12 (8) 0.918

Risk Stratification Score Model > 10, n (%) 337 (65.6) 63 (67) 274 (65.2) 0.370

Procedural Variables

Transapical access, n (%) 256 (49.8) 42 (44.7) 214 (51) 0.174
Balloon expanding valve, n (%) 255 (49.6) 38 (40.4) 217 (51.7) 0.035
Predillatation necessary, n (%) 325 (63.2) 68 (72.3) 257 (61.2) 0.042
Postdillatation necessary, n (%) 59 (11.5) 8 (8.5) 51 (12.1) 0.188

Max. creatinine within 72 h mg/dL, median (IQR) 1.1 (0.6) 2.5 (4.8) 0.97 (0.3) <0.001
Total hours in ICU, median (IQR) 21 (45) 55.5 (141.5) 21 (24) <0.001

Total hours ventilated, median (IQR) 4 (7) 6 (17) 6 (4) 0.112
RBC units used, mean (±SD) 1.2 (2.7) 2.3 (4.3) 0.9 (2.4) 0.004
Any paravalvular leak, n (%) 229 (44.6) 38 (40.4) 191 (45.5) 0.149

Mean gradient post-implant, median (IQR) 9 (7) 4.5 (9.8) 6 (11) 0.244
Max. gradient post-implant, median (IQR) 17 (15) 8 (16) 16 (18.5) 0.956

Max. flow post-implant, mean (±SD) 2.1 (1) 2 (0) 2.1 (1) 0.347

BMI—body mass index; BW—body weight; CM—contrast medium; ICU—intensive care unit; RBU—red blood cell;
other abbreviations as in Table 1.
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AKI patients did spend more time in the intensive care unit (55.5 ± 141.5 vs. 21 ± 24 h; p < 0.001)
and had a higher maximum creatinine level within the first 72 h following the procedure (2.5 ± 4.8 vs.
0.97 ± 0.3 mg/dL; p < 0.001). Furthermore, the number of packed red blood cell units (RBU) was higher
in the AKI cohort (2.3 ± 4.3 vs. 0.9 ± 2.4 units; p = 0.004). AKI patients were also less likely to receive
balloon-expanding valves (40.4% vs. 51.7%; p = 0.035) and accordingly required predilatation more
often (72.3% vs. 61.2%; p = 0.042).

3.3. Adverse Events and Survival

Details regarding the post-interventional outcomes of the two cohorts following TAVR can be seen
in Table 3. Major bleeding complication rates were almost double amongst AKI patients (13.8% vs. 7.4%;
p = 0.027) in line with the higher rate of RBUs used in this cohort. 30-day mortality was significantly
higher among AKI patients (8.5% vs. 1.4%; p = 0.001), and the number of people reaching the 30-day
combined safety endpoint was correspondingly lower (56.4% vs. 88.3%; p < 0.001). Procedural
success was significantly lower among AKI patients (77.7% vs. 90.7%; p = 0.006) and the need for
reoperation was higher for both cardiac (13.8% vs. 7.6%; p = 0.035) and non-cardiac problems (13.8%
vs. 6.4%; p = 0.013). After adjusting the Cox proportionate hazards model for covariates, a significant
difference in 1-year survival between patients with and without postprocedural AKI was observed.
While preprocedural serum creatinine levels were the only predictive factor in this model, the CM
dosage had no influence on survival in this model (Figure 3).

Table 3. Adverse events of AKI and non-AKI patients.

Overall
n = 514

AKI
n = 94

Non-AKI
n = 420 p Value

Myocardial infarction, n (%) 2(0.4) 1 (1.1) 1 (0.2) 0.321
Neurological adverse event, n (%) 12 (2.3) 2 (2.1) 10 (2.4) 0.619
Major vascular complication, n (%) 9 (1.8) 2 (2.1) 7 (1.7) 0.722
Major bleeding complication, n (%) 44 (8.6) 13 (13.8) 31 (7.4) 0.027

New AV-block, n (%) 59 (11.5) 6 (6.4) 53 (12.6) 0.121
New bundle branch block, n (%) 78 (15.2) 16 (17.0) 62 (14.8) 0.372

New atrial fibrillation, n (%) 53 (10.3) 8 (8.5) 45 (10.7) 0.388
New pacemaker implanted, n (%) 70 (13.6) 16 (17.0) 54 (12.9) 0.129

Reoperation for valvular dysfunction, n (%) 4 (0.8) 1 (1.1) 3 (0.7) 0.540
Reoperation for bleeding/tamponade, n (%) 14 (2.7) 4 (4.3) 10 (2.4) 0.181

Reoperation for other cardiac problems, n (%) 45 (8.8) 13 (13.8) 32 (7.6) 0.035
Reoperation for non-cardiac problems, n (%) 40 (7.8) 13 (13.8) 27 (6.4) 0.013

Conversion to open surgery, n (%) 4 (0.8) 1 (1.1) 3 (0.7) 0.535
Unplanned valve-in-valve implantation, n (%) 8 (1.6) 2 (2.1) 6 (1.4) 0.418

Length of stay after TAVR in days, median (IQR) 10 (8) 15.5 (14.5) 12 (8) 0.150
Procedural success, n (%) 454 (88.3) 73 (77.7) 381 (90.7) 0.006

30-day combined safety endpoint, n (%) 424 (82.5) 53 (56.4) 371 (88.3) <0.001
30-day all-cause mortality, n (%) 14 (2.7) 8 (8.5) 6 (1.4) 0.001
1-year all-cause mortality, n (%) 77 (15.0) 22 (23.4) 55 (13.1) 0.007

AV—atrioventricular; other abbreviations as in Tables 1 and 2.

3.4. Factors Associated with and Predictive of AKI

A logistic regression analysis was performed (Table 4). Following the univariate analysis,
peripheral vascular disease, coronary vascular disease, prior PCI, left ventricular ejection fraction
(LVEF), and systolic pulmonary artery pressure (sPAP) were found to be associated with AKI. Amongst
the models that were assessed, only CM × SCr demonstrated a significant association with AKI.
Upon conducting a multivariate analysis with all the aforementioned variables and each model,
no independent predictive factor for AKI after TAVR was found.
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OR 95% CI p Value OR 95% CI p Value

Peripheral Vascular Disease 0.04 0.004–0.437 0.008 0.01 −0.096–0.099 0.995
Coronary Vascular Disease 5.51 1.020–29.753 0.047 0.64 −0.033–0.161 0.172

Prior PCI 0.12 0.019–0.734 0.022 −0.79 −0.169–0.011 0.100
LVEF % 1.09 1.010–1.184 0.027 0.00 −0.003–0.004 0.983

sPAP 0.97 0.934–0.996 0.030 0.00 −0.002–0.002 0.643
CM x SCr 0.97 0.953–0.991 0.004 0.00 0.000–0.001 0.134

CM × SCr/BW ratio 0.77 0.349–1.707 0.523
CM × SCr/BMI ratio 1.50 0.922–2.454 0.102

Risk Stratification Score Model 1.10 0.990–1.216 0.077
CM × SCr/BW ratio > 5 0.78 0.200–3.059 0.724

Risk Stratification Score Model > 10 1.03 0.438–2.436 0.940

CI—confidence interval; OR—odds ratio; other abbreviations as in Tables 1–3.

4. Discussion

Our study shows that CM dosage is not a predictor of AKI even when analyzed using multiple
different models. However, post-procedural AKI does affects both short- and longer-term mortality.

The link between CM dosage and renal dysfunction is documented in PCIs, but only a limited
number of groups have been able to replicate this relationship for the TAVR procedure [5,7,8,14].
Yamamoto et al. recently trialed a model involving body weight, serum creatinine and CM volume,
and found that a ratio over 2.7 was predictive of an AKI [8]. The present study showed no association
between CM volume and AKI incidence though, a result that has been reported by other groups as
well and reflects the conclusion of a meta-analysis which found no link between high CM volume and
AKI after TAVR either [1,9–13,15,16,30].

The notion that the relationship between these two variables may be threshold dependent rather
than continuous, was explored through our analysis of the data using several established risk ratio
models. However, patients exceeding the threshold of five proposed by the Cigarroa risk ratio model
for contrast-induced renal dysfunction were in fact more common amongst the non-AKI cohort [29].
Similarly, upon applying the risk stratification score proposed by Mehran et al. to our data, there was
no significant relationship and the model was unable to differentiate the AKI and non-AKI cohort
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even after analyzing only patients who exceeded the high risk threshold of 10 suggested by the
authors [7]. All of the aforementioned AKI risk ratio models were also neither significantly different
between the AKI and non-AKI cohorts, nor did they not appear to be a predictive factor for AKI in our
multivariate analysis.

The average CM volume used at our center is similar to those reported by other groups including
Yamamoto et al.; therefore, it is unlikely to be the reason for the discrepancy [4,8,9]. Furthermore,
despite the amount of CM administered varying radically among studies, this has not served as the
divide between those who reported an association between CM volume and AKI and those who have
not [1,2,8–16], suggesting that other factors may play a more prominent role in AKI development.

One school of thought that has emerged to explain analogous trends among patients undergoing
contrast CT scans, is that a segment of the population will demonstrate renal decline that occurs
irrespective of whether CM is administered or not [20]. In the context of intravenous CM administration,
hypotension, nephrotoxic drugs, fluid restriction, and hemorrhage may contribute to CM-independent
SCr increases that obscure the actual incidence of CM-induced nephropathy [19].

The TAVR procedure itself also involves several steps that have the potential to affect renal function.
Endothelial damage triggered by intermittent periods of hypotension during rapid pacing could cause
tubular ischemia by inhibiting the production of vasodilating substances such as nitric oxide. It has
also been postulated that hypotension triggered by rapid pacing may cause renal hypoperfusion and
therefore renal injury and AKI [31]. Although studies have reported no difference or association
between utilization of rapid pacing and AKI incidence [32,33], there are conflicting reports with respect
to the effects of the number of pacing runs/episodes on AKI development [15,34], and a recent study
by Fefer et al. has shown that prolonged rapid pacing time increases the risk of AKI [34].

Advanced stages of atherosclerosis found in TAVR patients could affect AKI development too [10],
especially as catheters dislodging cholesterol emboli which then travel to the kidneys and obstruct
renal perfusion have been noted as a potential cause of renal damage in coronary angioplasty [35];
a comparable process may be occurring during catheter manipulation in TAVR given the higher
incidence of dyslipidemia and diabetes mellitus found in our AKI patients. Advanced peripheral
vascular disease is also thought to accentuate the adverse effects of RBU [2]. RBU transfusion is
reported to be an independent predictor of AKI in TAVR and in a meta-analysis shown to be associated
with AKI [8,33,36,37]. Accordingly, the number of RBU transfusions was significantly higher both
amongst our patients and other reported cohorts [3,13,38]. The underlying pathophysiology for this
association remains uncertain; it has been suggested that when RBCs are stored, their properties change
which may adversely affect their oxygen transport. RBC structural changes have also been suggested
to increase their viscosity and aggregability [39], which on a background of PVD may contribute to
microembolic events that affect kidney function. Similarly, RBC membrane changes are thought to lead
to hemolysis during storage which increases levels of free iron and hemoglobin in RBC transfusions,
both of which are toxic to the kidney [40]. The notion that AKI is a consequence of these adverse
outcomes rather their cause or the result of CM administration, is further merited by examining the
characteristics of patients with fewer complications. Using patients discharged early as a proxy marker
for an uncomplicated intervention, data showing that patients who left the hospital within two days of
their TAVR procedure having lower rates of stage 2 or 3 AKIs but receiving the same CM volume as
those discharged later, suggests it is procedural/post-procedural complications rather than CM volume
that drives AKI [41].

Delineating the central players in AKI development is essential as our AKI patients had significantly
higher 30-day mortality rates, fewer of them reached the 30-day combined safety endpoint and their
1-year mortality was significantly higher. The six-fold increase in 30-day mortality is close to the
figures noted by others and the significantly higher logistic EuroSCORE in the AKI cohort has also
been previously reported [13,42].

The biological plausibility of CM causing contrast associated nephropathy warrants precautionary
measures such as hydration therapy. Current approaches to limiting CM dosage are appropriate,



J. Clin. Med. 2020, 9, 3476 9 of 12

however additional restrictions on volume used should not come at the expense of withholding further
pre-procedural assessment or sub-optimal procedural imaging in the interest of further reducing the
risk of AKI, as other factors may be the primary drivers in AKI development after TAVR.

Limitations

The study has several limitations including those inherent to a retrospective study. The significant
difference in major bleeding complications observed between our AKI and non-AKI cohort may be a
confounding variable in our analysis; considerable bleeding after TAVR may cause renal hypoperfusion
and thus trigger a pre-renal AKI [43]. Rather than serving as a surrogate indicator for patients more
likely to require blood transfusions and thus at risk of AKI, major vascular complications could be
contributing the incidence of AKI and alter the data. The presence of other unidentified confounding
variables cannot be excluded as well, as the cause of AKI is multifactorial. Indication bias stemming
from doctors administering lower CM dosage to patients perceived as high-risk for AKIs may have also
obscured the results; the almost identical pre-operative serum creatinine and proportion of individuals
classified as renally impaired among the two cohorts however, indicates that this may have been
well controlled. A lack of consensus regarding what fluids should be used for prehydration therapy
to prevent contrast-associated nephropathy also means that our institution’s use of Ringers lactate
was in accordance with recommendations by the American College of Radiology [44], but diverged
from the guidelines set by European Society of Cardiology/European Association for Cardio-Thoracic
Surgery [45]. A recent study in patients undergoing angioplasty or angiography though, showed
similar incidences of contrast induced nephropathy (CIN) with either option suggesting that the
choice in protocol is unlikely to have altered our findings [46]. Nevertheless, daily serum creatine
measurements during the initiation phase of TAVR at our center were only performed during the first
72 h whereas the VARC-2 criteria suggest that the AKI diagnosis period should be extended up to
7 days [28]. This might have led to a potential underrepresentation of patients with late-onset AKI.
The data from this study also stems from a single center and therefore the value in extrapolating its
results may be limited.

5. Conclusions

The findings of the present analysis contradict the common misconception that acute kidney injury
after TAVR is mainly caused by the contrast medium used during the procedure. As the underlying
mechanisms remain unclear, future research needs to address different pathophysiological mechanisms
and preventive measures as AKI negatively impacts short- and long-term survival.
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