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Electron transfer in all living organisms critically relies on
formation of complexes between the proteins involved. The
function of these complexes requires specificity of the interac-
tion to allow for selective electron transfer but also a fast turn-
over of the complex, and they are therefore often transient in
nature, making them challenging to study. Here, using small-
angle neutron scattering with contrast matching with deuter-
ated protein, we report the solution structure of the electron
transfer complex between cytochrome P450 reductase (CPR)
and its electron transfer partner cytochrome c. This is the first
reported solution structure of a complex between CPR and an
electron transfer partner. The structure shows that the interpro-
tein interface includes residues from both the FMN- and FAD-
binding domains of CPR. In addition, the FMN is close to the
heme of cytochrome c but distant from the FAD, indicating that
domain movement is required between the electron transfer
steps in the catalytic cycle of CPR. In summary, our results
reveal key details of the CPR catalytic mechanism, including
interactions of two domains of the reductase with cytochrome c
and motions of these domains relative to one another. These
findings shed light on interprotein electron transfer in this sys-
tem and illustrate a powerful approach for studying solution
structures of protein–protein complexes.

The complexes formed by proteins involved in electron
transfer are often relatively weak and transient (1, 2). This gen-
erally makes the complexes difficult to crystallize, although
some such transient complexes have been successfully studied
by NMR techniques (3–8).

Cytochrome P450 reductase (CPR)3 (9–12) has an important
physiological role as a key component of the P450 mono-oxyge-

nase system of the endoplasmic reticulum, which plays a central
role in drug metabolism (13). Cytochromes P450 catalyze the
insertion of one atom of molecular oxygen into their substrates
with the reduction of the other atom to water, a reaction requiring
two electrons that, in the case of the drug-metabolizing P450s, are
supplied by CPR (11, 14). In the liver endoplasmic reticulum, cyto-
chrome P450s are present in excess over CPR, with a molar ratio of
cytochrome P450/CPR as high as 20:1, so that electron transfer
must occur in transient complexes whose lifetime has been esti-
mated at �200 ms (15). CPR accepts electrons from the obligatory
two-electron donor NADPH onto its FAD cofactor and transfers
them via its FMN cofactor to a wide range of different P450s; the
two electrons are donated one at a time at two distinct steps in the
cytochrome P450 reaction cycle (16, 17), and it is possible that
the complex dissociates between these two electron transfer steps
(15).

CPR, like other members of the family of diflavin reductases
(18 –20), has three domains: an FMN-binding domain, an FAD-
and NADPH-binding domain, and a “linker” domain; the FMN
domain is connected to the linker and FAD domains through a
highly flexible “hinge.” The compact conformation of truncated
soluble CPR seen in the X-ray crystal structure (10, 12) is well
suited for electron transfer from FAD to FMN as the two
isoalloxazine rings are less than 4 Å apart. However, in this
conformation, it is difficult to see how an electron transfer part-
ner protein could approach close enough to the FMN for elec-
tron transfer to occur, and there is good evidence that the
domains of CPR must move relative to one another to allow
access of the redox partners to the FMN cofactor (9, 11, 21–28).

CPR was first isolated and identified as an NADPH-depen-
dent cytochrome c reductase (29); although cytochrome c (cyt
c) is unlikely to be a physiological redox partner of CPR, the
electron transfer reaction between CPR and cyt c is widely used
as a standard model to characterize the activity of CPR, and it is
probable that the binding sites on CPR for cyt c and cytochrome
P450 are at least substantially overlapping (30, 31). We have
now used the powerful combination of small-angle neutron
scattering (SANS) with contrast variation using deuterated
protein to determine a low-resolution solution structure of the
complex between cytochrome c and CPR lacking only the
N-terminal membrane-binding anchor.
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Results

Characterization of CPR K75E/R78E/R108Q

To facilitate the study of the CPR– cyt c complex, we used the
K75E/R78E/R108Q mutant of CPR in which two salt bridges sta-
bilizing the compact conformation (see below) are abolished. This
mutant shows a 5-fold decrease in the Km for cyt c and a doubling
of the rate constant kcat for cyt c reduction (27). There is also evi-
dence from SAXS for a more extended conformation of the oxi-
dized form of the mutant relative to the wildtype, although the
partial reduction of the flavins by X-ray–induced photoelectrons
(27) complicates the interpretation of these experiments.

Rapid mixing of prereduced CPR and cyt c leads to a burst of
cyt c reduction, essentially within the experimental dead time of
the stopped-flow spectrophotometer, by those CPR molecules
that are in a reactive (“open”) state followed by a slower re-
duction of cyt c by those CPR molecules that exist in a cyt
c– unreactive (“closed”) conformation (32). Fig. 1 shows the
kinetic traces of cyt c reduction following rapid mixing of prer-
educed CPR and cyt c. For the wildtype enzyme, �20% reduction
of cyt c takes place within the 2-ms dead time of the instrument in
reasonable agreement with the report by Haque et al. (32) of 33%
reduction within 4 ms. For the K75E/R78E/R108Q mutant, how-
ever, a much higher proportion of the reduction takes place in the
dead time, suggesting that in the reduced state the mutant is pre-
dominantly (�80%) in the reactive conformation.

To establish whether the mutant also has an increased pro-
portion of the extended conformation in the oxidized state, we
carried out solution scattering studies of the free wildtype and
mutant CPR using SANS. The hydrodynamic parameters for
wildtype and mutant CPR, derived from the scattering curves in
Fig. S1, are given in Table 1. It can be seen that the Rg and Dmax
values for the mutant are greater than those for the wildtype.

Fig. 2 shows average scattering envelopes for the two pro-
teins constructed ab initio using DAMMIF together with the
respective intraparticle pairwise distance distribution (P(r))
plots; P(r) plots are the real space representation of the scatter-
ing data, obtained by carrying out an indirect Fourier transform
on the reciprocal space data. These data clearly indicate a
slightly more extended average structure for the mutant than
for the wildtype protein in the oxidized state with a visible
“cleft” in the mutant structure.

In view of the evidence that CPR exists in an equilibrium
between a compact and a more extended conformation (9, 11,

22, 27), we analyzed the scattering data in terms of such an
equilibrium using the program MultiFoXS (33). The compact
state was represented by the crystal structure of soluble (N-ter-
minally truncated) oxidized human CPR (Protein Data Bank
code 3QE2 (12)). To represent the more extended state, we
used either the model we described earlier (27), based on NMR
and SAXS data on wildtype CPR, or alternatively molecule A in
the crystal structure of the �TGEE mutant of CPR, which has a
deletion in the flexible hinge and a more extended structure
than the wildtype enzyme (Protein Data Bank code 3ES9 (24)).
Analysis using either of these models for the extended state
gave satisfactory fits (�2 � 2) to the scattering curves (Fig. 3);
the fitting parameters are given in Table 1. We also analyzed the
data using a pool of 10,000 conformations generated by Multi-
FoXS by allowing the flexible hinge, and hence the FMN-bind-
ing domain, to move with respect to the FAD and linker
domains; this did not give a significantly better fit to the data.

For the wildtype enzyme, the scattering curve is fit best by the
compact crystal structure with only 10% extended structure.
For the mutant, however, a good fit requires inclusion of a sig-
nificantly greater proportion of an extended conformation.
Either of the two models for the extended state can give a sat-
isfactory fit, although, depending on the model chosen, the
fraction of the extended conformation can vary from 16 to 33%
(Table 1). We conclude, therefore, that the abolition in the
mutant CPR of two salt bridges stabilizing the compact con-
formation (27) does indeed lead to an increase in the propor-
tion of the extended, cyt c–reactive conformation in both the
oxidized and reduced states and that this in turn leads to an
increase in the amplitude of the burst phase of the reduction
of cytochrome c.

Structure of the complex between the CPR mutant and
cytochrome c

The particular strength of SANS in studying macromolecular
complexes arises from the ability to exploit solvent contrast
variation by using buffers of different H2O/D2O composition
(34, 35). This arises from the very different neutron scattering
properties of hydrogen and deuterium so that H2O and D2O
have very different scattering length densities. Hydrogen/deu-
terium exchange enables contrast matching and elimination of
the scattering contribution of one component of a complex to
specifically highlight the other component and therefore deter-
mine its structure and the relationship between them. Isotopi-
cally normal (hydrogenated) protein shows a “match point,”
where it is rendered invisible in a SANS experiment, at �40%
D2O. Perdeuterated protein cannot be “matched out” even in
100% D2O, but “match-out labeled” protein can be prepared by
expressing the protein in Escherichia coli grown in 85% D2O
(36). The precise match points of the hydrogenated cytochrome
c and the match-out deuterated CPR mutant were measured to
be 43 and 100% D2O, respectively (37) (Fig. S2).

Thus, when the complex between cyt c and the CPR mutant
is prepared using isotopically normal cyt c and match-out deu-
terated CPR mutant, the scattering from the two components
of the complex can be individually measured by carrying out the
experiments in 100 and 43% D2O buffers, respectively. In 70%
D2O, where the scattering length densities of the two proteins

Figure 1. Burst kinetics of reduction of cytochrome c on rapid mixing
with NADPH-reduced CPR. Wildtype CPR (orange) or K75E/R78E/R108Q
mutant CPR (blue) was mixed with cytochrome c in a stopped-flow spectro-
photometer under anaerobic conditions. The baseline on mixing cytochrome
c with buffer is shown in red. AU, absorbance units.
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are equally different from that of the solvent, the scattering
from the whole complex can be measured.

The scattering curves from these three experiments are
shown in Fig. 4, the derived hydrodynamic parameters are given

in Table 2, and the scattering envelopes (calculated using
DAMMIF) and the P(r) functions are shown in Fig. 5. When the
full complex prepared in this way is studied in 70% D2O, the Rg
values are very similar to those for the CPR mutant alone, but

Table 1
Hydrodynamic parameters for wildtype and mutant CPR

Sample Rg Dmax

Modela

Crystal structure � Huang et al.
model

Crystal structure � �TGEE mutant
model

fcompact
b fextended

c �2 fcompact
b fextended

c �2

Å Å
Wildtype 24.7 � 0.1 71 0.90 0.10 1.64 0.90 0.10 1.75
K75E/R78E/R108Q mutant 25.5 � 0.2 73 0.84 0.16 1.82 0.67 0.33 1.20

a The models used to analyze the scattering data in terms of a two-state equilibrium are described in the text. In both cases, the compact state is described by the crystal
structure of oxidized CPR; the extended structure is described either by the model of Huang et al. (27) or by the structure of the �TGEE mutant (24). The goodness of fit to
the scattering curve is given by the �2 statistic.

b Fraction of the compact conformation.
c Fraction of the extended conformation.

Figure 2. Scattering envelopes of wildtype CPR and K75E/R78E/R108Q mutant CPR with atomic models superimposed together with the P(r) plots
derived from the scattering data (right). In a (wildtype CPR), the model is the crystal structure of wildtype CPR (12). In b (mutant CPR), the model is one
obtained from the wildtype crystal structure after a conformational search allowing motion of the residues in the flexible hinge as described under “Experi-
mental procedures”. In both cases, the envelope and structure on the right are related to those on the left by a 90° rotation in the direction shown by the arrows.
In the structural models superimposed on the scattering envelopes, the FAD and linker domains are blue, and the FMN domain is green.

Figure 3. Fits of the scattering curve of the oxidized state of the K75E/R78E/R108Q mutant of CPR to a two-state model. The experimental data are
shown as points, with error bars representing S.D., and the model fits are shown as lines. The wildtype crystal structure is used to represent the compact state,
and either the model of Huang et al. (27) (a) or the structure of the �TGEE mutant (24) (b) is used to represent the extended state.
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the Dmax value is significantly greater. Matching out the cyt c by
carrying out the experiment in 43% D2O gives a Dmax value the
same as that obtained for the CPR mutant alone. Matching out
the CPR mutant in 100% D2O gives the expected small values
for Rg and Dmax of cyt c; although the signal-to-noise ratio for
this poor scatterer is limited in this experiment, the Rg and Dmax
are in satisfactory agreement with those measured for cyt c
alone (Table 2). The I(Q � 0) (intensity extrapolated to zero
angle) values are as expected for the monomeric proteins at
their respective concentrations.

Comparison of the bead-model ab initio envelopes derived
from the scattering curves of the full complex and of the cyt c
matched-out complex allows us to obtain an initial picture of
the location of cyt c within the complex (Fig. 5). Superimposing
atomic resolution models either from known crystal structures
or from hypothetical models onto these envelopes permits vis-
ual confirmation of the fit of the data to the molecules in ques-
tion. The model for the cyt c match-out experiment (Fig. 5b)
was produced using the crystal structure of CPR (12) subjected
to a random conformational search in which a pool of 10,000
conformational samples was created starting with the crystal

structure and allowing the hinge residues linking the FMN-
binding domain to the rest of CPR to be flexible. The model for
the CPR match-out experiment (Fig. 5c), revealing only cyt c,
was produced using the horse heart cyt c crystal structure (38).

To obtain a model for the full complex (Fig. 5a), we used the
docking software HADDOCK together with the atomic-level
information available on the interactions in the complex. An
increase in ionic strength causes a substantial increase in the Km
of CPR for cyt c (27, 39), indicating that electrostatic interac-
tions are likely to be important in the formation of the complex.
Lys13 of cyt c can be cross-linked to one of the carboxyl groups
from two acidic clusters on the FMN-binding domain of CPR,
Asp207-Asp208-Asp209 and Glu213-Glu214-Asp215 (40), and site-
directed mutagenesis (41, 42) supports the involvement of the
Glu213-Glu214-Asp215 cluster in the interface. Huang et al. (43)
have recently used changes in NMR chemical shifts to study the
interactions between the isolated FMN domain of rat CPR and
cyt c, leading to two possible models for this complex. Utilizing
the data from these studies in combination with our SANS data,
we produced a model for the complex using the HADDOCK
web server (44). A large number of models were initially pro-

Figure 4. Scattering curves of the complex between deuterated K75E/R78E/R108Q mutant CPR and cytochrome c. a, complex fully visible (70% D2O). b,
cytochrome c match-out (43% D2O). c, K75E/R78E/R108Q mutant CPR match-out (100% D2O). Guinier plots are shown in the insets in each case. Conditions
were 100 mM BES, pH 7.0, at 15 °C with the appropriate percentage of D2O, as indicated in parentheses, to achieve the desired contrast.

Table 2
Hydrodynamic parameters for CPR K75E/R78E/R108Q and its complex with cytochrome c
D-CPR, deuterated CPR; H-CPR, isotopically normal CPR.

Sample
Rg

Dmax
a I(Q � 0) Calculated molecular massbGuinier P(r)

Å Å cm�1 kDa
D-CPR K75E/R78E/R108Q mutant 25.2 � 0.2 25.8 72 0.52 � 0.0023 73 (69.6)
H-CPR K75E/R78E/R108Q mutant 25.0 � 0.2 25.15 72 0.15 � 0.00078 74 (69.6)
Full complex (70% D2O) 26.3 � 0.8 26.9 77 0.05 � 0.00082 81 (81.3)
Cyt c matched out (43% D2O) 26.0 � 0.3 26.1 72 0.31 � 0.0018 69 (69.6)
CPR mutant matched out (100% D2O) 11.5 � 1.1 11.3 38 0.0051 � 0.0002 12 (11.7)
Cyt c alone 12.2 � 0.1 11.0 35 0.094 � 0.0003 11 (11.7)

a All Dmax values, determined from P(r) fits using GNOM in PRIMUS as part of the ATSAS suite, were rated as good (0.8) fits or better. All errors are �2 Å.
b Molecular mass values were calculated from experimental I(Q � 0) values and protein concentrations estimated spectrophotometrically. Theoretical values from the amino

acid sequences are given in parentheses.
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duced, and the model with the lowest docking energies (elec-
trostatics, desolvation, van der Waals, and restraints) was cho-
sen as the starting point for further rigid body modeling. This
yielded a model where the heme cofactor in cyt c was within a
distance (�4 Å) of the FMN that would readily allow intermo-
lecular electron transfer. The low-resolution nature of SANS
means that the limiting factor in constructing the model is the
scattering data, but it is clear that a model incorporating both
the CPR mutant and cyt c fits the data much better than one
involving the CPR mutant alone.

To refine the model of the complex, the FMN domain and cyt
c were fixed together to form a single rigid body, whereas the
flexible hinge region connecting the FMN to the linker domain
of CPR allowed the FMN domain/cyt c unit to move freely with
respect to the rest of the CPR mutant molecule. We used a
conformational search to produce a pool of 10,000 conforma-
tions, and theoretical SANS curves of each of these models were
compared with the original data. It was found that a single
model was able to fit the experimental data very well without

the need to invoke a mixture of conformations. Five models,
which were structurally indistinguishable, fit the data with �2 �
2; the best of these, which had �2 � 0.91, is shown in Fig. 6.

Discussion

SANS lacks the resolution to be able to determine the orien-
tation of cytochrome c and the domains of the CPR mutant in
the complex in precise atomic detail. However, the model
obtained in this work by combining global SANS information
and atomic-level information (Fig. 6) clearly indicates a com-
pact structure with extensive interdomain and intermolecular
contacts, the latter involving residues in both the FMN and
FAD domains of the CPR mutant.

This structure is generally similar to the reported crystal
structure of the complex between the �TGEE mutant of rat
CPR and rat heme oxygenase 1 (HO-1), another redox partner
of CPR (45); it is interesting that two different mutants of CPR
and two different redox partners give rather similar structures.
However, there are clear differences between the two struc-

Figure 5. Ab initio scattering envelopes (left) and intraparticle distance distributions (right) of the CPR mutant– cyt c complex. a, full complex. b, CPR
mutant (cyt c match-out). c, cyt c (CPR match-out). In each case, the scattering envelope on the right is related to that on the left by a 90° rotation in the direction
indicated by the arrows. In the structural models superimposed on the scattering envelopes, the FAD and linker domains of the CPR mutant are blue, the FMN
domain is green, and cytochrome c is red.

Cytochrome P450 reductase– cytochrome c complex structure
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tures; in particular, the position of the FMN domain relative to
the FAD domain is clearly different between the solution struc-
ture of the cyt c complex and the crystal structure of the HO-1
complex. This may be due to the different sizes of the redox
partners in the two complexes (23 versus 12 kDa), the absence
of NADP	 in the cyt c complex, or uncertainties in the 4.3-Å-
resolution crystal structure in which the electron density for the
FMN domain is clearly weaker than that of the FAD domain,
particularly for one of the two molecules in the asymmetric unit
(45). It is notable that the SAXS scattering curve of the �TGEE
CPR–HO-1 complex is not identical to that calculated from
the crystal structure (45), raising the possibility of differences
between the solution and crystal structures.

In the model of the solution structure of the cyt c complex,
there are several intermolecular polar side chain–side chain or
side chain– backbone interactions between cyt c (residues
Glu21, Gly23, Lys25, and Lys27) and residues Gly267, Arg268,
Asp280, and Asn359 in the FAD domain of the CPR mutant,
showing that the interprotein interface is not limited to the
FMN domain of the reductase. The identified polar intermolec-
ular interactions are listed in Table S1, although it must be
noted that SANS does not allow us to define the interface with
atomic-level precision. In this model of the complex, the con-
formation of the CPR mutant is somewhat more compact than
in the free state, indicating that is “closing around” the cyt c in
the complex. However, the conformation of the CPR mutant in
the complex is still an extended one such that the isoalloxazine

rings of the FAD and FMN cofactors are separated by �30 Å. In
contrast, the distance between the FMN isoalloxazine ring and the
heme of cyt c is �10 Å. This shows that the complex described
here is one that is competent for interprotein electron transfer
between the FMN and the heme of cyt c but not for intraprotein
electron transfer between FAD and FMN, demonstrating that
domain movement is required between the intramolecular and the
intermolecular electron transfer steps in the CPR mechanism.

Experimental procedures

NADPH and horse heart cytochrome c were purchased from
Sigma-Aldrich. All other chemicals were of analytical grade.
Protein expression and purification

The genes for human fibroblast CPR lacking the N-terminal
membrane-anchoring region (46) (a kind gift from Professor C. R.
Wolf, University of Dundee) and its K75E/R78E/R108Q mutant
(27) were expressed in E. coli BL21 STAR (DE3) cells transformed
with the pCS22 (cold-shock) plasmid vector carrying the CPR
gene (21). Cells were grown to midlog phase (A600 of 0.6–0.8) in
Terrific Broth medium containing ampicillin (100 �g ml�1) at
37 °C prior to induction by transferring the flasks to a prechilled
incubator at 15 °C to exploit the cold-shock promoter (21). After
24 h at 15 °C, the cells were pelleted by centrifugation.

CPR was purified as described previously (21, 47) with mod-
ifications. The pellets were resuspended in a minimum of lysis
buffer (100 mM Tris, pH 7.8, 100 �g ml�1 lysozyme) and soni-

Figure 6. The model of the CPR mutant– cyt c complex that best accounts for the data. The FMN domain of the CPR mutant is shown in green, and its FAD
and linker domains are in blue. cyt c is shown in red. The FMN of the CPR mutant and the heme of cyt c are shown in magenta.

Cytochrome P450 reductase– cytochrome c complex structure
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cated on ice for 10 
 30 s. The suspension was centrifuged, and
the supernatant was loaded directly onto a Q Sepharose ion-
exchange column pre-equilibrated with wash buffer (100 mM

Tris, pH 7.8). After washing with at least 2 column volumes of
wash buffer, the protein was eluted with a gradient of 0 –1 M

NaCl in wash buffer. During elution, the absorbance was mon-
itored at 280 and 450 nm; the fractions with the best 450
nm/280 nm ratio (presence of CPR confirmed by SDS-PAGE)
were loaded directly onto a 2�,5�-ADP-Sepharose column pre-
equilibrated with wash buffer. After a 2-column-volume wash,
half a column volume of oxidation buffer (100 mM Tris, pH 7.8,
100 mM potassium ferricyanide) was washed over the bound
protein to ensure that the flavins were in the oxidized state.
After a further wash with wash buffer, the CPR was eluted with
20% glycerol in water, pH 7.0. The pure protein was eluted using
a 20% glycerol solution rather than 2�-AMP to avoid undesired
persistent binding of the 2�-AMP. A final stage of purification
involved the use of size exclusion liquid chromatography
(Superdex 200 Increase column) to isolate the purely mono-
meric form of the protein, essential in small-angle scattering
experiments. The final eluent was buffer-exchanged into 100
mM Tris for refrigerator storage with the addition of 50% (w/v)
glycerol for storage at �20 °C or into 100 mM BES, pH 7.0, for
experimental work as required. An SDS-polyacrylamide gel of
the purified protein is shown in Fig. S3. The protein concentra-
tion was calculated using a molar extinction coefficient of
�450 � 22,000 M�1 cm�1.

Deuterated protein expression and purification

For preparation of deuterated protein, the gene for the CPR
K75E/R78E/R108Q mutant lacking the N-terminal membrane-
anchoring region was expressed in E. coli BL21 STAR (DE3)
cells. The pCS22 vector– based construct was adapted for fer-
menter growth by switching the antibiotic resistance from
ampicillin to kanamycin via a transposition reaction using the
EZ-Tn5TM �T7/KAN-2� Promoter Insertion kit (Epicenter).
Cells were adapted for growth first from rich medium (LB) to
hydrogenated minimal medium and then finally to 85% D2O–
based deuterated minimal medium (36, 48). Plasmid-contain-
ing cells were grown to an A600 of �18 in a Labfors 2.3-liter
Bioreactor (Infors, France) at 30 °C for 48 h in 85% deuterated
minimal medium. Expression was induced in the fermenter by
decreasing the temperature to 19 °C, and the expression was
carried out for 22 h at the induction temperature. After centrif-
ugation, the cell paste yield was 65 g from the 1.7-liter culture.
CPR was purified as described above; the final yield of deuter-
ated CPR from the total cell paste was 120 mg.

Stopped-flow kinetics of cytochrome c reduction

Burst-phase kinetics of the reduction of cytochrome c by fully
reduced CPR was studied under anaerobic conditions at 10 °C.
The stopped-flow apparatus (Applied Photophysics, UK) was
placed inside a glovebox (Belle Technologies, UK) in a nitrogen
atmosphere with an oxygen content of 5 ppm or less. All solu-
tion kinetics studies were carried out in 100 mM BES, pH 7.0,
buffer. A solution containing 10 �M CPR and 200 �M NADPH
was incubated for 5 min in anaerobic conditions before starting
any measurements. The reduced protein solution was rapidly

mixed with an equal volume of 100 �M cytochrome c in the 2-�l
flow cell, and the change in absorbance at 550 nm was recorded.
2000 data points were measured over a time period of 1 s to
ensure that the burst phase and the transition to the slower
steady-state phase were observed. To provide an initial reading
for A550 in the absence of reduction, the cytochrome c solution
was also mixed with the buffer solution only.

SANS sample preparation

All solution neutron scattering studies were carried out in 100
mM BES, pH 7.0, at 10 °C. The appropriate ratio of D2O and H2O in
the buffer was used for the desired contrast. CPR was mixed with a
5-fold molar excess of cytochrome c to induce complex formation.
Either the samples were incubated on ice for 1 h before being mea-
sured immediately, or alternatively the complex was isolated using
size exclusion chromatography (Superdex 200, GE Healthcare) at
the SANS beamline before measurement. An SDS-polyacrylamide
gel of the isolated complex is shown in Fig. S3.

Solution scattering data collection

SANS measurements were carried out on D22, the high-
flux neutron diffractometer at the Institut Laue-Langevin,
Grenoble, France. Each protein sample of 2–5 mg/ml was mea-
sured in a 1-mm-path-length Suprasil quartz cuvette (Hellma)
for a total of 1 h to gather data with a suitably high statistical
precision. Data were recorded at two collimation lengths (5.6
and 2.8 m) and respective sample-to-detector distances (5.6
and 1.4 m) to provide a full range of momentum transfer Q from
the Guinier region of the monomer to the solvent level of inco-
herent scattering. The two-dimensional 3He detector was posi-
tioned at different distances from the sample and off-centered
in regard to the direct beam to provide a usable Q range of
0.001– 0.5 Å�1 where Q � 4�sin�/� where 2� is the scattering
angle and � is the wavelength (6 Å � 10% in our measure-
ments). The raw scattering data were reduced using the soft-
ware GRASP4 (Institut Laue-Langevin), which included thick-
ness and transmission scaling, empty cell and blocked beam
subtractions, calibration to absolute intensity using incident
flux measured at sample position, and azimuthal averaging, and
then merged to produce the full scattering curves and buffer-
subtracted and normalized for concentration as appropriate
using National Institute for Science and Technology Centre for
Neutron Research SANS reduction macros for IGORpro (50).

Contrast match points were estimated by determining and
plotting the I(Q � 0)

1/2 values of protein samples at various D2O/
H2O ratios while maintaining a constant protein concentration
(Fig. S2). The linear regression was used to estimate the D2O/
H2O ratio at which the protein no longer contributed any
coherent scattering (i.e. the x axis intercept). This estimate was
then tested and confirmed before proceeding with contrast
match SANS measurements on the protein complex.

Data processing and modeling

Initial data processing and analysis were carried out using
programs from the ATSAS suite (51). Determination of size
parameters was performed using PRIMUS (52). Rg was deter-

4 C. Dewhurst, unpublished data.
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mined using the Guinier approximation and from P(r) plots;
Dmax and P(r) were calculated using GNOM (53). The PRIMUS
Distance Distribution Wizard gave values of between 77 and 88%
for the quality of P(r) for the different samples where values over
70% indicate a “good” solution. Model-independent ab initio
molecular envelopes were generated using DAMMIF (54). Fifteen
independent DAMMIF runs were averaged using DAMAVER
(55) to obtain a typical molecular shape and filtered using
DAMFILT to produce a refined model revealing only the most
common structural features. High-resolution models were super-
imposed onto low-resolution dummy atom models using
SUPALM (56) as part of the SASpy (57) plugin for PyMOL (58).

Rigid body modeling was carried out using software from the
IMP (Integrative Modeling Platform) suite (59) and the ATSAS
suite. A pool of 10,000 conformational samples was created
using the RRT (rapidly exploring random tree) sampling tool,
which was provided with a Protein Data Bank structure and
identified flexible residues. These were the hinge residues link-
ing the FMN-binding domain to the rest of CPR, specifically
Gly240–Ile245, which are unresolved in the crystal structure
(12); initial approximate positions for these residues were iden-
tified using the partial electron density from the original elec-
tron density map (12). In the model of the CPR– cyt c complex,
the FMN-binding domain of CPR and cyt c were treated as a
single rigid body so that the contact interface between them was
maintained, and only this rigid body, connected to the rest of
CPR by the flexible hinge, was allowed to move in the Monte-
Carlo search. Theoretical scattering curves were calculated for
each of the sampled conformations using CRYSON (49). A sin-
gle best fit model to the experimental data was determined
using MultiFoXS (33) in partial mode where precomputed scat-
tering intensities were used.

An initial model for the CPR– cytochrome c complex was
produced using the HADDOCK web server (44) by inputting
predicted active interface residues on both the FMN domain
and cytochrome c and allowing the program to automatically
define peripheral residues. A large number of models were ini-
tially produced, and the model with the lowest docking energies
(electrostatics, desolvation, van der Waals, and restraints) was
chosen as the starting point for rigid body modeling using Mul-
tiFoXS (33) as described above.
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