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Lipoic acid (LA) is an organic compound that plays a key role in cellular metabolism. It
participates in a posttranslational modification (PTM) named lipoylation, an event that is
highly conserved and that occurs in multimeric metabolic enzymes of very distinct
microorganisms such as Plasmodium sp. and Staphylococcus aureus, including
pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KDH). In this mini
review, we revisit the recent literature regarding LA metabolism in Plasmodium sp. and
Staphylococcus aureus, by covering the lipoate ligase proteins in both microorganisms,
the role of lipoate ligase proteins and insights for possible inhibitors of lipoate ligases.
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INTRODUCTION

LA {6,8-dithiooctanoic acid or 5-[(3R)-dithiolan-3-yl]pentanoic acid} is an organosulfur compound
(Figure 1B and Figure 1C) that has long been reported for antioxidant effects and potential
therapeutic benefits in treating a variety of diseases, such as neurodegenerative diseases, diabetes, and
cardiovascular conditions (Marangon et al., 1999; Amom et al., 2008; McNeilly et al., 2011; Tromba
et al., 2019; Li et al., 2020;Molz et al., 2021). In addition to its potential therapeutic effects and current
use as a potential antioxidant in dietary supplementation, LA is an essential cofactor for many
enzymatic reactions in key biochemical pathways. To date, LA is known to act as a cofactor in five
different enzyme complexes: the glycine cleavage system (GCS), pyruvate dehydrogenase (PDH),
α-ketoglutarate dehydrogenase (KGDH), branched-chain α-keto acid dehydrogenase (BCDH), and
acetoin dehydrogenase (AoDH) (Oppenheim et al., 2014). The α-ketodehydrogenase-complexes
contain three protein subunits, named E1, E2, and E3. LA in the free form of lipoate is attached to the
E2 lysine residues or to the H protein of the GCS. Lipoate metabolism is present across different
human pathogens, including Plasmodium sp., the causative agent of malaria, a tropical disease that
was responsible for about 229 million cases worldwide in 2019 only, with an estimated 409,000
deaths in the same year (World Health Organization, 2020). Although more knowledge on
lipoylation has been gained (Cao et al., 2018a; Laczkovich et al., 2018; Zhang et al., 2020; Tang
et al., 2021), it remains an attractive topic to better understand the metabolic consequences of
dysregulated lipoylation and how LA metabolism enzymes could be explored as a potential drug
target in different diseases. From a chemical perspective, the disulfide bond in oxidized/reduced form
provides a strong redox couple that is important for reactive oxygen species (ROS) scavenging and
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for the redox-dependent reactions that regulate multienzyme
complexes. Examples of scavenged ROS include peroxynitrite
(ONOO−), hypochlorous acid (HClO), peroxyl radical (ROO·),
and hydroxyl radicals (·OH). However, evidence so far indicates
that hydrogen peroxide (H2O2) is not directly scavenged by LA
(Xiao et al., 2012). LA can also act as a chelator of Cu2+, Pb2+ and
Zn2+ in vitro. Therefore, LA could be potentially a treatment for
diseases where these metals may play an important role in their
progression (Xiao et al., 2012; Hane and Leonenko, 2014;
Smirnova et al., 2018).

Lipoylation in Plasmodium falciparum
Antimalarial drug resistance still is a major health concern
worldwide and poses a real threat for the control of malaria
(WHO, 2020). Two main species are responsible for the majority
of malaria cases worldwide: P. vivax represents 75% of malaria
cases in the Americas, while 99.7% of estimated malaria cases in
Africa were caused by P. falciparum (World Health Organization,
2021). Lipoylation of Plasmodium proteins is an event that occurs
in two different compartments of the parasite: mitochondrion
and the apicoplast, a unique Apicomplexan plastid organelle that
evolved from endosymbiotic events. The parasite relies both on
lipoate biosynthesis and lipoate-scavenged pathways: lipoate
biosynthesis takes place in the apicoplast, while scavenged
lipoate from host is metabolized in the mitochondrion.

Two important P. falciparum lipoate ligases, Lipl1 and Lipl2,
are known to play key roles in protein lipoylation. Lipl1 is
responsible for the lipoylation of GcvH protein by employing

the oxidized form of lipoate and Lipl2 is responsible for the
lipoylation of the E2 subunit from BCDH and KDH. However,
Lipl2 depends on the formation of dihydrolipoyl-AMP in
reducing conditions to transfer the lipoyl moiety to the
N-lysine residue, thereby impacting the activity of Lipl1 in a
reducing environment. In oxidative decarboxylation reactions of
α-ketoacid complexes, lipoate derived from LA plays a key role as
a cofactor. The α-ketoacids complexes are formed by three
different subunits, named E1, E2, and E3. In the case of the
glycine cleavage complex (GCV), the H-protein (GcvH) serves as
the lipoyl domain for lipoate. All three proteins–GcvH, E2
subunit of both BCDH and KDH (E2-BCDH and E2-KDH,
respectively)–are lipoylated through lipoate covalent ligation to
the lysine residue at the N-terminus of lipoate domain and they
are known to be localized in the parasite mitochondrion
(Afanador et al., 2014). In vitro lipoylation assays show that
Lipl1 is required for the lipoylation of GcvH, E2-BCDH and E2-
KDH (Afanador et al., 2014). Evidence so far indicates that the
role of Lipl2 in P. falciparum is to act as a lipoyl-AMP:Nε-lysine
lipoyltransferase. The intermediate lipoyl-AMP generated by
Lipl1 is employed by Lipl2 to lipoylate both E2-BCDH and
E2-KDH. Therefore, the catalytic activity of Lipl2 also depends
on the activity of Lipl1, since only Lipl1 can generate lipoyl-AMP
conjugate (Afanador et al., 2014). Recently, Leung and colleagues
et al (Leung et al., 2021) discussed the role of GcvH beyond GCV
system, such as its possible role in the lipoylation of α-ketoacids
dehydrogenase proteins. Although recent work has been
performed to better elucidate the LA metabolism in eukaryotes

FIGURE 1 | Lipoylation in Plasmodium falciparum occurs in both mitochondrion and apicoplast. In (A) the enzymatic reactions that takes place in each of these
compartments are illustrated. The generation of lipoyl-AMP is needed to activate Lipl2 and lipoylate the E2 subunit of both BCDH and KDH. The oxidized lipoate is also
attached to the H-protein of the parasite. Oxidized lipoic acid is shown in (B) and reduced lipoic acid is shown in (C), Illustrations were created with BioRender.com
(License #2364–1,511, Toronto, ON, Canada).
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(Cao et al., 2018a; Vacchina et al., 2018; Biddau et al., 2021;
Pietikäinen et al., 2021), there are still unanswered questions,
such as why there are two protein ligases instead of only one
protein ligase in Plasmodium and the role of lipoylated proteins in
the parasite. Lipoate scavenging for use in the mitochondrion
remains an open research topic to be elucidated. Scientific
evidence so far indicates that lipoate scavenged from the host
is important for P. falciparum erythrocytic stage parasites
(Günther et al., 2009a). Murine malaria models and human
malaria model show that lipoylation may play an essential role
in Plasmodium (Wang et al., 2017). In particular, an experiment
in which LA analogues were utilized (Deschermeier et al., 2012)
showed decreased mitochondrial lipoylation and inhibition of
parasite growth. A general scheme of how proteins are lipoylated
in P. falciparum is briefly described in Figure 1A. Lipl1 is known
to be a mitochondrial protein while Lipl2 is both mitochondrial
and found in the apicoplast, a unique plastid organelle found in
Apicomplexan parasites. This organelle is important in
Plasmodium sp. due to the presence of important parasite
metabolic pathways, such as the synthesis of isopentenyl
diphosphate (IPP) (Wiley et al., 2015), a precursor of
isoprenoids, the type II fatty acid synthesis (FAS-II) (van
Schaijk et al., 2014), and the lipoate biosynthesis that is
mediated by two different enzymes: octanoyl-ACP:protein

N-octanoyltransferase (LipB) and lipoyl synthase (LipA)
(Wrenger and Müller, 2004). LipB and LipA orchestrate the
biosynthesis of LA in the apicoplast: LipB is responsible for the
transfer of the octanoyl-moiety to the E2 subunit whereas LipA
acts as a catalyst for the insertion of two sulfurs at positions C6
and C8 of the octanoyl-moiety that is bound to the E2 subunit of
the PDH in the apicoplast.

Recently, Biddau and collaborators (Biddau et al., 2021)
provided more evidence on the putative role of LA in redox
regulation. Using aN-octanoyltransferase (LipB) P. falciparum
3D7 knockout strain, the authors identified upregulation of
antioxidant-related cytosolic proteins that could be related to
plastid-cytosol signaling. Additionally, experiments in
Anopheles mosquitoes that are the vector for malaria
transmission indicated that LipB knockout parasites could
not produce salivary gland sporozoites, possibly indicating
the need of LA synthesis in the apicoplast for the full
development of P. falciparum in Anopheles.

In terms of drug discovery, the lack of the structural
information available for LipA in Plasmodium sp. may also
require in silico predictions, as the one available from
Alphafold (Jumper et al., 2021). We used the FTMap web
servers (Kozakov et al., 2015) for predicting protein binding
hot spots through computational approaches, which shows

FIGURE 2 | Homology models for S. aureus GcvH protein (A) and Lipl1 protein (B). Lipoate moiety shown in stick representation with PyMOL. PDB access
numbers: 3AB9 and 5T8U. Predicted three-dimensional structure for LipA of P falciparum with devimistat. The three dimensional structure of LipA was obtained from
AlphaFold (PDB access number: Q8IDQ0), the search for a predicted active site was performed using the package FtMap (Kozakov et al., 2015). Based upon the two
predicted binding sites docking was performed using Autodock/sMina. The lowest energy poses are shown in (C) and (D) for each predicted binding site. Potential
hydrophobic interactions are shown by dotted yellow lines with the indicated residues, blue dotted lines represent hydrogen bonds; pi stacking: PHE185. In (C), the
calculated binding energy is of −7.312 kcal/mol and, in (D), the calculated binding energy is of −7.075 kcal/mol.
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that there are two potential hot spots, cluster 1 and cluster 2
[Figure 2C and 2(d)]. Devimistat, an LA analogue drug
candidate, was chosen for investigation as a potential inhibitor
compound. Molecular docking using AutoDock/Smina (Koes
et al., 2013) was used to predict the binding-conformation of
devimistat to LipA. The result shows devimistat bound to lipoic
acid protein at the catalytic site of the homologous
α-ketoglutarate dioxygenase of E. coli (RCSB: 1GY9,
Figure 2C and 2(d). For cluster 1 (Figure 2C), there are two
hydrogen bonds between serine 394, serine 393 and a compound
carboxy groups hydrophobic interaction between leucine 352 and
the compound 8-phenyl group, valine 152 and the compound 2-
carbon atom. For cluster 2 (Figure 2D), there is a hydrogen bond
between valine 255 and a compound carboxy functional group;
hydrophobic interaction between isoleucine 188 and the
compound 6-phenyl group; pi stacking between phenylalanine
185 and the compound 6,8-diphenyl groups.

Fatty Acid Synthesis (FAS-II) and Iron-Sulfur
(Fe-S) Clusters in Plasmodium sp.
Lipids are required for Plasmodium growth and replication. The
FAS-II pathway is present in the malaria parasite apicoplast,
specifically in sporozoite and liver stages. Vaughan and colleagues
et al. Vaughan et al. (2009) demonstrated the importance of FAS-
II for the parasite when migrating from liver to the blood asexual
stage, both in P. yoelli and P. falciparum. Later it was also shown
(van Schaijk et al., 2014) that FAS-II is required for midgut oocyst
sporozoite production during the Anopheles mosquito stage of
P. falciparum life cycle, but dispensable in rodent malaria models
of P. yoelli and P. berghei. Thus, much research has been
conducted to explore inhibitory approaches in the late-liver
parasite development. While initial FAS-II inhibitors
eliminated blood-stage malaria parasites, their mode of action
were shown to be off-target (McFadden and Yeh, 2017). Most of
these drugs act in the blood stage of the parasite cycle, yet FAS-II
is not essential in that stage. Therefore, tackling the parasite at
liver stage is likely to be a more promising avenue for drug
development. In terms of lipoylation of P. falciparum proteins,
the FAS-II pathway in the apicoplast has the fundamental role of
providing the octanoyl-acyl carrier protein (octanoyl-ACP) as a
precursor for the generation of de novo LA (Wrenger and Müller,
2004; Shears et al., 2015).

In Plasmodium, the importance of Fe-S clusters for
intraerythrocytic stage growth is well established. Fe-S
clusters are found in different forms, such as 4Fe-4S. These
clusters can act as cofactors and bind proteins via cysteine
residues. Two proteins of the P. falciparum sulfur mobilization
pathway (SUF) were characterized (Charan et al., 2014): PfSufS
and PfSufE. The first has cysteine desulfurase activity while the
latter enhances the activity of PfSufS. Both proteins mediate
sulfur mobilization, which is the first step in the apicoplast SUF
pathway, and both are localized in the apicoplast. Since SUF is
not present in humans, the enzymes of this pathway are
attractive targets for parasite inhibition and eventually the
validation of this pathway for druggability purposes. More
recently, functional experiments performed with P. vivax in

clinical isolates show that the SUF pathway is conserved as in
laboratory strains (Pala et al., 2019). As briefly described in this
mini review, the lipoate synthase (LipA) is an example of an
enzyme that depends on 4Fe-4S clusters. It is localized in the
apicoplast, where it uses the iron sulfur clusters to add sulfur
atoms onto carbons C6 and C8 of the octanoic acid, thereby
completing the lipoate synthesis on the PDH E2 subunit
(Thomsen-Zieger et al., 2003; Wrenger and Müller, 2004;
Günther et al., 2009b; Storm and Müller, 2012; Shears et al.,
2015).

LA Metabolism in Staphylococcus aureus
Staphylococcus aureus is a gram-positive bacterium able to
colonize human skin and mucous membranes, living as a
commensal in healthy individuals. However, it is also capable
of invasion, causing several clinical manifestations. It is a leading
cause of endocarditis, bacteremia, osteomyelitis and skin and soft
tissue infections (Turner et al., 2019). The greatest concern with S.
aureus is its developed multi drug resistance and persistent high
mortality (van Hal et al., 2012).

Like in P. falciparum, S. aureus has both de novo biosynthetic
pathway and salvage pathway for the generation of LA. With the
exception of B. anthracis, no other pathogenic Firmicutes has
such a diversity of enzymes involved in the acquisition of this
cofactor (Spalding and Prigge, 2010). S. aureus has two lipoate-
protein ligases, named LplA1 and LplA2, for salvaging LA and
octanoic acid from the environment (Zorzoli et al., 2016; Cao
et al., 2018b). The attachment of free LA in S. aureus occurs via
LplAs in a two-step reaction: first there is the formation of the
intermediate lipoyl-AMP in the presence of Mg2+ and ATP,
followed by the binding of the lipoyl group to the apoprotein
(Fujiwara et al., 2005).

LplA1 binds LA mainly to GcvH, while LplA2 binds LA to the
E2 subunits of α-ketoacid dehydrogenases, as well as to the
operon-linked GcvH-like protein, GcvH-L (Laczkovich et al.,
2018). GcvH and GcvH-L thereby provide storage of
lipoylated proteins. In vivo studies using mouse infection
models of LplA1 or LplA2 knockouts demonstrated that the
presence of either enzyme is enough to promote kidney infection
(Zorzoli et al., 2016). LplA2 is encoded in an operon together with
an ADP-ribosyltransferase, macrodomain protein, luciferase-like
monooxygenase and the protein GcvH-L, which suggests that
LplA2 may participate in LA-dependent maintenance of redox
homeostasis (Rack et al., 2015). Illustration of homology models
for S. aureus GcvH and LplA1 proteins with lipoate moiety is
shown in Figures 2A, B

Biosynthesis of LA begins when the fatty acid intermediate
octanoyl is transferred from an acyl carrier protein to the ε-amino
group of a lysine in the lipoyl domain of the GcvH by the enzyme
LipM. (Douglas et al., 2006; Zorzoli et al., 2016). The octanoyl
moiety is sulfurized into lipoyl by the enzyme LipA. LipA is a
member of the radical S-adenosyl-L-methionine (SAM) enzymes
(Christensen and Cronan, 2010), which use a [4Fe-4S] cluster as
an electron donor to reductively cleave SAM, generating a
deoxyadenosyl radical and methionine. Two 5-deoxyadenosyl
break C-H bond in position 6 and 8 of the octanoyl moiety,
creating carbon radicals that allow sulphur insertions, with the
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auxiliary iron-sulphur cluster of LipA acting as a sulphur donor
(Douglas et al., 2006). Finally, S. aureus possess the enzyme LipL,
an amido transferase responsible for the transfer of octanoyl or
lipoyl groups between GcvH, GcvH-like protein (GcvH-L) and
α-keto dehydrogenases, as well as inter E2-subunits. This
flexibility gives S. aureus robust resources to supplement its
requirements for LA (Teoh et al., 2019).

LA biosynthesis and its salvage pathway plays a major role in
facilitating the pathogenesis of microorganisms, promoting
pathogen survival within an infected host (Spalding and
Prigge, 2010). S. aureus has specific requirements during
infection, where de novo biosynthesis of LA is necessary to
infect the heart and salvage is required for infection of the
kidney (Zorzoli et al., 2016). LipL was shown to be necessary
within the host, but not necessary at skin sites, where S. aureus
can overcome its need for branched-chain fatty acids by
scavenging unsaturated fatty acids from host skin. (Teoh
et al., 2021). In addition, lipoyl-E2-PDH secreted in the
extracellular environment blunts activation of macrophage
toll-like 1/2 receptors (Grayczyk et al., 2017) and reduces
the generation of ROS and RNS by macrophage NADPH
oxidase and iNOS (Grayczyk and Alonzo, 2019), which
reinforces the importance of lipoylation in the context of
infection.

LA Metabolism in Humans and Other
Organisms
As mentioned above, lipoylation is a PTM event that occurs in
different organisms. Good drug targets must have minimal effects
on the host or at least mitigation of off-target effects. The catalysis
of LA assembly in human was recently elucidated by Cao and
colleagueset al. (Cao et al., 2018a), reporting the relevant LIPT1 and
LIPT2 enzyme activities: LIPT1 catalyzes the attachment of the
lipoyl moiety to the lipoyl domain of the protein, acting as a lipoyl
amidotransferase, while LIPT2 acts as an octanoyltransferase. Both

proteins are located in the mitochondria. In humans, the insertion
of two sulfur atoms to generate the lipoyl moiety is catalyzed by the
mitochondrial protein lipoyl synthase (LIAS) and utilizing [4Fe-
4S] as a co-factor.

Lipoylation events in humans remains an open research
topic, since the enzymes involved in the pathway may be
potential drug targets against cancer, as recently
demonstrated for CPI-613® (devimistat) (Zachar et al.,
2011; Gao et al., 2020), which is currently designated as an
orphan drug by FDA for the treatment of metastatic
pancreatic cancer. Lipoylation event is also present in
other protozoans, for example Trypanosoma cruzi
(Vacchina et al., 2018), where growth of parasite in
medium liver infusion tryptose (LIT) with 10 fold lower
glucose concentration (0.4 g/L) increased the lipoylated
state of PDH E2 subunits. The LA analogue 8-bromo-
octanoic acid showed inhibition of parasite growth in
different protozoans, including T. cruzi, P. falciparum, and
Toxoplasma gondii (Crawford et al., 2006; Allary et al., 2007).
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