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Cancer is one of the most common causes of death worldwide. Although the existing

therapies have made great progress and significantly improved the prognosis of patients,

it is undeniable that these treatment measures still cause some serious side effects. In

this context, a new treatment method is needed to address these shortcomings. In

recent years, the magnetic fields have been proposed as a novel treatment method

with the advantages of less side effects, high efficiency, wide applications, and low

costs without forming scars. Previous studies reported that static magnetic fields (SMFs)

and low-frequency magnetic fields (LF-MFs, frequency below 300Hz) exert anti-tumor

function, independent of thermal effects. Magnetic fields (MFs) could inhibit cell growth

and proliferation; induce cell cycle arrest, apoptosis, autophagy, and differentiation;

regulate the immune system; and suppress angiogenesis and metastasis via various

signaling pathways. In addition, they are effective in combination therapies: MFs not only

promote the absorption of chemotherapy drugs by producing small holes on the surface

of cell membrane but also enhance the inhibitory effects by regulating apoptosis and

cell cycle related proteins. At present, MFs can be used as drug delivery systems to

target magnetic nanoparticles (MNPs) to tumors. This review aims to summarize and

analyze the current knowledge of the pre-clinical studies of anti-tumor effects and their

underlying mechanisms and discuss the prospects of the application of MF therapy in

cancer prevention and treatment.

Keywords: magnetic fields, anti-tumor, molecular mechanism, static magnetic fields, low-frequency magnetic

fields

INTRODUCTION

Cancer is a serious threat to human health and one of the leading causes of death worldwide.
According to estimates with regard to morbidity and mortality for 36 kinds of cancers in 185
countries, about 18.1 million new cancer cases plus 9.6 million cancer-associated deaths happened
in 2018 (1). Among these cancers, the highest incidence types are lung (11.6%), breast (11.6%),
prostate (7.1%), and colorectal (6.1%) cancers. At present, the primary options for advanced cancer
treatments, namely chemotherapy and radiotherapy, always have some limitations such as severe
side effects and drug resistance (2–4). It is necessary to develop new therapies to address these
disadvantages. In this context, more attention was paid for alternative treatments involving some
non-invasive approaches like light, heat, electrical field, magnetic field (MFs), and ultrasound
therapies (5–9), which are of high efficiency and incur low costs without inducing infections or
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forming scars. Among them, the MF therapy has been studied
a lot in recent years, as early as 1971, when Weber et al. (10)
validated the inhibitory effects of MFs on tumor-bearing mice.
Over the next few decades, many researchers have explored
this phenomenon and put forward more evidence about the
relevant mechanisms (11–13); at the same time, clinical trials
demonstrated its advantage in relieving clinical symptoms, and
improving the quality of life of patients with recurrent and
rapidly progressing tumors (Table 1) (17). Early studies have
shown that in the field of cancer treatment, MFs have potential
application prospects with few side effects and wide applications.
MFs could non-invasively induce the death of cancer cells,
whereas lymphocytes showed little necrosis in vitro (18, 19).
In other medical studies, the MF therapy has been reported
to have beneficial results in peripheral nerve regeneration (20),
osteo-necrosis (21), and injury-induced osteoporosis (22). MFs
at frequencies above 100 kHz predominately show thermal
effects; otherwise, they would exert non-thermal effects (23).
Recently, non-thermal biological effects of MFs have been
reported in many aspects, among which are studies on tumor
treatment. The inhibitory effects of static magnetic fields (SMFs)
and low-frequency magnetic fields (LF-MFs, with frequency
below 300Hz) have been studied against a wide variety of
human cancer cell lines, such as leukemia (24–31), fibrosarcoma
(32), colon carcinoma (32–34), and breast cancer (35–40).
Furthermore, MFs suppress the growth of Lewis lung carcinoma
(LLC) (41) and Ehrlich ascites carcinoma (42, 43) in vivo,
and even prolong survival and improve the general symptoms
of 21 patients with advanced gastric cancer (44). MFs have
shown to exert anti-tumor action through various pathways
and multiple molecular mechanisms, such as the inhibition of
cell growth and proliferation; the induction of apoptosis, cell
cycle arrest, and autophagy; participation in immune regulation
as well as depression of angiogenesis, and metastasis; and
promotion of differentiation. Of interest, they are effective
in combination therapies with chemotherapeutic agents and
magnetic nanoparticles (MNPs).

AIM AND SEARCHING CRITERIA

Thermal Effects and Non-thermal Effects
by (MF) Therapy
Two conditions of the molecular mechanism, namely thermal
effects and non-thermal effects, are involved in MF-induced
biological effects (23). According to IEEE C95.1-2019, thermal
effects are defined as “changes associated with heating of
the whole body or an affected region sufficient to induce a
biological effect.” Electro-stimulation is the dominant effect
at low frequencies and thermal effects dominate above radio
frequencies. The International Commission on Non-Ionizing
Radiation Protection (ICNIRP) gives a more detailed description
of electro-magnetic fields at radio frequency (100 kHz−300
GHz), which could penetrate the body and cause a vibration of
charged or polar molecules inside, resulting in friction and heat.
Thermal effects lead to an increase in bulk temperature, which
would thermally induce membrane depolarization, excitation,

TABLE 1 | Early research foundation of magnetic fields (MFs) in

tumor suppression.

Year Some important breakthroughs Reference

1961 Mulay et al. discovered tumor cells exposed to

MFs showed complete degeneration.

(14)

1971 Weber et al. confirmed that the

non-homogeneous MF consistently prolonged

the life spans and slowed down the growth of

tumors in mice.

(10)

1971–1975 Mizushima and Degen et al. reported the

anti-inflammatory effects of MFs.

(11, 15)

1999 Chakkalakal et al. found that the MFs had the

potential to promote the effects of

chemotherapeutic drugs and reduced the

dosage and side effects.

(16)

2001 Tofani et al. demonstrated that static plus

low-frequency magnetic fields (LF_MFs)

induced the apoptosis of tumor cells.

(13)

Douglas et. al. described the inhibitory effects

of MFs on angiogenesis during tumor growth.

(12)

2010 Vasishta found MFs alleviated the clinical

symptoms and improved the quality of the life

of patients with anaplastic astrocytoma.

(17)

and breakdown and show a distinct side effect on the
organisms (45). Non-thermal effects could be described as
direct interactions of MF with biological cells that are not
associated with any heating but are associated mainly with
electro-stimulation (23, 46). Based on the physical mechanisms,
extremely LF-MFs (<300Hz) are regarded as non-thermal
effects (47).

Aim and Scope
Magnetic fields are generally generated by permanent magnets or
electric currents, and there are several classification methods for
MFs. According to the mechanism of the generation of MFs, they
are divided into permanent magnetic fields and electromagnetic
fields. While the variation rate of the intensity of the MF with
spatial displacement is equal to 0, it is a uniformMF; otherwise, it
is a gradient magnetic field (GMF). Moreover, if the distribution
of the MF changes with time, they are classified as SMFs and
non-SMFs, such as alternating magnetic fields (AMFs), pulsed
magnetic fields (PMFs), and rotating magnetic fields (RMFs). In
consideration of their working frequency, theMF is classified into
low frequency (LF) (<300 kHz), medium frequency (MF) (300
kHz−3MHz), and high frequency (HF) (>3MHz). According to
the Regulations (2012) of the International Telecommunication
Union (ITU), LF-MFs are further divided into tremendously
LF(<3Hz), extremely LF (3–30Hz), super LF (30–300Hz), ultra
LF (300–3000Hz), very LF (3–30 kHz), and LF (30–300 kHz)
(48). Many studies have shown that SMFs and LF-MFs (f <

300Hz) exerted anti-tumor effects, in which the temperature
was maintained at around 37◦C for cell culture in vitro and
excluded thermal effects (30, 49, 50). To comprehend the non-
thermal effects of the MF therapy on cancers, we focus on the
abovementioned MF types in this review, aiming at describing
the state of the art of MF therapy, discussing the current
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understanding of the underlying anti-cancer mechanisms, and
outlining future therapeutic perspectives in oncology. Common
setups, types, exposure direction, and duration of the action are
summarized in Table 2.

In this review, we focus on the non-thermal effects of SMFs
and LF-MFs (<300Hz) on cancer cells and their applications in
cancer treatment. The review aims to highlight the critical areas
regarding the uses of MF therapy, which are not fully understood
and need to be investigated further.

Searching Criteria
The literature search was carried out with Scopus, Google
Scholar, PubMed, Web of Sciences (ISI Web of Knowledge),
Medline, and Wiley Online Library databases. Available
publications (in English) in peer-reviewed journals on the
biological effects of SMFs and LF-MFs between 2008 and
2019 were selected for analysis. We focus on SMF- and LF-
MF-induced anti-tumor effects in in vivo and in vitro studies.
The studies on the influence of SMFs and LF-MFs on other
organs and systems were excluded from the literature. The
keywords used for the literature research were “apoptosis,”
“cell cycle arrest,” “autophagy,” “angiogenesis,” “immune,”
“inflammation,” “differentiation” (as a combination with “low
frequency electromagnetic fields” or “static magnetic fields,” and
“tumor” or “cancer” or “oncology”).

THE EFFECTS OF MFS ON CELL
PROLIFERATION, CELL CYCLE ARREST,
CELL APOPTOSIS, AND AUTOPHAGY

Magnetic fields exert their function through various pathways
and multiple targets. A large number of recent studies
have shown that MFs have anti-tumor effects by inhibiting
cell proliferation and inducing cell cycle arrest, apoptosis,
and autophagy.

Cell Cycle Arrest
The cell cycle, which consists of the G1, S, G2, and M phases, is
a very complex and delicate regulation process closely related to
cell differentiation, growth, and death. Abnormal expressions of
some cell cycle proteins could cause uncontrolled replication of
cancer cells; so it is a promising therapy to target cyclins (58).

DNA integrity is critical to cells; common radiotherapy and
most of the chemotherapies exert their function by damaging
the cancer cells of DNA, which would inhibit proliferation at
cell cycle checkpoints and lead to cell death (59). SMFs (8.8 mT,
12 h) enhanced the killing potency of cisplatin, adriamycin, and
paclitaxel by triggering DNAdamage, inducing cell ultrastructure
alteration, and arresting K562 cells at the G2/M phase (27–29).
RMFs (0.4 T, 7.5Hz, 2 h/day) inhibited the growth of B16-F10 in
vitro, elevated the survival rate, and inhibited the proliferation
in the lung metastasis model mice, where an increase in the
G2/M phase was detected (52). CDK1-cyclin B, also known as
cell division control protein kinase 2-cyclin B (cdc2-cyclin B)
functions at the G2/M phase of the cell cycle, to accelerate cell
mitosis (60). SMFs (200 ± 60 mT, 48 ± 4 h) induced human

malignant glioblastomata, such as U87 and U251, to arrest the
G2/M phase by downregulating the expressions of cyclin B1
and CDK1 (61). The p53 protein is a critical participant in the
signal transduction pathway which mediated apoptosis and G1
cell cycle arrest in mammalian cells (62). LF-MFs significantly
inhibited tumor growth, induced cell senescence, inhibited iron
metabolism of the LLC murine model, and the in vitro induced
G0/G1 phase arrest of A549 lung cancer cells via stabilizing p53
protein and activation of the P53-miR-34a-E2F1/E2F3 pathway
(41). In addition, earlier experiments with high risk BE(2)-C
neuroblastomas continuously exposed in 50Hz, 1mT LF-MF for
72 h led to an enhanced cell response to ATRA, along with an
increase in the levels of p21, Cdk-5, and G0/G1 population (63).
A 24-h exposure of 50Hz, 100 uT LF-MF exposure slowed down
the progression of the cell cycle, which is associated with the
regulation of p21 in early response (64). These data indicate that
MFs are found to arrest cells at different stages, thus leading
to anti-proliferation effects on cells by modulating cell cycle
regulatory proteins, as summarized in Figure 1.

Apoptosis
Apoptosis, which is a form of programmed cell death as well as a
target for anti-tumor therapies, plays an important role in cancer
treatment (65). There are two main apoptosis pathways: one
occurs through the mitochondrial pathway (intrinsic pathway)
and another through the cell death receptor pathway (extrinsic
pathway). The intracellular mitochondrial pathway is mainly
regulated by B-cell lymphoma-2 family, which could promote
the formation of channels in the extracellular membrane of
mitochondria to change the permeability, release a variety
of apoptosis-related proteins to activate caspase, and induce
apoptosis (66, 67). Targeting some pro-apoptosis proteins, anti-
apoptosis proteins, and mitochondrial membrane permeability
are attractive for cancer therapy, by contributing to the
occurrence of the intrinsic apoptosis pathway (68, 69).

Magnetic fields have been shown to induce apoptosis in
human tumor cells studied in vitro. A 50-Hz LF-MF (5.1
mT, 2 h/day) inhibited proliferation of nephroblastoma and
neuroblastoma cells, induced apoptosis in vitro, and promoted
the efficacy of cisplatin in vivo (49). Reactive oxygen species
(ROS) and mitochondria play an important role in the induction
of apoptosis (70), and an increase in ROS levels can lead to
cytochrome c release and mitochondrial apoptosis (54). The
MF treatment has been shown to promote the generation
of ROS in many studies (31, 71, 72), with exposure within
a 60Hz sinusoidal MF for 48 h in induced human prostate
cancer for DU145, PC3, and LNCaP apoptoses, associated with
the accumulation of ROS in an intensity-dependent manner
(73). Generally, apoptosis provoked by genotoxins is largely
due to DNA damage (74), while DNA double-strand breaks
(DSBs) are one of the most severe types of DNA lesions
(75). Repetitive exposure to LF-MFs induced DNA damage
and accumulation of DSBs and triggered apoptosis in Hela
and MCF7 cell lines (35, 76). As p53 is a tumor suppressor
gene that plays a pivotal role in apoptosis, PMFs could trigger
apoptosis cell death by upregulating the p53 level and through the
mitochondrial-dependent pathway (57). LF-MFs (300 mT, 6Hz,
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TABLE 2 | Common setups, types, exposure direction, and duration of the action of MFs used in anti-tumor studies.

Characteristics Terminology Graphic

representation

Description Reference

Common MF

setups

Permanent

magnet

One permanent

magnet

(51)

Permanent

magnets

Two permanent

magnets aligned in

the same direction

(52)

Solenoid coils B = u0 × (N/L) × I

N - turn ratio of

coils;

L - solenoid length

(27, 53)

Uniform

(Helmholtz

geometry)

B(x, y, z) ≈ const

grad B ≈ 0

(54)

MF types Static magnetic

fields (SMFs)

B = B0= const (24, 51)

Alternating

magnetic fields

(AMFs)

B = B0×sin (2πft)

f - field

change frequency;

(39)

Pulsed-magnetic

fields (PMFs)

te- field action

duration

tp- pause duration

(35)

Gradient magnetic

fields (GMFs)

B is proportional

to 1/d2

d - the distance

away from the

magnets

(55)

(Continued)
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TABLE 2 | Continued

Characteristics Terminology Graphic

representation

Description Reference

Orientational Parallel B parallel to r

r - the plane of cell

culture dish

(26)

Vertical B perpendicular to

r

(33)

Rotating B = const

ϕ = ω t

(52)

Random B ∼ variable

ϕ ∼ variable

(40, 56)

Exposure Continuous tON = te

tON - field action

duration;

te-exposure

duration

(57)

Intermittent tON- pause

duration
∑

tON<te

(35)

24 h) also induced apoptosis by suppressing protein kinase B
(Akt) signaling, activating p38 mitogen-activated protein kinase
(MAPK) signaling, and caspase-9, which is the executor of the
mitochondrial apoptosis pathway (77).

The findings of these studies have shown that MFs affect
apoptosis in the cancer cell lines of various origins. However,
at present, there are few studies in this area, and further studies
are required for detailed mechanisms. The proposed mechanism
involved in the effects of MFs on tumor cell apoptosis is
shown in Figure 1.

Autophagy
Autophagy is thought to have a therapeutic potential to prevent
cancer development, but whether to enhancing or inhibiting it

will achieve the desired anti-tumor effects remains questionable
(78). Autophagy could be ascertained by detecting LC3-II,
a marker of autophagic vesicle accumulation (79). To date,
miRNAs were proved to involve in the modulation of a
wide range of biological processes, including apoptosis and
autophagy (80). The expression of the autophagy marker,
LC3-II, detected by Western blotting and GFP-LC3 puncta-
formation assay examined by confocal microscopy, showed
that RMFs (0.4T, 7.5Hz, 4 h/day) induced autophagic cell
death and suppressed cancer growth in vitro and in vivo. The
main mechanism involved the upregulation of the expression
level of miR-486, which was targeting BCAP, the inhibition
of Akt/mechanistic target of rapamycin kinase (mTOR), and
the induction of autophagy by RMF (81). These findings
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FIGURE 1 | The effect of MFs on different signaling pathways and their molecular targets. MF, magnetic field; cdc, cell division control protein kinase; ERK,

extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase; Akt, protein kinase B; Pi3k, phosphatidylinositol 3-kinase; mTOR, mechanistic target of

rapamycin kinase; eEF2K, eukaryotic elongation factor 2 kinase; NF-κB, nuclear factor kappa B; IL, interleukin; TNF, tumor necrosis factor; VEGFR, vascular

endothelial growth factor receptor.

showed the potential of MF in triggering the autophagic
cell death.

THE EFFECTS OF MFS ON THE IMMUNE
SYSTEM

The immune function in an organism exerts an essential
role in the occurrence and metastasis of tumors. The RMF
(0.4T, 7.5Hz, 2 h/day) has the capacity to elevate the survival
rate of tumor-bearing by modulating the immune response
and functions of innate immune cells and adaptive immune
cells, such as regulating cytokine production in mice serum,
promoting T-cell polarization in the spleen, preventing the
differentiation of the regulatory cells (Tregs), and increasing
the expression of CD40 in dendritic cells (52). Furthermore,
analogous results were discovered in mouse H22 hepatocellular
carcinoma, with an enhanced anti-tumor immune response; the

inhibition of tumor growth; and the suppression of interleukin-
6 (IL-6), granulocyte colony-stimulating factor (G-CSF), and
keratinocyte-derived chemokine (KC). Meanwhile, the MF
exposure was associated with the activation of macrophages
and dendritic cells, enhancement of the profiles of CD4+T
and CD8+T lymphocytes, the balance of Th17/Treg, and the
reduction of the inhibitory function of Treg cells in vivo (82).
A combination of SMF with AMF stimulated the production of
tumor necrosis factor-α (TNF-α), interferon-gamma, IL-2, and
IL-3 in healthy mouse cells, inhibited solid tumor growth, and
enhanced the average lifespan, after daily exposure for 2 h within
14 days (83).

Inflammation is a key factor in the immune response to injury
and infection; some studies have shown that the progression of
various cancers may be closely related to chronic inflammation
(84, 85). Exposure to PMF with an intensity of 40 Gauss and
frequency below 30Hz for 48 h decreased the production of the
inflammationmarker TNF-α and the transcription factor nuclear
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factor kappa B (NF-κB). In RAW 264.7 macrophage-like cells,
induced by LPS, this regulation process could be appropriately
applied to patients with sepsis (86). The upregulation of A2A
and A3ARs adenosine receptor mRNA levels by the PMF (1.5
± 0.2 mT, 75Hz, 24 h) mediated the anti-inflammation effect,
induced the decrease of NF-κB expression, upregulated p53, and
induced apoptosis in tumor cells (57). The GMF (6.39–513.69
mT, 24 h) significantly inhibited the release of pro-inflammatory
cytokines, IL-6, IL-8, and TNF-α, frommacrophages and assisted
the production of anti-inflammatory cytokine, IL-10, when treate
alone for 24 h and then combined with LPS (87). A similar
response was induced by the PMF in N9 microglial cells (88).
An in vitro study found that SMF (0.4 T, 6 h) could attenuate
LPS-induced neuro-inflammatory responses in BV-2 cells, and
this effect was associated with increased microglial membrane
rigidity and downregulation of IL-6 release (89). MFs have the
ability to enhance the immune response of the body to tumors
by modulating the functions of immune cells and inhibiting
chronic inflammation (Figure 1); while the regulation of the
immune system is complex, further research is needed to explain
the relationship.

THE EFFECTS OF MFS ON
ANGIOGENESIS, METASTASIS, AND
DIFFERENTIATION

Angiogenesis
Angiogenesis is a critical physiological and pathological process
in embryo development, tumor development, and metastasis.
The formation of new blood vessels gradually has become
an essential therapeutic target in cancer treatment, ischemic
diseases, and chronic inflammation (90). Vascular endothelial
cell migration is an important part of the angiogenesis process
of tumors, and vascular endothelial growth factor (VEGF-A,
VEGF) and its receptor-2 (VEGFR-2) play an important role
in tumor angiogenesis, which gradually becomes a target in
anti-tumor therapy (91). The SMF (600 mT, 10 days) has been
shown to inhibit angiogenesis by reducing vessel diameters, the
functional vessel density (FVD), and red blood cell velocity
to retard vessel maturation by in vivo tests (92). After 24-h
exposure in the GMF (0.2–0.4 T, 2.09 T/m), the proliferation
ability of human umbilical vein endothelial cells (HUVECs)
was significantly inhibited. In the chick embryo chorioallantoic
membrane (CAM) model, vascular numbers of continuously
exposure treatment group (7–11 days) are fewer than those in
the control group, which is consistent with the results in matrigel
plugs models (55). Sinusoidal MF (1 mT, 50Hz,72 h) inhibited
the formation of tubule-like structures and downregulated the
process and migration of HUVECs by reducing the expression
and activation levels of VEGFR2 (93). A combination therapy
of MF (0.04 T,50Hz, 1 h) and saffron had synergic effects on
VEGFR2 gene expression; they reduced the VEGFR-2 level by
36%, while MF alone only induced a 20% decline in human
breast cancer cells (37). A therapeutic MF device, which could
generate a defined 120Hz semi sine wave signal with variable
intensity (10–20 mT), was tested for the optimal intensity and

treatment period of MF therapy for breast cancer. Exposure
to 20 mT for 10min two times a day within 12 days was the
most effective tumor suppressor; the MF treatment reduced
the vascular (CD31 immuno-histochemically positive) volume
fraction (94). These studies indicate that the MF theraphy is a
promising therapy that may target tumor angiogenesis through
the pathways showed in Figure 1.

Metastasis
Tumor metastasis is the leading cause for death in patients with
cancer, and up to 90% of cancer deaths occur due to metastasis.
After intermittent treatment for several weeks, a therapeutic
electromagnetic field (15 mT, 10 min/day) has proved to inhibit
the metastatic spread in the nude mice injected with breast
cancer cells, which might be associated with the decrease in
volume density of blood vessels (95). Furthermore, the RMF
(0.4 T, 7.5Hz, 2 h) significantly suppressed the metastasis of
melanoma and survival time of the mice injected with B16-
F19 cells (52). Actin cytoskeleton plays a major role in the
process of driving cellular protrusions, such as lamellipodia and
filopodia, at the leading edge of the cell, which is necessary
for cell migration (96). In the absence of the geomagnetic
field, also known as hypomagnetic field environment, the
SH-SY5Y neuroblastoma cell adhesion and migration ability
were diminished. Geomagnetic field shielding decreased the
irregularity and eccentricity of the cell shape; cells maintain a
weakened adhesive morphology, thicker, smaller, and rounder,
which may be associated with its negative regulation of actin
assembly (97).

Differentiation
Moreover, the growth rate of tumors is closely related to the
degree of tumor differentiation, which is an important reference
index in cancer diagnosis and treatment. The LF-MF (5 mT,
50Hz) was proved to cause an increase in 20% differentiation
of hemin-induced K562 cells with a daily exposure of 1 h for 4
days (30). Another study found that the LF-MF (2 mT, 50Hz,
96 h) exposure decreased the cellular proliferation potential and
contributed to the ATRA-treated acute promyelocytic leukemia
NB4 cell differentiation that varies with dose, where ROS and
extracellular signal-regulated kinase (ERK) signaling pathways
may be involved (31). These data suggested that MFs play
promising roles as an assistant therapy in combination with
other drugs to induce differentiation of leukemia cells. However,
only a few studies have focused on the effects of MFs on the
differentiation of cancer cells, and themechanism involvedmight
need a more detailed research.

MFS IN COMBINATION THERAPIES

In Combination With Chemotherapy and
Other Therapies
Chemotherapy always meets with increased toxicity and side
effects caused by high dosage and drug resistance triggered by
prolonged treatment, while combination therapy has obvious
advantages by avoiding these. The co-treatment of SMF and
cisplatin (10 ug/ml) for 12 h substantially suppressed the growth
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FIGURE 2 | The effect of MF in combination therapy. The MFs not only increased the intake by producing small holes on the surface of the cell membrane and

decreased the efflux of chemotherapeutic drugs by inhibiting ABC transporters but also affected ROS generation, DNA integrity, and apoptosis-related pathways to

trigger apoptosis. P-gp, P-glycoprotein; MF, magnetic field; ROS, reactive oxygen species.

of K562 cells and augmented the chemosensitivity to cisplatin.
This effect was correlated with the enhanced level of DNA
damage and the arrest of the S-phase (27). Exposure to SMF
with the intensity of 10 mT for 48 h led to a marked decrease
in the viability percentage of cisplatin-treated HeLa cells through
ROS accumulation (72). Appropriate SMF therapy increased the
sensitivity of ovarian cancer cells, such as A2780 and A2780-
CP, to cisplatin depending upon dose and exposure time, via
producing small holes and large verrucous structures on the
surface of the cell membrane (27, 98). The expression of P-
glycoprotein is associated with multidrug resistance (MDR) in
cancer cells, which is one of the main mechanisms of drug
resistance in cancer cells (99). A combination with the SMF
(8.8m T, 12 h) decreased the expression of P-glycoprotein (P-gp)
in K562 cancer cells, while adriamycin itself induced an increase
(28). PMF (2 mT, 75Hz, 1 h/day) coupled with temozolomide

could slow down the proliferation of chemo- and radio-resistant
T98G glioblastoma cell line by epigenetically affecting the
regulation of oncogenes and tumor suppressors (100). The LF-
MF (10 mT, 100Hz, 144 h) promoted the sensitization of human
glioblastomata, namely U87 and T98G, to temozolomide, which
led to an increased apoptosis rate, with the evidence of increasing
the expression of p53 and Bax and decreasing the expression
of Bcl-2 and cyclin D1 (54). Capsaicin is the major pungent
ingredient of the hot chili peppers, which could bind to distinct
cell surface receptors including transient receptor potential
vanilloid 1 (TRPV1) ion channel to exert anti-tumor function. An
increased apoptosis rate was realized through the mitochondria-
dependent apoptosis pathway, and the conformational change
of TRPV1 triggered by the SMF (0.5 T, 72 h) might be the
reason for this enhancement effect (101). Pre-exposure to 50Hz
LF-MF for 12 h and treatement with 5-fluorouracil (5-FU) for
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FIGURE 3 | Schematic diagram of the combination of MFs with MNPs for cancer treatment in vitro (A) and in vivo (B). MF, magnetic field; MNPs,

magnetic nanoparticles.

24 h significantly inhibited the proliferation of MCF7 cells. This
phenomenon was explained by increased DNA synthesis and
upregulated cyclin E and cyclin D1 by the the MF to accumulate
cancer cells at the S phase, which was more sensitive to 5-FU
(102). The MF also showed a potential to retard tumor growth,
elevate survival improvement, and reduce side effects when
combined with radiotherapy and bacteriolytic therapy (43, 103).
Therefore, the results of these studies support the fact that the
MFs can be used as an adjunctive treatment to enhance the effects
of chemotherapeutic drugs by increasing the DNA damage, cell
apoptosis, and arresting the cell cycle, as summarized in Figure 2.

Acting as a Drug Delivery System
Drug delivery systems (DDSs) were developed for targeting
active biomolecules at the specific site of infection when
treating patients with cancer, to improve the selectivity of the
action sites of drugs, eliminate the side effects, and improve
treatment efficiency. The MF targeting systems are always
applied in combination with magnetic materials and anticancer
drugs. Under the function of 100Hz, 0.7 mT AMF, folic acid-
modified magnetic nanoparticles (FA-MNPs) and alpha fetal
protein monoclonal antibody-loadedMNPs (ATP-loadedMNPs)
selectively induced the apoptosis of cancer cells and elevated the

cellular iron uptake in a dose-dependent manner but had slight
toxic effects on healthy cells (104, 105). The growth-inhibitory
effects induced by SMFs and RMFs were enhanced by pretreating
the cells with MNPs, while regulating the type and parameters
of MFs could affect anti-tumor effects (106). The SMF along
with low-intensity pulsed ultrasound (LIPUS) plus methotrexate
(MT) prevented the growth of cancer cells better than bare drugs
and single DDS, without any inhibition on the healthy cells
(107). The detailed in vitro experiment results were subsequently
validated via in vivo experiments, and the LIPUS+SMF DDS
therapy improved at least 40% of the treatment efficacy, therapy
reducing the natural activities of the cancer cells by changing
the permeability, the potential of the cell membrane, and ROS
generation (108). These results indicate that theMF could act as a
DDS to target solid tumors in combination with MNPs to inhibit
proliferation (Figure 3).

CONCLUSION AND FUTURE
PERSPECTIVE

Numerous studies have shown that a wide range of types of
MFs could affect the tumor cells at different degrees, while the
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dominant effects were associated with thermal or non-thermal
mechanisms. The focus of this review is non-thermal effects,
which were produced directly by the applied MFs themselves,
instead of being produced indirectly as a result of heating.
We summarized the performance, namely inhibiting cancer cell
proliferation and inducing cell death in in vitro and in vivo
models, of SMFs and LF-MFs in anti-tumor treatments. Also,
co-treating with chemotherapy would achieve better therapeutic
effects; meanwhile, the MF could serve as a DDS, targetingMNPs
to the tumor, and the side effects are within the controllable
range. Although various potential mechanisms of MFs against
different cancer cell lines have been reported and discussed,
few studies were performed on in vivo models. At present,
most of these studies are confined to in vitro studies. Also,
relevant clinical trials to test the safety and efficacy of MFs
are not available. The limitations in these clinical studies might
be due to their controversial roles in in vitro and in vivo
studies, which are affected by some experimental variables such
as the frequencies, intensities, or exposure duration of the
MFs. Before clinical applications, there is still a demand for
systematically exploring. Future studies should aim at finding
optimum parameters at which these types of MFs will be most
effective. Epidemiological studies have suggested that MFs at
50/60Hz were also related to the development of depressive state

anxiety, metabolic disturbance, poor sleep quality, and locomotor
activity. However, according to ICNIRP, there is no sufficient
scientific evidence for the association between MF exposure and
these effects. Therefore, the most effective MF therapy should be
tested further to guarantee its possible investigation in human. As
for the MF devices, in consideration of the increasingly available
clinical applications, the expectations should be portable and
affordable. Future studies are expected to further determine the
potential of the MF therapy in oncology.
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