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Background. Reprogramming of lipid metabolism is closely associated with tumor development, serving as a common and critical
metabolic feature that emerges during tumor evolution. Meanwhile, immune cells in the tumor microenvironment also undergo
aberrant lipid metabolism, and altered lipid metabolism also has an impact on the function and status of immune cells, further
promoting malignant biological behavior. Consequently, we focused on lipid metabolism-related genes for constructing a novel
prognostic marker and evaluating immune status in prostate cancer. Methods. Information about prostate cancer patients was
obtained from TCGA and GEO databases. 1e NMF algorithm was conducted to identify the molecular subtypes. 1e least
absolute shrinkage and selection operator (Lasso) regression analysis was applied to establish a prognostic risk signature.
CIBERSORT algorithm was used to calculate immune cell infiltration levels in prostate cancer. External clinical validation data
were used to validate the results. Results. Prostate cancer samples were divided into two subtypes according to the NMF algorithm.
A six-gene risk signature (PTGS2, SGPP2, ALB, PLA2G2A, SRD5A2, and SLC2A4) was independent of prognosis and showed
good stability. 1ere were significant differences between risk groups of patients with respect to the infiltration of immune cells
and clinical variables. Response to immunotherapy also differed between different risk groups. Furthermore, the mRNA ex-
pression levels of the signature genes were verified in tissue samples by qRT-PCR.Conclusion. We constructed a six-gene signature
with lipid metabolism in prostate cancer to effectively predict prognosis and reflect immune microenvironment status.

1. Introduction

Prostate cancer (PCa) has become the second most common
malignant tumor in men worldwide in terms of incidence
and mortality, which seriously endangers men’s health [1].
PCa is the most diagnosed cancer in men in more than half
of the countries in the world, especially in developed
countries and regions [2]. A large number of epidemio-
logical studies have been conducted to confirm that age, race,
and family genetic history are recognized risk factors [3]. In
particular, along with the change in people’s lifestyle and diet
habits, obesity and the consequent disorder of blood lipid
levels have been noticed. High-calorie food and saturated

animal fat intake are associated with increased PCa in-
cidence [4, 5].

Lipids, as important active molecules in cellular life
activities, play an important role in adaptive changes in
cancer cell metabolism [6]. Altered lipid metabolism is one
of the most significant metabolic changes in tumorigenesis.
Enhanced lipid synthesis or uptake contributes to the rapid
growth of cancer cells and tumor formation [7, 8]. Lipids are
a highly complex class of biomolecules that not only form
the structural basis of biological membranes but also act as
signaling molecules and energy sources. Although most
somatic cells derive their lipids from food sources or hepatic
synthesis, various cancers reactivate fatty acids (FA)
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synthesis from scratch, making them more independent of
externally supplied lipids [9]. Consequently, blocking lipid
supply might have a significant impact on bioenergetics,
membrane biosynthesis, and intracellular signaling pro-
cesses in cancer cells. In addition, altered lipid effectiveness
would also affect cancer cell migration, induction of angio-
genesis, metabolic symbiosis, evasion of immune surveillance,
and cancer drug resistance [10, 11]. However, targeting this
aspect of cancer cell metabolism remains challenging given the
complexity of cellular lipid species and the dynamic nature of
their synthesis, remodeling, and catabolism.

Currently, immune cells in the tumor microenviron-
ment (TME) also undergo lipid reprogramming, which has
a significant impact on T cell function [12, 13]. 1rough
continuous exploration and in-depth analysis, there are
many new advances in the understanding of the complexity
of lipid metabolism in different tumor immune cells, and the
molecular mechanisms of lipid metabolism on cell function
[14]. Targeting genes and enzymes related to tumor and
immune lipid metabolism may have different effects on
cancer prevention and treatment [15]. 1erefore, abnormal
lipid metabolism and tumor immunity are gaining wide-
spread attention and enthusiasm from researchers.

In this study, the expression of lipid metabolism-related
genes in PCa was examined in order to recognize hub genes
that are predictive of patient outcome and immune mi-
croenvironment status. We constructed and validated a six-
gene signature that accurately predicts PCa patient prog-
nosis, along with immune infiltration cell patterns. Clinical
application of this prognostic signature may be possible and
reflects the immune status of PCa patients.

2. Materials and Methods

2.1. Data Collection. Human lipid metabolism pathways
were downloaded from the Molecular Signature Database
(MSigDB) [16], and 776 genes (Supplementary Table S1) were
obtained from six lipidmetabolism pathways (Supplementary
Table S2). PCa samples and corresponding clinicopatholog-
ical information were obtained from TCGA database and
GEO database (GSE116918). 1e sample information in
TCGA dataset was shown in Supplementary Table S3.

2.2. Molecular Subtype Identification. A total of 776 genes
from TCGA dataset were extracted and genes with sig-
nificant differential expression were selected. PCa samples
were clustered using nonnegative matrix factorization
(NMF) clustering algorithm [17]. We set the number of
clusters k from 2 to 10, and determined the average contour
width of the common member matrix using the R package
“NMF.”

2.3. Gene Set Variation Analysis (GSVA). 1e GSVA en-
richment score of the signaling pathway in each PCa sample
was calculated using the “GSVA” R package. 1e correlation
between the different risk subgroups and clinical variables
was analyzed by the chi-square test. Kaplan–Meier survival

analysis was applied to analyze the difference in progression-
free survival (PFS) between the two subgroups.

2.4. A Comprehensive Analysis of Immune Characteristics.
PCa samples were examined for their immune profiles by
importing their expression data into CIBERSORT and it-
erating 1000 times to estimate the relative proportions of
immune cells. Our results were displayed as a landscape map
showing the proportion of immune cells and clinicopath-
ological factors. An immunophenoscore (IPS) was used to
represent tumor immunogenicity on a scale from 0 to 10.
Higher IPS scores represent increased immunogenicity. 1e
IPS of TCGA patients was obtained from the Cancer
Immunome Atlas (TCIA) (https://tcia.at/home).

2.5. Clinical Patients and Prostate Specimens. Sixty paired
normal and tumor tissues were collected from PCa patients
who underwent surgery at the Second Affiliated Hospital of
Anhui Medical University (Hefei, China). 1ey had di-
agnostic criteria according to the WHO classification and
received no preoperative treatment. Informed consent was
obtained from each patient before inclusion in the study, and
ethical approval was obtained from the Ethics Committee of
the Second Affiliated Hospital of Anhui Medical University.

2.6. RNA Extraction and qRT-PCR. TRIzol (Invitrogen,
USA) was used to extract the total RNA. qRT-PCR was
conducted based on the manufacturer’s instruction.
GAPDH was an internal control. Fold-changes were cal-
culated by the 2−ΔΔCt method. Primer information is shown
in Supplementary Table S4.

2.7. Statistical Analysis. Bioinformatic analyses were con-
ducted using R version 4.1.1. For comparing continuous
data, Student’s t or Wilcoxon test were used. 1e chi-square
test and Fisher test were used for comparing clinical and
pathological parameters. Spearman correlation analysis was
used to analyze the correction between the risk signature and
immune cells. All statistical p-values were two-sided and
p< 0.05 was considered statistically significant.

3. Results

3.1. Different Subtypes Were Classified Based on Lipid
Metabolism-Related Genes. Six lipid metabolism-related
gene sets were selected from MSigDB. 1e gene expres-
sion of PCa was investigated using RNA-seq data from
TCGA prostate cancer cohort (TCGA-PRAD). To identify
genes with differential expression, the “limma” R package
was used. 1e differential expression of 56 lipid metabolism-
related genes were found on PCa (p< 0.05, Figure 1(a),
Supplementary Table S5). After that, PCa samples were
clustered by the NMF method. Cophenetic, dispersion, and
silhouette all indicate that k� 2 is an optimal number of
clusters (Figures 1(b) and 1(c)). PFS prognostic relationships
between Cluster 1 (C1) and Cluster 2 (C2) show that
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subgroup C1 has a better prognosis than subgroup C2
(Figure 1(d), log-rank p< 0.001).

3.2. Establishment of the Prognostic RiskModel. To screen for
significant genes associated with prognosis in TCGA-PRAD
cohort, we performed a Cox proportional hazard analysis.

On the basis of a p-value of less than 0.05, 11 genes showed
significant prognostic differences (Supplementary Table S6).
In order to develop a highly accurate prognostic model and
to narrow the list of genes, Lasso regression analysis was
used to identify hub genes (Figures 2(a) and 2(b)). Com-
bining the analysis, six target genes were selected. 1e six-
gene signature formula was as follows: Risk
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Figure 1: Classification was based on different subtypes. (a) Volcano map displaying the differentially expressed lipid metabolism-related
genes in TCGA-PRAD. Red: up-regulation, blue: down-regulation. (b) NMF clustering consensus map. (c) NMF distributions when
rank� 2–10. (d) Progression-free survival analysis of two subtypes in TCGA-PRAD.
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score� expression level of PTGS2× (−0.033) + expression
level of SGPP2× (0.188) + expression level of ALB×

(0.149) + expression level of PLA2G2A× (−0.045) + ex-
pression level of SRD5A2× (−0.229) + expression level of
SLC2A4× (−0.035). PCA plot analysis demonstrated that
samples in two risk groups were distributed in two directions
with the six genes in our risk model compared with lipid
metabolism-related gens (Figures 2(c) and 2(d)). 1e K-M
curves for the two subgroups of the risk score were shown in

Figure 2(e), and there was a significant difference between
them (p< 0.001). We then used the same coefficients in
GSE116918 as an independent validation cohort and sig-
nificantly different results were observed (Figure 2(f),
p � 0.029). 1e area under the curve (AUC) values for 1, 3,
and 5 years, respectively, were 0.588, 0.737, and 0.764
(Figure 2(g)). Furthermore, we compared the 5-year ROC
curve with some clinicopathological variables. We found
that the risk model exhibited satisfactory prognostic

–7 –6 –5
Log (λ)

Pa
rt

ia
l L

ik
eli

ho
od

 D
ev

ia
nc

e

–4 –3

10
11.9

11.8

11.7

11.6

11.5

11.4

11.3

11.2

10 10 10 9 8 8 8 6 6 6 6 4 4 2 07

(a)
C

oe
ffi

ci
en

ts

–7
–0.3

–0.2

–0.1

0.0

0.1

0.2

–6 –5
Log Lambda

–4 –3

10 9 6 27

4
6

7

8

5

9
3
2

11
10

(b)

PC
2

–30

–20

–10

0

10

20

–20 0
PC1

20

Risk
high
low

(c)

PC
2

–2

–2

–4 0

0

2

2

PC1

Risk
high
low

(d)

Pr
og

re
ss

io
n 

fre
e s

ur
vi

va
l

Ri
sk High risk

Low risk

1.00

0.75

0.50

0.25

0.00

p<0.001

10 2 3 4 5 6 7 8
Time (years)

9 10 11 12 13 14 15

Risk

High risk

Low risk

Time (years)
10 2 3 4 5 6 7 8 9 10 11 12 13 14 15

247 206150102 61 39
46 23 13 7

7 7 3
1 1

2
0 0 0

0 0
0

1 1
5

19 11
248 212160102 64

(e)
Pr

og
re

ss
io

n 
fre

e s
ur

vi
va

l

Ri
sk High risk

Low risk

Risk

High risk

Low risk

p=0.029

Time (years)

Time (years)

10
0.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7 8 9 10

10 2 3 4 5 6 7 8 9 10

0
07275482

96107
9498

120 115
101106

131135
110111

137 53 29 9

(f )

Se
ns

iti
vi

ty

1 – specificity

AUC at 1 years: 0.588
AUC at 3 years: 0.737
AUC at 5 years: 0.764

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(g)

Se
ns

iti
vi

ty

1 – specificity

Risk, AUC = 0.764
Biochemical_recurrence, AUC = 0.692
Age, AUC = 0.608
Clinical_T, AUC = 0.697

Gleason_score, AUC = 0.649

Pathologic_N, AUC = 0.561
Pathologic_N, AUC = 0.585

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(h)

Figure 2: Establishment of the prognostic risk model. (a) LASSO coefficient profile plot. (b)1e values of lambda in the model. (c) PCA plot
in the two risk groups with lipid metabolism-related genes. (d) PCA plot in the two risk groups with risk signature genes. (e) Survival curves
of the groups in TCGA-PRAD cohort. (f ) Survival curves of the groups in the GSE116918 cohort. (g) ROC curve of the model in TCGA-
PRAD cohort. (h) 1e accuracy of the risk model was tested with other clinical variables.
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accuracy with regards to age, biochemical recurrence,
clinical T stage, Gleason score, pathological N stage, and
pathological Tstage (Figure 2(h)). Gene Expression Profiling
Interactive Analysis (GEPIA) database was applied to an-
alyze the associations between the six signature genes and
PFS in PCa [18]. Low expressions level of PLA2G2A,
SRD5A2, and SLC2A4 as well as high expression level of
ALB were closely correlated with poorer survival outcomes
of PCa patients (Figure 3).

3.3. Independent Prognostic Analysis and Construction of the
Nomogram. Univariate Cox regression analysis indicated
that biochemical recurrence, clinical T stage, Gleason score,
pathological N stage, pathological T stage. and risk were
closely related to PFS (Figure 4(a)). According to multi-
variate analysis, only biochemical recurrence (HR� 5.059,
95% CI� [2.831–9.041], p< 0.001), clinical T stage
(HR� 1.546, 95% CI� [1.051–2.275], p � 0.027), and risk
score (HR� 2.475, 95% CI� [1.540–3.977], p< 0.001) were
significantly related to PFS (Figure 4(b)). 1ese results
demonstrated that this six-gene signature was an in-
dependent factor predicting prognosis. 1e clinicopatho-
logical features and risk were combined to construct
a nomogram to assess the clinical utility of the prognostic
model (Figure 4(c)). Moreover, the nomogram displayed the

highest accuracy in predicting survival (AUC� 0.843)
compared with other independent factors (Figure 4(d)).

3.4. Association between the Risk Model with Clinical
Characteristics. Correlation analysis of the risk score and
clinical variables such as biochemical recurrence, clinical T
stage, Gleason score, pathological N stage, and pathological
T stage indicated a statistically significant association (Fig-
ures 5(a)–5(f)). Based on the risk score, PCa patients can
also be distinguished by age, clinical T stage, pathologic T
stage, and N stage (Supplementary Figure S1). In addition,
GSVA further confirmed that a high-risk subgroup was
significantly enriched in porphyrin and chlorophyll meta-
bolism and pyrimidine metabolism (Figure 5(g)).

3.5. Correlation between the RiskModel and Immunity. A 33
diverse cancer immune subtype classification has described
the immune landscape of PCa according to the immune
expression characteristics of four representative signatures:
C1 (wound healing), C2 (IFN-c dominant), C3 (in-
flammatory), and C4 (lymphocyte depleted) [19]. We found
that a higher proportion of C1, C2, and C4 was distributed in
the high-risk subgroup, while a higher proportion of C3 in
the low-risk subgroup (p � 0.001, chi-square test;
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Figure 3: GEPIA survival analysis of PTGS2, SGPP2, ALB, PLA2G2A, SRD5A2, and SLC2A4.
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Figure 6(a)). CIBERSORT was applied to evaluate the rel-
ative proportions of 22 kinds of immune cells in the TME to
examine the indicative roles of this risk model [20]. A
significant correlation was found between high-risk sub-
groups and CD4 memory-activated T cells, regulatory
T cells (Tregs), M0 macrophages, and M1 macrophages,
while the low-risk subgroup was significantly associated
with monocytes and mast resting cells (Figure 6(b)).
Figure 6(c) illustrated the relationship between clinical and
immunological characteristics of different subgroups
at risk.

As well, we investigated the potential of the risk model
for predicting the response to immune checkpoint inhibitors
(ICIs). 1e expression of PD-1, PD-L1, LAG3, and CD40
was markedly higher in the low-risk subgroup, indicating
a negative correlation with risk (Figures 7(b)–7(h)). A
quantification of enrichment scores of immune-related
pathways was also performed. Antigen presentation func-
tions, such as APC co-inhibition, CCR, and HLA, tended to
favor the low-risk group (Figure 7(a)).

3.6. Role of the Risk Signature in Immunotherapeutic
Responses. Next, the ESTIMATE algorithm was used to
investigate the correlation between the two groups in immune
scores and stromal scores [21]. We found that the low-risk
subgroup showed higher immune scores, stromal scores, and
estimate scores than the high-risk subgroup (Figure 8(a)).
1ese results further demonstrate that the risk model can
affect the immune activity of the TME in PCa. For in-
vestigating the capacity of risk predicting response to im-
munotherapeutic, immunophenogram analysis was
undertaken to investigate the association between immu-
nophenoscore (IPS) and different risk subgroups [22].
Findings showed that the low-risk subgroup exhibited higher
IPS compared with the high-risk subgroup, which implied
that low-risk score patients exhibited a higher positive re-
sponse to immunotherapy (Figures 8(b)–8(e)). Chemother-
apy is an effective strategy for cancer treatment. We further
analyzed the correlation between risk score and chemo-
therapeutic efficacy.We found that the low-risk subgroup was
positively associated with a lower IC50 of Docetaxel,
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Bleomycin, and Trametinb, while a higher IC50 of 5-
Fluorouracil and Mitomycin C, indicating a different dis-
tribution of targeted IC50 agents in low- and high-risk
subgroups (Figures 8(f)–8(j)).

3.7. Clinical Validation of this Risk Model. In addition to the
above results, 60 cases of tissue specimens of PCa were ana-
lyzed. We verified the mRNA expression of three signature
genes in cancer and normal tissues by qRT-PCR. 1e findings
also showed that themRNA expression of SGPP2was higher in
tumor tissues, whereas the mRNA expression of SRD5A2 was
higher in normal tissues (Figure 9).1ese results confirmed the
significant role of these genes in PCa. 1e workflow of the
present study was shown in Supplementary Figure S2.

4. Discussion

PCa is becoming a growing problem among men
worldwide. Its treatment is mainly divided into endocrine
therapy and surgery [23]. For patients with advanced PCa,

androgen resistance usually occurs, resulting in
castration-resistant prostate cancer (CRPC), which se-
verely affects the life expectancy and quality of patients
[24]. Additionally, its tendency to invade surrounding
tissues and cause local adhesion greatly increases the
difficulty of surgery [25]. Hence, studies are continuously
conducted to address the progression and aggressiveness
of PCa in order to explain the pathogenesis and explore
new therapeutic targets.

In terms of metabolic studies, PCa has remarkable
heterogeneity. On the one hand, its metabolic pattern is
different from other tumors, and on the other hand, its own
metabolic form has significant phenotypic changes as the
disease progresses [26, 27]. It has been clearly suggested that
in prostate malignancy cells, β-oxidation of FA becomes one
of the most important forms of energy supply [28]. Lipid
accumulation and disorders of lipid metabolism in PCa cells
increase the pathological process, CRPC, and aggressiveness
[29]. Further understanding of the energy metabolism of
PCa will enable us to design and find better drugs to prevent
the development of CRPC.
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Alterations in lipid metabolism affect a variety of cellular
functions, which in turn affect downstream signaling
pathways, associated with cell proliferation, adhesion, and
motility.1ese alterations in the tumor can be closely related
to enhanced oncogene signaling pathways and alterations in
related metabolic enzymes. Moreover, the interaction be-
tween parenchyma and mesenchyme in the malignant de-
velopment of tumor continuously remodels TME, and
a unique tumor-associated lipid microenvironment gradu-
ally forms around it, which can have complex interactions
with tumor cells through bioactive molecules such as hor-
mones and adipokines [30, 31].

Lipidmetabolism reprogramming can significantly affect
immune cell fate and function. Under normal conditions,
FA synthesis and uptake are key features of effector T cells.
To survive in a hostile environment, immune cells undergo
metabolic reprogramming, using FA as a secondary resupply
station for energy [32]. FA catabolism also improves CD8+
T cell function through alternative pathways [33]. 1e
normal function of immune cells is dependent on cholesterol
and membrane cholesterol levels control the number of
T cell receptor nanoclusters and affect their immune rec-
ognition function. Hossain et al. found that increased FA
uptake and oxidation in tumor-infiltrated MDSC were
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Figure 9: Clinical validation of this risk model. qRT-PCR analysis of SGPP2, SRD5A2, and PTGS2 mRNA levels in tissue samples (a)–(c).
∗p< 0.05, ∗∗p< 0.01, ns p> 0.05.
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accompanied by increased oxygen consumption rates and
mitochondrial mass [34]. 1ere is a potential impact of
altered lipid metabolism in tumor immunity on natural
killer T cell (NKT) nondependent and dependent immune
function [35]. Both the M1 and M2 phenotypes of mac-
rophages are dependent on specific lipid mediators [36].

1e present study identified two subtypes of PCa based
on genes that were associated with lipid metabolism using
the NMF algorithm. Next, Lasso regression analysis was
performed to construct a six-gene prognostic risk model.
According to our study, this model performed well in
predicting survival in PCa patients and correlated with both
clinical features and immune microenvironment. 1e risk
model was established with PTGS2, SGPP2, ALB, PLA2G2A,
SRD5A2, and SLC2A4. Based on the corresponding co-
efficients, a risk score was calculated. Samples were grouped
according to their risk levels. Discrepancies between the
survival analyses for different risk subgroups were signifi-
cant. Additionally, we found that the risk score was an
independent factor for survival. CIBERSORTconfirmed that
patients in the high-risk subgroup had higher proportions of
CD4 memory-activated T cells, regulatory T cells, M0
macrophages, and M1 macrophages, while monocytes and
mast resting cells were upregulated in the low-risk group,
suggesting different patterns of infiltration among the
subgroups. We also demonstrated that the low-risk sub-
group was correlated with immune checkpoints such as PD-
1, PD-L1, CD40, and LAG3, indicating that patients with
different risks respond differently to immunotherapy and
low-risk patients may have a better response to immuno-
therapy. Next, we further validated the expression of the risk
signature genes in PCa tissue specimens. 1e qRT-PCR
results suggested that the expression of SGPP2 was signif-
icantly elevated in tumor tissue specimens, while the ex-
pression of SRD5A2 was significantly increased in normal
tissue. Comparison with other relevant published studies, we
comprehensive analysis and explanation of the association
between the lipid metabolism-related genes with the im-
mune microenvironment and the prognosis of PCa. We
revealed the role of lipid metabolism-related genes in PCa
and validated the target genes in clinical samples. Never-
theless, the specific biological functions of these genes in PCa
need to be further explored.

Reprogramming of lipid metabolism is a prevalent and
crucial metabolic feature that emerges during tumor evo-
lution, allowing them to survive and further evolve in
a hostile environment [37]. 1rough extensive exploration
of aberrant lipid metabolism and tumor immunity, new
breakthroughs have beenmade in the discovery of molecular
mechanisms and metabolic adaptations, generating signif-
icant changes in antitumor therapeutic strategies [38].
Consequently, we sought to fill the gap between lipid
metabolism gene status and PCa prognosis prediction. We
believe these genes were involved in lipid metabolism
processes, and this model may serve as a prognostic bio-
marker for PCa and immune microenvironment evaluation.

In conclusion, we constructed a six-gene signature as-
sociated with lipid metabolism, which was an independent
prognostic factor in PCa. 1is six-gene signature could be

recognized as a prognostic marker to reflect the lipid
metabolism and immunity status of PCa.
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