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Abstract

Pleiotropy, which consists of a single gene or allelic variant affecting multiple

unrelated traits, is common across cancers, with evidence for genome-wide signifi-

cant loci shared across cancer and noncancer traits. This feature is particularly rele-

vant in multiple myeloma (MM) because several susceptibility loci that have been
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University of Pisa and DKFZ identified to date are pleiotropic. Therefore, the aim of this study was to identify novel

pleiotropic variants involved in MM risk using 28 684 independent single nucleotide

polymorphisms (SNPs) from GWAS Catalog that reached a significant association

(P < 5 � 10�8) with their respective trait. The selected SNPs were analyzed in 2434 MM

cases and 3446 controls from the International Lymphoma Epidemiology Consor-

tium (InterLymph). The 10 SNPs showing the strongest associations with MM risk

in InterLymph were selected for replication in an independent set of 1955 MM

cases and 1549 controls from the International Multiple Myeloma rESEarch

(IMMEnSE) consortium and 418 MM cases and 147 282 controls from the

FinnGen project. The combined analysis of the three studies identified an associa-

tion between DNAJB4-rs34517439-A and an increased risk of developing MM

(OR = 1.22, 95%CI 1.13-1.32, P = 4.81 � 10�7). rs34517439-A is associated

with a modified expression of the FUBP1 gene, which encodes a multifunctional

DNA and RNA-binding protein that it was observed to influence the regulation of

various genes involved in cell cycle regulation, among which various oncogenes

and oncosuppressors. In conclusion, with a pleiotropic scan approach we identified

DNAJB4-rs34517439 as a potentially novel MM risk locus.
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What's new?

Genetic variants can have multiple, seemingly unrelated, effects. Often, these so-called

“pleiotropic” variants play a role in cancer. Here, the authors set out to identify new pleiotropic

variants involved in multiple myeloma (MM) risk. They analyzed 28,684 independent single

nucleotide polymorphisms (SNPs) that had been identified in genome-wide association studies

as having an effect on a human trait. This analysis revealed an association between increased

MM risk and a variant called DNAJB4-rs34517439-A. That variant has been associated with

changes in expression of a DNA- and RNA-binding protein that helps regulate cell cycle genes.

1 | INTRODUCTION

Multiple myeloma (MM) is an incurable hematological disease originating

from plasma cells in the bone marrow.1 MM is the third most common

hematological tumor with a crude incidence rate of 6.8/100000 new

cases per year in Europe2 (https://gco.iarc.fr/today/home).

Several studies have investigated the genetic susceptibility of

MM, using genome-wide association studies (GWAS)3-10 or more tar-

geted approaches.8,11-15 Twenty-four risk loci have been found to be

associated with MM risk through GWAS; however, these variants

explain approximately only 16% of MM heritability.3 Due to the large

number of tests conducted in a GWAS, a stringent statistical signifi-

cance threshold, P < 5 � 10�8, is employed. The associated increase

in type II error rates means that many true associations may remain

undetected and unreported.

One strategy to avoid this loss of information is to investigate

pleiotropic variants. Pleiotropy is a genetic phenomenon consisting of

a single gene or allelic variant affecting multiple, often unrelated

traits.16 GWASs have identified several loci associated with cancer

and noncancer phenotypes. Recently, it was estimated that half of

all the SNPs showing an association with a Pvalue threshold of 10�8

are pleiotropic, and 12.34% show associations with 10 or more

phenotypes.17

Pleiotropy is frequent across cancers,18-20 with a portion of

genome-wide associated loci shared with other traits and several

regions harboring single nucleotide polymorphisms (SNP) associ-

ated with multiple cancer types. For example, the TERT and 8q24

loci are associated with risk of multiple cancer types, including

MM.12,21-25 This feature is particularly evident in MM since we

observed, using GWAS Catalog, that 17 of the 24 associated poly-

morphisms (�71%) are pleiotropic or in high linkage disequilibrium

(LD) (r2 > 0.8) with SNPs associated with other traits (https://www.

ebi.ac.uk/gwas/), including telomere length,26 BMI27 and risk of

various cancers, such as myeloproliferative neoplasms28 and pan-

creatic cancer.25 Therefore, the aim of this study was to test the

impact of all the SNPs associated at genome-wide significant level

with any human trait on risk of MM. This strategy has been

employed for several cancer sites18-20,29-31 but never for MM.
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2 | MATERIALS AND METHODS

2.1 | Study populations

The study employed a two-step approach, consisting of a discovery

phase in which the International Lymphoma Epidemiology Consortium

(InterLymph) GWAS data were analyzed, and a validation phase per-

formed using both summary statistics from the FinnGen project MM

GWAS (https://www.finngen.fi/en/access_results) and cases and con-

trols of the International Multiple Myeloma rESEarch (IMMEnSE)

consortium.

InterLymph has been described elsewhere.8 Briefly, InterLymph

generated GWAS data, using multiple platforms, for 2434 MM cases

and 3446 controls of European ancestry from the United States of

America, Canada and Australia genotyped using the Affymetrix 6.0

and Illumina (610 Quad, Human660W-quad Beadchip, Omni5,

OmniExpress Beadchip, Oncoarray) platforms.8 Imputation was per-

formed using the Haplotype Reference Consortium as reference panel,

and the Michigan imputation server (https://imputationserver.sph.

umich.edu/).32 After imputation, each site was filtered to include only

imputed variants with information score > 0.6 and further quality con-

trol checks were implemented (genotype rate > 95%, minor allele fre-

quencies >0.01, and Hardy-Weinberg equilibrium [HWE] P > 10�5 in

controls). Finally, the data were pooled and final quality controls were

performed on the pooled GWAS set, including checks for missingness,

duplicates, sex mismatch, abnormal heterozygosity, cryptic relatedness,

population outliers (through principal component [PC] analysis), and

genomic inflation. After applying quality control measures to the

imputed data, 5 864 648 SNPs remained for analysis.8

The FinnGen project33 is a cohort of 176 899 Finnish individuals

genotyped with Illumina and Affymetrix platforms (https://www.

finngen.fi). Subjects with sex discrepancies, call rate < 95%, excess

heterozygosity (+-4SD) and non-Finnish ancestry were removed.

SNPs with call rate < 98%, deviation from HWE (P < 10�6) and low

minor allele count < 3 were removed. Subsequently, imputation was

conducted using the SISu v3 reference panel with Beagle 4.1 (version

08Jun17.d8b). Imputed variants with information score < 0.7 were

removed.33 A GWAS testing association of 16 962 023 SNPs with

2444 endpoints (among which MM risk) was performed. Analyses

were adjusted for age, sex, 10 PCs and for genotyping batch. A total

of 418 MM cases and 147 282 controls who were cancer-free at

recruitment were evaluated in this study. Summary statistics of

genome-wide associations between SNPs and MM risk were obtained

from https://r4.finngen.fi on April 22, 2021.

Information on IMMEnSE is reported in detail elsewhere.34

Briefly, it consists of a multicentric study involving seven countries

(Denmark, France, Hungary, Israel, Italy, Poland, Portugal and Spain).

Patients had a confirmed diagnosis of MM in compliance with Interna-

tional Myeloma Working Group (IMWG) criteria,35 while controls

were from the same center or geographic region as the MM patients,

including individuals from the general population, blood donors or

patients hospitalized for diseases other than cancer. For each partici-

pant sex, age (at diagnosis for cases, at recruitment for controls) and

country of origin were collected. For this study, 1955 MM cases and

1549 controls were included. Considering all of the studies, the total

number of subjects analyzed was 4807 MM cases and 152 277 con-

trols (Table 1).

2.2 | SNP identification and selection

We downloaded a list of all the SNPs associated with at least one

human phenotype at P < 5 � 10�8 from the GWAS Catalog web site

(https://www.ebi.ac.uk/gwas/). The list was downloaded in January

2020 and all SNPs without “rs” identifier (n = 1667) were excluded,

leaving 66 296 unique SNPs for analysis.

2.3 | Sample preparation, genotyping and quality
control in IMMEnSE

DNA samples from IMMEnSE consortium participants were extracted

from whole blood and genotyped using TaqMan (Thermo Fisher

Applied Biosystems, Waltham MA, USA) assay technology, according

to the manufacturer's recommendations. Genotyping was conducted

in 384 well plates, including n = 203 duplicate samples (6%) for qual-

ity control purpose (concordance rate was higher than 98%). The dis-

tribution of cases and controls was unknown to the operator

performing the genotyping. The fluorescent emission of the genotyp-

ing assay was detected by a QuantStudio 5 Real-Time PCR system

(Thermofisher) and the genotyping calls were made with QuantStudio

software (Thermofisher). The average call rate of the SNPs was

86.30%. Subjects with a call rate < 70% (331 cases and 216 controls)

were excluded from further analysis. Pearson's chi-square test (χ2)

was performed to assess if genotype frequencies were in HWE. The

analysis, restricted to controls, was performed overall and separately

for each country. All SNPs were in HWE except for rs10187103

TABLE 1 Study populations

InterLymph IMMEnSE FinnGen Total

Diagnosis

MM cases 2434 1955 418 4807

Controls 3446 1549 147 282 152 277

Total 5880 3504 147 700 157 084

Median age (25%-75%)a

MM cases 61 (26-90) 61 (54-67) — —

Controls 51 (43-61) — —

Sex

Male 61% 52% — —

Female 39% 48% — —

Note: Details on age and sex distribution of FinnGen individuals are not

available.
aMedian age values of MM cases and controls with 25th and 75th

percentile.
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(P = 4.99 � 10�8), rs1063348 (P = 9.27 � 10�4) and rs465530

(P = 8.91 � 10�6) in the controls from Denmark and therefore we

excluded the genotypes of Danish subjects for these three SNPs from

further analysis.

2.4 | Statistical analysis

Unconditional logistic regression analysis was performed using Inter-

Lymph data to assess the association between the pleiotropic SNPs

and risk of developing MM, reporting odds ratios (ORs) with 95% con-

fidence intervals (CIs). Analyses were adjusted for age at diagnosis/

recruitment, sex, study site and for the first five PCs. LD pruning

(r2 = 0.8) was applied to eliminate SNPs representing the same locus

or variants in LD with known MM susceptibility regions. All indepen-

dent variants that showed an association at P < 10�4 (arbitrary thresh-

old) were then analyzed in the validation populations. Summary

statistics were used for FinnGen, whereas for IMMEnSE, additive and

co-dominant unconditional logistic regression analysis was performed,

adjusted for age at diagnosis/recruitment, sex and country of origin.

Finally, random-effects meta-analysis was performed with the

PLINK software to combine results of the two phases. Heterogeneity

was quantified with the I2 metric and evaluated with the Cochran's Q

statistic test for each SNP. To account for multiple testing, we consid-

ered LD (r2 > 0.8) among the SNPs used in the discovery phase to obtain

a list of independent variants (n = 28 684). The threshold for statistical

significance was therefore set to P = 0.05/28684 = 1.74 � 10�6 using

Bonferroni's correction.

2.4.1 | Annotation of functional effect of the SNPs

Several bioinformatic tools were used to evaluate possible functional

features of the SNPs associated with MM. The occurrence of regula-

tory motif alterations was investigated through HaploReg (https://

pubs.broadinstitute.org/mammals/haploreg/haploreg.php)36 and Regu-

lomeDB (https://regulomedb.org/regulome-search).37 The Genotype-

Tissue Expression project (GTEx) portal38 (https://www.gtexportal.org/

home/) was used to assess if selected SNPs are expression quantitative

trait loci (eQTLs), that is, their alleles are associated with differential

expression of genes in cis.

3 | RESULTS

3.1 | Discovery

Among the 66 296 variants selected for testing, 6438 were not geno-

typed or imputed in the InterLymph MM GWAS and therefore could

not be analyzed. Of the 59 858 remaining SNPs, 2997 SNPs were

associated with risk of developing MM at P < 0.05. Within that group,

56 SNPs with P < 10�4 were selected for the validation studies

(Table S1). Forty SNPs already known to be associated with the risk of T
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developing MM or in LD (r2 ≥ 0.8) with these known SNPs were fur-

ther excluded. Residual LD (r2 > 0.4) between the remaining 16 SNPs

was evaluated, resulting in the exclusion of an additional six SNPs.

The remaining 10 SNPs were selected for evaluation in FinnGen and

IMMEnSE. Figure S1 shows a flowchart of the process.

3.2 | Replication and combined analysis

We performed the combined analysis using exclusively the allelic

model, since this was available for the FinnGen dataset. We found a

statistically significant association (using P < 1.74 � 10�6) between the

A allele of DNAJB4-rs34517439 and an increased risk of developing

MM (ORcombined-analysis = 1.22, 95%CI 1.13-1.32, P = 4.81� 10�7) with

very low study heterogeneity (I2 = 7.30%, Q = 2.25) (Table 2 and

Figure 1). However, we observed some degree of heterogeneity in the

combined analysis for the SNPs that did not show any statistically sig-

nificant results, that could be due to the different direction of the asso-

ciation (Table 2) or to differences of the allelic frequencies between

Finnish and non-Finnish Europeans (Table S2).

Though not statistically significant, we observed an association

between LOC105374037-rs1022206 and risk of developing MM

in the IMMEnSE population when comparing homozygotes for

the rare allele (T/T) to homozygotes for the common allele (C/C)

(ORhomozygptes = 1.29, 95%CI 1.03-1.62, P = .028) and in the recessive

model (ORrecessive = 1.28, 95%CI 1.04-1.57, P = .019) in the

IMMEnSE population (Table 3).

3.3 | Functional effect of the SNPs

RegulomeDB assigned a rank of 5 to both SNPs, implying a possible

influence on a transcription factor binding site. In addition, GTEx

and HaploReg indicated that DNAJB4-rs34517439 is an eQTL

affecting far upstream element binding protein 1 gene (FUBP1)

expression in several human tissues. This included a statistically sig-

nificant correlation between the A allele of this SNP and a reduced

expression of FUBP1 in cultured fibroblasts (P = 1.10 � 10�4).

GTEx also indicated an association between the T allele of

LOC105374037-rs1022206 and increased expression of the nectin

cell adhesion molecule 3 (NECTIN3) gene in cultured fibroblasts

(P = 2.10 � 10�20).

4 | DISCUSSION

Pleiotropic variants are commonly found associated with complex dis-

eases, like cancer. To investigate the possible association between com-

mon SNPs and the risk of developing MM, we analyzed all the genetic

variants associated with any human trait in 4807 patients and 152 277

controls. We observed a statistically significant association

(P < 1.74 � 10�6) between DNAJB4-rs34517439-A and risk of devel-

oping MM. This SNP is pleiotropic since it is associated with numerous

traits such as cutaneous melanoma, diastolic blood pressure, fat-free

mass, hair color, hand grip strength, height, lung cancer, noncognitive

aspects of educational attainment, psoriasis, serum alkaline phospha-

tase levels, smoking initiation and BMI, with a wide range of effect sizes

and Pvalues as reported in Table S3. The association between this SNP

and BMI is of particular interest since BMI is also associated with MM

risk.39 The A allele that was associated with increased MM risk in our

study has previously been associated with increased risk of lung can-

cer.40 This pleiotropic effect, especially in cancers, may be attributed to

the LD of rs34517439 with the variants inside or in the proximity of

DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4), situated

on chromosome 1. This protein is a molecular chaperone specifically

recognizing wild-type from mutant E-cadherin protein. Since E-cadherin

is an important element in the suppression of tumor invasion, the func-

tion of DNAJB4 represents a significant pleiotropic mechanism of

tumoral invasion inhibition.41,42 DNAJB4 also acts as a co-chaperone,

forming a complex with Hsp70 which participates in protein folding.43

The expression and activity of heat shock proteins increases during cel-

lular stress,44 and DNAJB4 has been observed to reduce tumor metas-

tasis and progression in several cancer types, including lung carcinoma

and melanoma.45,46 This mechanism could also be relevant to MM. In

bioinformatic analysis, GTEx showed an association between DNAJB4-

rs34517439-A and a reduced expression of the FUBP1 gene in various

tissues, including lung, skin (sun exposed and not sun exposed), adipose

tissue, the arteries and the heart. The altered expression of the gene in

these tissues mirrors the associations found in the GWASs (eg, altered

expression in lung for lung cancer, or skin for melanoma). FUBP1

encodes a multifunctional DNA and RNA-binding protein involved in

cell cycle regulation and self-renewal of hematopoietic stem cells

(HSCs).47 FUBP1 acts both as oncogene and as tumor suppressor, and

its activity is tissue-dependent.48 In various tumor types FUBP1 pro-

motes the overexpression of the MYC oncogene,48 whereas FUBP1

silencing does not influence the expression of MYC in normal

Study β SE OR 95%CI Weight

FinnGen

Overall
Heterogeneity: I2=11%, Q=2.25 (P=0.33)

1.30 [1.15-1.46] 36.3%

1.09 [0.90-1.33] 14.2%

1.21 [1.10-1.33] 49.5%

1.22 [1.13-1.32] 100.0%

IMMEnSE

InterLymph

0.19 0.05

0.09 0.10

0.26 0.06

0.8 1 1.25

F IGURE 1 Forest plot of
the association between
DNAJB4-rs34517439-A
and MM risk
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fibroblasts, prostate and bladder cancer cells.48 Moreover, FUBP1 is

involved in the upregulation and downregulation of the cell cycle inhibi-

tor p21.49,50 The pleiotropic role of rs34517439 could be explained by

its involvement in the altered expression of FUBP1 in different tumors,

that determines their development, by interacting with specific factors

in each tissue. Specifically for hematopoietic lineages, the cooperation

of FUBP1 with RUNX1 in promoting the expression of the c-KIT onco-

gene was reported.51 In summary, a possible explanation for the

DNAJB4-rs34517439 association with increased risk of developing

MM could be that the A allele modifies the expression of DNAJB4 lead-

ing to an incorrect folding of FUBP1. In turn, this mechanism could be

responsible for the disruption of the HSCs homeostasis equilibrium,

thus increasing the risk of developing MM. Although we lack an experi-

mental validation of the proposed mechanism in MM cell lines, our

hypothesis relies on the experimental and genomic data collected from

GTEx, which are broadly used in the scientific community.

In addition, the T allele of LOC105374037-rs1022206 in homozy-

gosity showed an increased risk of developing MM in the IMMEnSE

population. LOC105374037 is an uncharacterized long noncoding

RNA (lncRNA) for which possible functional roles are unknown. Inter-

estingly, LOC105374037-rs1022206 is an eQTL for NECTIN3 gene

expression in cultured fibroblasts. Fibroblasts are the cells with the

highest expression of NECTIN3 in humans.52 Cancer-associated fibro-

blasts (CAFs) are one of the known cellular elements participating in

MM tumoral microenvironment in the BM.53 In fact, they show a bidi-

rectional loop with myeloma cells providing chemotaxis, adhesion,

apoptosis resistance and proliferation through cytokines, growth factors,

angiogenetic factors and cell-cell contact.54 However, considering the

lack of data in the literature on the topic it is not clear how the increased

expression of NECTIN3 mediated by LOC105374037-rs1022206 might

be involved in MM risk. Furthermore, Nectin-3 is involved in cell survival

through PDGF receptor signal and in inhibition of cell movement.52,55

The SNP LOC105374037-rs1022206 is in LD with variants associated in

with various traits: balding type 1, smoking initiation, self-reported math

ability, feeling hurt and neuroticism. Although these traits apparently do

not show a shared mechanism or pathway, the LOC105374037 lncRNA

could be the common element explaining the pleiotropic effect of the

SNP on different cellular functions.

A possible limitation of this study could be that only the allelic

model was available for all the datasets and therefore it was the only

one assessed in the final combined analysis using InterLymph,

IMMEnSE and FinnGen populations. In fact, we were not able to con-

firm the promising association detected in the IMMEnSE population

for LOC105374037-rs1022206-T, that needs to be further investi-

gated. Another possible limitation is the ethnic origin of the popula-

tions used in the replication phase, due to the known genetic

differences between the Finnish and non-Finnish Europeans.56,57 Spe-

cifically, for the 10 SNPs considered in the replication phase of our

study, the average difference in allelic frequency is 6%, and for the

two SNPs that show significant association this difference is lower

than 5%. The heterogeneity value obtained in the combined analysis

for DNAJB4-rs34517439 is very low (I2 = 7.30%) and not significant,

and therefore, it is highly unlikely that differences in the allelic

frequencies might have affected the results. However, we have

observed some degrees of heterogeneity in the other SNPs. An addi-

tional limitation in our study is that the number of SNPs chosen for

replication was limited. We chose a threshold of P < 10�4 as a good

compromise allowing us to select a suitably small number of variants

to genotype in IMMEnSE and to maximize chances of finding signifi-

cant results in the overall analysis. It would have not been worth

choosing SNPs showing a weaker association in InterLymph, because

we would not have sufficient statistical power to find genome-wide

significant associations in the combined results.

Finally, considering that the Pvalue we observed, although statisti-

cally significant considering the Bonferroni correction for multiple

testing, does not reach genome-wide significance, further studies are

warranted to establish this SNP as a new MM risk locus.

In conclusion, our results suggest the involvement of a pleiotropic

region on chromosome 1 in MM development and highlight pleiotropy as

an approach to uncover additional risk variants in cancer susceptibility.
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