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Abstract

Background: The Mycobacterium tuberculosis complex (MTC) comprises closely related species responsible for strictly
human and zoonotic tuberculosis. Accurate species determination is useful for the identification of outbreaks and
epidemiological links. Mycobacterium africanum and Mycobacterium canettii are typically restricted to Africa and M. bovis is a
re-emerging pathogen. Identification of these species is difficult and expensive.

Methodology/Principal Findings: The Exact Tandem Repeat D (ETR-D; alias Mycobacterial Interspersed Repetitive Unit 4)
was sequenced in MTC species type strains and 110 clinical isolates, in parallel to reference polyphasic identification based
on phenotype profiling and sequencing of pncA, oxyR, hsp65, gyrB genes and the major polymorphism tandem repeat.
Inclusion of M. tuberculosis isolates in the expanding, antibiotic-resistant Beijing clone was determined by Rv0927c gene
sequencing. The ETR-D (780-bp) sequence unambiguously identified MTC species type strain except M. pinnipedii and M.
microti thanks to six single nucleotide polymorphisms, variable numbers (1–7 copies) of the tandem repeat and two
deletions/insertions. The ETR-D sequencing agreed with phenotypic identification in 107/110 clinical isolates and with
reference polyphasic molecular identification in all isolates, comprising 98 M. tuberculosis, 5 M. bovis BCG type, 5 M. canettii,
and 2 M. africanum. For M. tuberculosis isolates, the ETR-D sequence was not significantly associated with the Beijing clone.

Conclusions/Significance: ETR-D sequencing allowed accurate, single-step identification of the MTC at the species level. It
circumvented the current expensive, time-consuming polyphasic approach. It could be used to depict epidemiology of
zoonotic and human tuberculosis, especially in African countries where several MTC species are emerging.
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Introduction

The Mycobacterium tuberculosis complex (MTC) comprises several

closely related species responsible for strictly human and zoonotic

tuberculosis (Figure 1). In addition to M. tuberculosis, which

represents the leading cause of human tuberculosis worldwide and

is now emerging as extensively drug-resistant tuberculosis strains

[1], other MTC species have been found in patients, typically in

African countries (Figure 2). Mycobacterium bovis is a re-emerging,

zoonotic agent of bovine tuberculosis [2] whose prevalence

probably depends on variations in direct exposure to cattle and

consumption of unpasteurised dairy products [3]. The prevalence of

Mycobacterium africanum type I (West Africa) and type II (East Africa)

[4] has decreased in several African countries over the last decades

[5,6]. Mycobacterium canettii, a rare MTC species, has been isolated

recently in patients exposed in Africa [7]. Mycobacterium microti, a vole

and small rodent pathogen [8] that is closely related to the so-called

Dassie-bacillus and infects small mammals in South Africa and the

Middle East [9,10], has been isolated in humans [11]. Mycobacterium

caprae is a rare cause of tuberculosis in cattle [12,13] and zoonotic

tuberculosis in humans [14] while Mycobacterium pinnipedii has been

isolated from seal lions and fur seals [15]. A recent description of the

re-emergence of M. bovis in cattle, along with the direct interhuman

transmission of this zoonotic organism [16] in a six-case cluster that

included one death in United Kingdom [17], illustrates the potential

of emerging and re-emerging zoonotic tuberculosis due to MTC

species other than M. tuberculosis and the necessity for accurate

species identification.

Accurate species identification of all MTC members is

warranted in order to distinguish between strict human and

zoonotic tuberculosis and to trace source exposure during

epidemiological studies. Indeed, phenotypic methods of identifi-

cation relying on colony morphology, oxygen preference, niacin

accumulation, nitrate reductase activity, growth kinetics and

resistance to thiophene-2-carboxylic acid hydrazide (TCH) and

PZA [18] are hampered by slow growth of MTC members and

subjective interpretation of colony morphology and cross-resis-

tance to drugs [19]. They do not always allow unambiguous

species identification in every case. Recent studies of MTC species

responsible for animal and human tuberculosis in tropical

countries have relied on molecular methods including mycobac-

terial interspersed repetitive-unit-variable-number tandem-repeat
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(MIRU-VNTR) typing, IS6110-RFLP and spoligotyping [20–22].

Molecular differentiation of MTC members has been complicated

by low sequence variability at the nucleotide level, illustrated by a

85–100% DNA/DNA relatedness and a 99–100% 16S rDNA

sequence similarity [23,24]. Nucleic acid-based assays such as

acridinium ester-labelled DNA probes (AccuProbe; Gene Probe

Inc, San Diego, CA) have proven to be reliable tools for assigning

an isolate to the MTC [25,26], but they do not allow for

identification at the species level. Molecular identification based on

deleted regions (RD), RD1, RD9 and RD10 [27], are limited by

the necessity of interpreting negative results in the case of the

absence of a specific deletion. The detection of single nucleotide

polymorphisms (SNP) in the pncA gene [28], the oxyR locus [29],

the mtp40 gene [30], and the restriction fragment length

polymorphism of the hupB gene [31] differentiated M. tuberculosis

from M. bovis but not from other MTC species. The major

polymorphism of tandem repeat (MPTR) sequencing differentiat-

ed M. tuberculosis (Sequevar long), M. bovis and M. microti (Sequevar

Med-G), M. bovis BCG (Sequevar Med-C) and M. africanum

(Sequevar short), but other MTC species were not studied [32].

The gyrB gene proved to be an effective target [33,34], as an

identification scheme has been proposed based on Pyrosequencing

analysis of four single nucleotide polymorphism (SNPs) in gyrB

[35], and a DNA strip based on gyrB is commercially available

(HAIN Genotype MTBC DNAstrip test, Hain Lifescience,

Nehren, Germany) [36]. Both approaches, however, fail to

differentiate M. tuberculosis from M. africanum type II and M.

canettii; and M. africanum type I from M. pinnipedii. IS6110-RFLP,

VNTR typing and Spoligotyping [22,37] emerged as reference

methods to study the diversity of MTC species in resource-limited

countries, despite the fact that these methods may not recognize

rarely encountered species and may not appreciate the entire

genetic diversity of strains, as they are not based upon the

sequencing of molecular targets [38].

When investigating intergenic spacers in the genotyping of M.

tuberculosis, we found that one spacer, previously identified as the

Exact Tandem Repeat D (ETR-D) [39] and aliased Mycobacterial

Interspersed Repeat Unit 04 (MIRU04) [40], exhibited a variable

sequence among M. tuberculosis isolates. Analysis of this spacer had

been previously shown to distinguish between M. bovis and the M.

bovis BCG type [41]. We therefore further investigated whether

sequencing the ETR-D could identify all of the MTC at the

species level. In this study, we demonstrate that ETR-D

sequencing offers a new tool for the rapid and accurate

identification of MTC species in a single reaction.

Figure 1. Distribution of rare Mycobacterium tuberculosis complex species in humans (filled circles) and animals (open circles). Green
circles, M. canettii; blue circles, M. caprae; pink circles, M. microti; orange circles, M. pinnipedii.
doi:10.1371/journal.pntd.0000253.g001

Author Summary

The Mycobacterium tuberculosis complex (MTC) comprises
several closely related species responsible for strictly
human and zoonotic tuberculosis. Some of the species
are restricted to Africa and were responsible for the high
prevalence of tuberculosis. However, their identification at
species level is difficult and expansive. Accurate species
identification of all members is warranted in order to
distinguish between strict human and zoonotic tubercu-
losis, to trace source exposure during epidemiological
studies, and for the appropriate treatment of patients. In
this paper, the Exact Tandem Repeat D (ETR-D) intergenic
region was investigated in order to distinguish MTC
species. The ETR-D sequencing unambiguously identified
MTC species type strain except M. pinnipedii and M.
microti, and the results agreed with phenotypic and
molecular identification. This finding offers a new tool for
the rapid and accurate identification of MTC species in a
single sequencing reaction, replacing the current time-
consuming polyphasic approach. Its use could assist public
health interventions and aid in the control of zoonotic
transmission in African countries, and could be of
particular interest with the current emergence of multi-
drug-resistant and extended-resistance isolates.

MTC Identification
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Methods

Bacterial isolates
M. tuberculosis CIP103471, M. bovis CIP105050, M. africanum

CIP105147T (type I), M. bovis BCG vaccine strain type 105060, M.

microti CIP104256T, M. canettii CIP140060001T, M. pinnipedii

ATCC BAA-688, and M. caprae CIP105776T reference strains

were purchased from the Collection Institut Pasteur (CIP, Paris,

France) and American Type Culture Collection (ATCC, Rock-

ville, USA). The following non-tuberculosis mycobacteria were

tested in order to assess the specificity of ETR-D spacer

sequencing: Mycobacterium avium IWGMT49 T, Mycobacterium

intracellulare CIP104243 T, Mycobacterium chimaera CIP107892 T,

Mycobacterium colombiense CIP108962 T, Mycobacterium haemophilum

CIP105049 T, Mycobacterium ulcerans CIP105425 T, Mycobacterium

xenopi CIP104035 T, Mycobacterium abscessus CIP104536 T, Myco-

bacterium chelonae CIP104535 T, Mycobacterium fortuitum ATCC49404

and Mycobacterium mucogenicum CIP 105223 T. Quality of DNA was

controlled by parallel partial rpoB PCR amplification as previously

described [42]. One hundred and ten MTC clinical isolates

(Table 1) recovered from Microbiology Laboratory in Marseille

(n = 102), from Institut Pasteur in Djibouti (n = 3) and from Institut

de Pharmacologie et Biologie Structurale, Toulouse (n = 5) were

also analyzed. All isolates were identified as members of the MTC

by phenotypic characterization and a gene probe assay according

to the manufacturer (AccuProbe; Gene Probe Inc, San Diego,

Calif). This study was approved by the ethics committee of the

Institut Féfératif de Recherche 48, Marseilles, France.

Phenotypic identification
Phenotypic characterisation included colony morphology, a

urease test controlled after 3 and 18 hour incubation, and oxygen

consumption measured after inoculation of a 0.2 ml actively

growing mycobacterial suspension into 40 ml of Middlebrook

7H10 into the Bactec 9000MB system (Becton and Dickinson, Le

Pont de la Claix, France) after a 3-week incubation. Drug

susceptibility tests for thiophene-2-carboxylic acid hydrazide

(TCH) and PZA were performed as previously described [43].

Reference tests for molecular identification
The identification of reference strains and clinical isolates

identified as M. bovis BCG type, M. canettii and M. africanum by

ETR-D sequencing (see below) was confirmed by parallel reference

molecular tests. Every isolate coated on beads was inactivated as

previously described [44] and the DNA was extracted using a

Qiagen kit (Qiagen, Courtaboeuf, France). DNA was used as a

template for PCR amplification of pncA, oxyR, hsp65, gyrB genes and

sequence analysis of MPTR was performed as previously described

[28,29,32–34,45] In addition, we sequenced the Rv0927c-pstS3

intergenic region in all clinical isolates identified as M. tuberculosis in

order to identify the Beijing genotype [46]. Amplified products were

visualized by agarose gel electrophoresis and direct sequencing was

performed as described above. Sequences were edited using the

Auto assembler program (Applied Biosystems, Courtaboeuf,

France) and aligned using CLUSTAL W (http://pbil.ibcp.fr).

Original sequences were deposited into GenBank (http://www.

ncbi.nlm.nih.gov/sites/entrez/).

ETR-D spacer sequencing
Amplification and sequencing of the ETR-D spacer located

between the putative histidine kinase Senx3 upstream and the

sensory transduction protein Regx3 downstream were done using

direct primers: 59-GTTGATCGAGGCCTATCACG-39 and 59-

GAATAGGGCTTGGTCACGTA-39. The PCR mixture con-

Figure 2. Distribution of Mycobacterium tuberculosis complex species in human tuberculosis cases in Africa. Based on a review of papers
published in 1999–2007 [22,64–70]. For each country, prevalence rates and reference are indicated in cartoons. Mtub, M. tuberculosis; M afr, M.
africanum; Mbov, M. bovis; Mcan, M. canettii; MTC, Mycobacterium tuberculosis complex.
doi:10.1371/journal.pntd.0000253.g002
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tained 33 ml H2O, 5 ml 106 buffer (Qiagen), 2 ml 256 MgCl2,

5 ml 106 dDNTP, 1 ml forward primer, 1 ml reverse primer,

0.25 ml hotstart Taq (Qiagen) and 2 ml target DNA. Appropriate

negative controls consisting of PCR mix without target DNA were

also included. PCRs were performed using the following program:

15 min enzyme activation at 95uC, followed by 34 cycles

consisting of 95uC for 30 s, 58uC for 30 s, 72uC for 1 min,

followed by a 5 min elongation step at 72uC. After agarose gel

electrophoresis, PCR products were purified and subjected to

sequencing in both directions by using the BigDye Terminator 1.1

Cycle Sequencing kit (Applied Biosystems). Sequencing electro-

phoresis was performed on a 3130 genetic analyzer (Applied

Biosystems). The sequences were edited using the Auto assembler

program (Applied Biosystems) and aligned using CLUSTAL W

(http://pbil.ibcp.fr). Original ETR-D sequences were deposited

into Genbank (http://www.ncbi.nlm.nih.gov/sites/entrez/).

Results

Phenotypic identification (Table 2)
As for reference strains, M. tuberculosis exhibited eugonic growth

that was inhibited by the presence of PZA but not by TCH and

showed aerophilic growth on Middlebrook agar positive urease at

18 hours. M. bovis and M. bovis BCG type strains exhibited

microaerophilic dysgonic growth, did not grow in the presence of

TCH, but were resistant to PZA and exhibited a positive urease

activity at 3 hours for M. bovis BCG type and at 18 hours for M.

bovis. M. africanum type I differed from M. bovis by its susceptibility

to PZA. M. canettii exhibited eugonic growth in the presence of

PZA and TCH, and showed a positive urease activity at 3 hours

and aerophilic growth on Middlebrook. M. microti, M. capare and

M. pinnipedii exhibited eugonic growth that was inhibited by TCH

and PZA, and a positive urease at 18 hours. As for clinical isolates,

101/110 of isolates were phenotypically identified as M. tuberculosis,

5 as M. canettii, 3 as M. bovis BCG type and one as M. africanum.

Reference molecular identification (Table 3)
In all PCR experiments, negative controls remained negative.

All reference strains and clinical isolates yielded an amplicon of the

expected size when amplified for pncA, oxyR, hsp65, gyrB genes,

Rv0927c-pstS3 intergenic region and MPTR. By comparison with

M. tuberculosis, the 410-bp oxyR gene sequence exhibited a

previously known A285G polymorphism in M. bovis and M. bovis

BCG type [29] and a newly identified T136G polymorphism in M.

canettii. The 561-bp pncA gene sequence exhibited a previously

known G253C polymorphism in M. bovis and M. bovis BCG type

[28] and a G222A polymorphism in M. canettii [47]. The 441-bp

hsp65 gene exhibited a previously known T235C polymorphism in

M. canettii [45] and a newly identified G376C polymorphism in M.

africanum type I. The 1.020-bp gyrB gene sequence exhibited an

identical sequence in M. tuberculosis, M. canettii and M. caprae, a

previously known A756G polymorphism in M. bovis and M. bovis

BCG type, a T675C polymorphism in M. microti, and an identical

sequence was identified in common with M. africanum type I and

M. pinnipedii [34]. Sequence analysis of MPTR (300-bp) exhibited a

unique sequence for M. tuberculosis (Sequevar Long), M. africanum

type I strain (Sequevar Short), M. bovis and M. microti (Sequevar

MED-G) and M. bovis BCG type (Sequevar MED-C) [32]; MPTR

sequencing newly identified C99T, G164C and A267G polymor-

phisms in M. canettii; the M. caprae strain exhibited Sequevar Long

in common with M. pinnipedii and M. tuberculosis reference strains.

Original sequences found in this study were deposited in GenBank

under the following accession numbers (GenBank: EF656461, EF

656463, EF 656464).

Sequence analysis of clinical isolates using the five previous

targets yielded four different profiles. One profile comprised 98

isolates identified as M. tuberculosis, including three isolates

identified as W-Beijing strains using a G127A polymorphism in

Rv0927c-pstS3 intergenic region, a second profile comprised five

isolates identified as M. bovis BCG type; a third profile included

five isolates identified as M. canettii and a fourth profile included

two isolates identified as M. africanum type I.

ETR-D sequence analysis
For all ETR-D experiments, negative controls remained

negative. All the non-tuberculosis mycobacteria yielded a negative

ETR-D PCR amplification whereas they yielded an amplicon of

the expected size through rpoB PCR amplification. The size of

PCR products obtained with MTC reference strains varied from

497-bp for M. canettii, 545-bp for M. bovis, 564-bp for M. caprae,

598-bp for M. bovis BCG type, 651-bp for M. africanum type I, 805-

bp for M. tuberculosis and 959-bp for M. microti and M. pinnipedii.

Each of the eight reference strains exhibited a unique ETR-D

sequence, exhibiting one to seven copies of a tandem repeat, six

mutations and two deletions/insertions.

M. tuberculosis exhibited three different alleles combining two or

five copies of a 77-bp repeat unit and one T/G SNP at the fifth

base of the tandem repeat, in addition to one 53-bp repeat unit.

The M. tuberculosis reference strain exhibited five copies of a 77-bp

repeat unit followed by one 53-bp repeat unit copy; M. microti and

M. pinnipedii exhibited seven copies of a 77-bp repeat unit and one

53-bp repeat unit, M. africanum type I exhibited three copies of a

77-bp repeat unit and one 53-bp repeat unit, in addition to one T/

C polymorphism at position 75. M. bovis exhibited four copies of a

77-bp repeat unit and one 53-bp repeat unit in addition to an A/G

SNP at position 773; M. bovis BCG type exhibited three copies of a

77-bp repeat unit in addition to an A/G SNP at position 773. M.

caprae exhibited three copies of a 77-bp repeat unit, a 34-bp

deletion and one 53-bp repeat unit. M. canettii exhibited one copy

of a 77-bp repeat unit and three SNPs following the tandem repeat

in addition to a 53-bp repeat unit. ETR-D sequences of MTC type

strains were deposited in GenBank under the following accession

numbers (GenBank: EU180228-EU180234). ETR-D sequencing

Table 1. Origin of Mycobacterium tuberculosis complex
reference strains and clinical isolates analyzed in this study

Isolates Origin

M. tuberculosis CIP103471

M. africanum CIP105147T

M. bovis CIP105050

M. bovis BCG type Vaccine strain105060

M. caprae CIP105776T

M. canettii CIP140060001T

M. microti CIP104256T

M. pinnipedii ATCC BAA-688

Clinical isolates

n = 57 Sputum

n = 48 Lymph node

n = 3 Pleural liquid

n = 2 Abscess

T: type strain.
doi:10.1371/journal.pntd.0000253.t001
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identified 98/110 MTC clinical isolates as M. tuberculosis including

45 isolates presenting allele 1, 26 isolates presenting allele 2, and

27 isolates presenting allele 3; the ETR-D allele did not correlate

with Beijing genotype (P = 0.2). 5/110 isolates were identified as

M. bovis BCG type, 5/110 isolates as M. canettii, and 2/110 isolates

as M. africanum type I. All unique ETR-D sequences were

deposited into our freely available database at http://ifr48.

timone.univ-mrs.fr/MST_Mtuberculosis/mst.

Comparison between ETR-D identification and reference
phenotypic and molecular identifications of clinical
isolates

ETR-D identification was in agreement with phenotypic

identification in 107/110 (97.27%) of clinical isolates. Three

isolates phenotypically identified as M. tuberculosis were identified

by ETR-D sequencing and reference molecular methods as M.

bovis BCG type in two cases and M. africanum type I in one case.

Reference molecular identification agreed with ETR-D identifi-

cation in 100% (110/110) of clinical isolates.

Discussion

Previous methods for MTC species identification either

combined the amplification of several genomic regions in order

to identify all species [27,48] or analyzed one gene polymorphism

to distinguish between only two species. ETR-D spacer sequencing

herein developed proved to be specific for the MTC and allowed

the differentiation of the 7/8 MTC species in a single reaction.

Indeed all the non-tuberculosis mycobacteria yielded a negative

ETR-D PCR amplification as previously described [49].

The fact that M. africanum type II was not included in the

present study may not modify this conclusion. In fact, the

taxonomic status of M. africanum type II has been disputed [50],

but it is now regarded as a phenotypic variant of M. tuberculosis

(genotype Uganda) [51,52]. ETR-D sequencing agreed in all cases

Table 2. Biochemical and antibiotic susceptibility profiles observed for M. tuberculosis complex reference strains and clinical
isolates in this study

Isolates
Colony
morphology

Urease
3 hours

test 18
hours

PZA
sensitivity

TCH
sensitivity

Oxygen
preference

M. tuberculosis CIP103471 Eugonic - + S R Aerophilic

M. bovis CIP105050 Dysgonic - + R S Microaerophilic

M. bovis BCG type 105060 Dysgonic + + R S Microaerophilic

M. africanum T CIP105147 Dysgonic - + S S Microaerophilic

M. canettii T CIP140060001 Eugonic + + R R Aerophilic

M. caprae T CIP105776 Eugonic - + S S Aerophilic

M. microti T CIP104256 Eugonic - + S S Aerophilic

M. pinnipedii ATCC BAA-688 Eugonic - + S S Aerophilic

Clinical isolates

101 Eugonic - + S R Aerophilic

1 Dysgonic - + S S Microaerophilic

3 Dysgonic + + R S Microaerophilic

5 Eugonic + + R R Aerophilic

T: type strain, +: positive results, -: negative results, R: drug resistant, S: drug susceptible, TCH: thiophene-2-carboxylic acid hydrazide (5 mg/ml), PZA: pyrazinamide
(50 mg/ml).

doi:10.1371/journal.pntd.0000253.t002

Table 3. Single nucleotide polymorphisms in five housekeeping genes and MPTR sequence analysis in eight MTC reference strains

Strains oxyR pncA hsp65 gyrB MPTR

136 285 222 253 235 376 675 756 Sequence 99 164 267 Sequence

M. tuberculosis CIP103471 G G A C C C C G T C G Long

M. africanum T CIP105147 G G A C C G* C G sequevar T C G Short

M. bovis BCG type105060 G A A G C C C A T C G MED-G

M. bovis CIP105050 G A A G C C C A T C G MED-G

M. canettii T CIP140060001 T* G G C T C C G C* G* A* Long

M. microti T CIP104256 G G A C C C T G sequevar T C G MED-G

M. pinnipedii ATCC 688 G G A C C C C G sequevar T C G Long

M. caprae T CIP105776 G G A C C C C G T C G Long

T: type strain,
*: Polymorphism identified newly in this study.
doi:10.1371/journal.pntd.0000253.t003

MTC Identification

www.plosntds.org 5 June 2008 | Volume 2 | Issue 6 | e253



with reference molecular identification. In this study, new

mutations were identified because some genes were sequenced

for the first time in some MTC species including the oxyR gene and

MPTR in M. canettii and the hsp65 gene in M. africanum type I

(Table 3). ETR-D sequencing revealed that 3/110 clinical isolates

identified as M. tuberculosis by phenotypic tests comprised two M.

bovis BCG type isolate and one M. africanum type I isolate. The

497-959-bp size of ETR-D allows one-step sequencing using a

modern capillary sequencer and software and may be easily

sequenced using Pyrosequencing and additional internal primers.

Cost was decreased in comparison with the current polyphasic

approach and any microbiologist could compare the ETR-D

sequence with those that we deposited in the versatile, freely

accessible databank at http://ifr48.timone.univ-mrs.fr/MST_

MTuberculosis/mst. This identification technique, based on

PCR amplification, could be directly applied to clinical specimens

exhibiting acid-fast bacilli.

ETR-D sequence identification relied not only on the variation

in the number of tandem repeats illustrated by various PCR

product sizes, as previously described [39] for M. tuberculosis, M.

africanum, M. bovis group [41], but also on specific SNPs, which are

stable events [53] accounting for 55.5% of genetic events observed

in this study and on insertion/deletion events (accounting for

22.2% of genetic events). However, the ETR-D sequence was not

correlated with the Beijing genotype as defined by Rv0927c-pstS3

intergenic region sequencing. This indicates that, although 3

ETR-D genotypes were found among M. tuberculosis isolates in this

study, ETR-D sequencing alone cannot be used for genotyping. It

is not surprising that the same, limited genomic region does not

have the potential to identify at the species and strain levels. ETR-

D sequencing provides, for the first time, a unique sequencing test

capable of distinguishing all MTC species in a single step.

Accurate identification of MTC isolates at the species level is of

particular interest in Africa where species other than M. tuberculosis

were characterized in human tuberculosis and M. bovis remains a

huge problem for cattle [21] (Figure 2). Their identification may

direct specific epidemiological investigation. In Africa, the

prevalence of M. bovis in human tuberculosis was correlated with

the prevalence in the local cattle population [54]. Consumption of

unpasteurised milk and of poorly heat-treated meat, and close

contact with infected animals represent the main sources of

infection for humans [3]. However, human to human transmission

of M. bovis was recently reported in a 6-case cluster including one

death due to M. bovis meningitis in United-Kingdom [17]. In

addition, the emergence of MDR M. bovis has been documented,

raising infection control in health care settings [55,56]. M. bovis

BCG type derived from the closely related virulent M. bovis after

230 serial passages had led to a considerably increased rate of

disseminated BCG disease in HIV-infected infants reported in

South Africa [57], although diagnoses were based on a few

biochemical tests including the urease test and RD1deletion [58].

ETR-D sequencing allows unambiguous distinguishing of BCG

type strains from M. bovis strains using a minute quantity of starting

material. M. africanum identification indicated a tuberculosis

microepidemic in a defined area when repeated isolation was

observed [59]. Sporadic isolation of M. africanum strains has been

reported in Europe and the United States, including outbreaks of

multidrug-resistant (MDR) strains [60,61]. In recent studies,

variations in the reported prevalence of M. africanum among

various African countries may also reflect difficulties in accurate

identification of this species (Figure 2). M. microti, M. pinnipedii, M.

caprae and M. canettii remain difficult to identify because of the

extremely slow growth of these organisms, the difficulties with

their identification under traditional bacteriological methods [62]

and the fact that these recently described species have not been

incorporated into current molecular identification schemes.

ETR-D spacer sequencing offers a new tool for the rapid and

accurate identification of all MTC species in a single sequencing

reaction without the need for expensive, time-consuming and

potentially harmful polyphasic approaches. Its use could assist

public health interventions and aid in the control of zoonotic

transmission in African countries. Accurate identification of MTC

isolates from Africa and tropical Asia would be of particular

interest from the perspective of the current emergence of

multidrug resistant and extended resistance isolates in these

countries [63].
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