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Abstract: With the rapid expansion of graphs and networks and the growing magnitude of data
from all areas of science, effective treatment and compression schemes of context-dependent data
is extremely desirable. A particularly interesting direction is to compress the data while keeping
the “structural information” only and ignoring the concrete labelings. Under this direction, Choi
and Szpankowski introduced the structures (unlabeled graphs) which allowed them to compute
the structural entropy of the Erdős–Rényi random graph model. Moreover, they also provided an
asymptotically optimal compression algorithm that (asymptotically) achieves this entropy limit and
runs in expectation in linear time. In this paper, we consider the stochastic block models with an
arbitrary number of parts. Indeed, we define a partitioned structural entropy for stochastic block
models, which generalizes the structural entropy for unlabeled graphs and encodes the partition
information as well. We then compute the partitioned structural entropy of the stochastic block
models, and provide a compression scheme that asymptotically achieves this entropy limit.

Keywords: structural entropy; stochastic block model (SBM); network compression; optimal com-
pression algorithm

1. Introduction

Shannon’s metric of “Entropy” of information is a foundational concept of information
theory [1,2]. Given a discrete random variable X with support set (that is, the possible
outcomes) x1, x2, . . . , xn, which occurs with probability p1, p2, . . . , pn, the entropy of X is
defined as

H(X) := −
n

∑
i=1

pi log pi,

where the logarithm here and throughout this paper is of base 2. Note that the entropy of
X is a function of the probability distribution of X.

The entropy was originally created by Shannon in [3] as part of their theory of com-
munication, where a data communication system consists of a data source X, a channel
and a receiver. The fundamental problem of communication is for the receiver to reliably
recover what data was generated by the source, based on the bits it receives through the
channel. Shannon proved that the entropy of the source X plays a central role—in their
source coding theorem it is shown that the entropy is the mathematical limit on how well
the data can be losslessly compressed.

The question then arises: How to compress data that has structures, e.g., data in social
networks? In Shannon’s 1953 less known paper [4] he argued for an extension of informa-
tion theory, where data is considered as observations of a source, to “non-conventional
data” (that is, lattices). Indeed, nowadays data appears in various formats and structures
(e.g., sequences, expressions, interactions) and in drastically increasing amounts. In many
scenarios, data is highly context-dependent and in particular, the structural information
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and the context information seem to be two conceptually different aspects. Therefore it
is desirable to develop novel theory and efficient algorithms for extracting useful infor-
mation from non-conventional data structures. Roughly speaking, such data consists of
structural information, which, might be understood as the “shape” of the data, and context
information which should be recognized as data labels.

It is well-known that complex networks (e.g., social networks) admit community
structures [5]. That is, users within a group interact with each other more frequently than
those outside the group. The stochastic block model (SBM) [6] is a celebrated random
graph model that has been widely used to study the community structures in graphs
and networks. It provides a good benchmark to evaluate the performance of community
detection algorithms and inspires the design of many algorithms for community detection
tasks. The theoretical underpinnings of the SBM have been extensively studied and sharp
thresholds for exact recovery have been successively established [7–12]. We refer readers
to [13] for a recent survey, where other interesting and important problems in SBM are
also discussed.

In addition to the SBM discussed in [13], there are other angles to study compression
of data with graph structures. Asadi et al. [14] investigated data compression on graphs
with clusters. Zenil et al. [15] have surveyed information-theoretic methods, in particular
Shannon entropy and algorithmic complexity, for characterizing graphs and networks.

1.1. Compression of Graphs

In recent years, graphical data and the network structures supporting them are becom-
ing increasingly common and important in branches of engineering and sciences. To better
represent and transmit graphical data, many works consider the problem of compressing
the (random) graph up to isomorphism, i.e., compressing the structure of a graph. A graph
G contains a finite set V of vertices and a set E of edges each of which connects two vertices.
A graph can be represented by a binary matrix (the adjacency matrix) that further can be
viewed as a binary sequence. Thus, encoding a labeled graph (that is, all vertices need to
be distinguished) is equivalent to encoding the (|V|2 )-digit binary sequence, given certain
probability distribution on all (|V|2 ) possible edges. However, such a string does not reflect
internal symmetries that are conveyed by the graph automorphism, and sometimes we are
only interested in the local or global structures in the graph, rather than the exact vertex
labelings. The structural entropy is defined when the graphs are considered unlabeled,
or simply called structures, where the vertices are viewed as undistinguishable. The goal
of this natural definition is to capture the information of the structure, and thus provides a
fundamental measure in graph/structure compression schemes.

The problem actually has a strong theoretical background. Back to 1984, Turán [16]
raised the question of finding an efficient coding method for general unlabeled graphs
on n vertices, where a lower bound of (n

2)− n log n + O(n) bits is suggested. This lower
bound can be seen by the number of unlabeled graphs [17]. The question was later
answered by Naor [18] in 1990 who proposed such a representation that is optimal up to
the first two leading terms when all unlabeled graphs are equally likely. In a recent paper
Kieffer et al. [19] proved a structural complexity of a binary tree. There also have been some
heuristic methods for real-world graph compression schemes, see [20–24]. Rather recently,
Choi and Szpankowski [25] studied the structural entropy of the Erdős–Rényi random
graph G(n, p). They computed the structural entropy given that p is not (very) close to 0 or
1 and also gave a compression scheme that matches their computation. Later, the structural
entropy for other randomly generated graphs, e.g., the preferential attachment graphs and
web graphs are also studied [26–29].

However, it is well-known that the Erdős–Rényi model is too simplistic to model real
networks, in particular due to its strong homogeneity and absence of community structure.
In this paper, we consider the compression of graphical structures of the SBM, which in
general model real networks better and circumvent the issues of the ER-model. In summary,
our contributions are as follows:
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• We introduce the partitioned structural entropy which generalizes the structural
entropy for unlabeled graphs and we show that it reflects the partition information of
the SBM.

• We provide an explicit formula for the partitioned structural entropy of the SBM.
• We also propose a compression scheme that asymptotically achieves this entropy limit.

Semantic communications are considered as a key component of future generation
networks, where a natural problem to consider is how to efficiently extract and transmit the
“semantic information”. In the case of graph data, one may view the (partitioned) structures
as the information that needs to be abstracted while the concrete labeling information is
considered redundant. From this point of view, our result is a step for the study of semantic
compression/communication under appropriate contexts.

1.2. Related Works

Finally, we would like to point out that there are some other information metrics
defined on graphs. The term “graph entropy” has been defined and used in the history.
For example, graph entropy introduced by Kőrner in [30] denotes the number of bits one
has to convey to resolve the ambiguity of a vertex in a graph. This notion also turns out to
be useful in other areas, including combinatorics. Chromatic entropy introduced in [31]
is the lowest entropy of any coloring of a graph. It finds application in zero-error source
coding. We remark that the structural entropy we considered is quite different from the
Kőrner graph entropy and chromatic entropy.

On the other hand, a concept of graph entropy (also called topological information content of
a graph) was introduced by Rashevsky [32] and Trucco [33], and later by Mowshowitz [34–39],
which is defined as a function of (the structure of) a graph and an equivalence relation
defined on its vertices or edges. Such a concept is a measure of the graph itself and does
not involve any probability distribution.

2. Preliminaries
2.1. Structural Entropy of Unlabeled Graphs

Now let us formally define the structural entropy given a probability distribution on
unlabeled graphs. In this subsection, we use notations borrowed from [25].

Given an integer n, define Gn as the collection of all n-vertex labeled graphs.

Definition 1 (Entropy of Random Graph). Given an integer n and a random graph G distributed
over Gn, the entropy of G is defined as:

HG = E[− log P(G)] = − ∑
G∈Gn

P(G) log P(G)

where P(G) , P(G = G) is the probability of a graph G in Gn.

Then the random structure model Sn associated with the probability distribution Gn,
is defined as the unlabeled version of Gn. For a given S ∈ Sn, the probability of S can be
computed as:

P(S) = ∑
G∼=S,G∈Gn

P(G).

Here G ∼= S means that G and S have the same structure, that is, S is isomorphic to
G. Clearly if all isomorphic labeled graphs have the same probability, then for any labeled
graph G ∼= S, one has:

P(S) = N(S) · P(G)

where N(S) stands for the number of different labeled graphs that have the same structure
as S.
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Definition 2 (Structural Entropy). The structural entropy HS of a random graph G is defined as
the entropy of a random structure S associated with Gn, that is,

HS = E[− log P(S)] = − ∑
S∈S

P(S) log P(S)

where the sum is over all distinct structures.

The Erdős–Rényi random graph G(n, p), also called the binomial random graph, is a
fundamental random graph model, which has n vertices and each pair of vertices is con-
nected with probability p, independent of other pairs. In 2012, Choi and Szpankowski [25]
proved the following for the Erdős–Rényi random graphs.

Theorem 1 (Choi and Szpankowski, [25]). For large n and all p satisfying n−1 ln n� p and
1− p� n−1 ln n, the following holds:

1. The structural entropy HS of G(n, p) is:

HS =

(
n
2

)
h(p)− log n! + O

(
log n

nα

)
for some α > 0.

2. For a structure S of n vertices and ε > 0

P
(∣∣∣∣− 1

(n
2)

log P(S)− h(p) +
log n!
(n

2)

∣∣∣∣ < ε

)
> 1− 2ε

where h(p) = −p log p − (1 − p) log(1 − p) is the entropy rate of a binary memory-
less source.

Furthermore, they [25] also presented a compression algorithm for unlabeled graphs
that asymptotically achieves the structural entropy up to an O(n) error term.

2.2. Stochastic Block Model–Our Result

As the ER model is not appropriate to model real networks, the stochastic block model
is introduced on the assumption that vertices in a network connect independently but with
probability based on their profiles, or equivalently, on their community assignment. For
example, in the SBM with two communities and symmetric parameters, also known as the
planted bisection model, denoted by G(n, p, q), the vertex set is partitioned into two sets V1
and V2, any pair of vertices inside V1 or V2 are connected with probability p and any pair
of vertices across the clusters are connected with probability q, and all these connections
are independent.

As an illuminating example, consider a context G where there are n/2 users and n/2
devices, and each pair of users and each pair of devices are connected with probability
p, a user and a device is connected with probability q and each of these connections is
independent of all other connections. Suppose that we need to compress the information
of G. However, in the context it is not appropriate to view G as an unlabeled graph, that
is, in addition to the structure information, it is also important to keep the “community”
information – the compression also needs to encode the information that who is a user and
who is device.

Definition 3 (Partition-respecting isomorphism, Partitioned Unlabeled Graphs). Let r ≤ n
be integers. Suppose V is a set of n vertices and P = {V1, V2, . . . , Vr} is a partition of V into r
parts. The partition-respecting isomorphism, denoted by “∼=P” is defined as follows. For any two
labeled graphs G and G′, we write G ∼=P G′ if and only if G ∼= G′ they are isomorphic via an
isomorphism function φ : V → V such that φ(Vi) = Vi, for 1 ≤ i ≤ r. Then ΓP is defined as the
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collection of n-vertex graphs on V where we ignore the labels of vertices inside each Vi, 1 ≤ i ≤ r,
namely, the equivalence classes under partition-respecting isomorphism, with respect to P .

Note that every labeled graph G corresponds to a unique structure S ∈ ΓP , and we use
G ∼=P S to denote this relation. Furthermore, under the above definition, general unlabeled
graphs correspond to the case r = 1.

Definition 4 (Partitioned Structural Entropy). Let V be a set of n vertices where n ∈ N. Suppose
P = {V1, V2, . . . , Vr} is a partition of V into r parts and Sn is a probability distribution over all
partitioned unlabeled graphs on n vertices. Then the structural entropy HS associated to Sn is
defined by:

HS = E[− log P(S)] = − ∑
S∈Sn

P(S) log P(S).

In this paper, we extend Theorem 1 to the structural entropy of the stochastic block
model with any given number of blocks, and provide a compression algorithm that asymp-
totically matches this structural entropy. For ease of comprehension, we first give the result
for the balanced bipartition case G(n, p, q).

Theorem 2. Let n be a positive even integer and let V = V1 ∪ V2 be a set of n vertices with
|V1| = |V2| = n/2. Suppose G(n, p, q) is a probability distribution of graphs on V where every
edge inside V1 or V2 is present with probability p and every edge between V1 and V2 is present
with probability q, and these edges are mutually independent. For large even n and all p satisfying
n−1 ln n� p, q and 1− p� n−1 ln n, the following holds:

(i) The partitioned structural entropy HS of G(n, p, q) is:

HS = 2
(

n/2
2

)
h(p) +

n2

4
h(q)− 2 log

(n
2

)
! + O

(
log n

nα

)
(1)

for some α > 0.
(ii) For a balanced bipartitioned structure S and ε > 0

P
(∣∣∣∣− 1

(n
2)

log P(S)− n− 2
2n− 2

h(p)− n
2n− 2

h(q) +
2 log(n/2)!

(n
2)

∣∣∣∣ < 3ε

)
> 1− 4ε

where h(p) = −p log p − (1 − p) log(1 − p) is the entropy rate of a binary memory-
less source.

Note that the structural entropy HS here is larger than that in Theorem 1 (even if
p = q), which reflects the fact that the SBM with “a planted (bi-)partition” contains prefixed
structures, so has less symmetries than G(n, p), the pure random model (For G(n, p), when
it is asymmetric, comparing with the completely labeled graphs, Theorem 1 saves a term
as log n!; this saving becomes 2 log(n/2)! for the planted balanced bipartition case in
Theorem 2).

3. Proof of Theorem 2

One key ingredient in the proof of Theorem 1 in [25] is the following lemma on the
symmetry of G(n, p). A graph is called asymmetric if its automorphism group does not
contain any permutation other than identity; otherwise it is called symmetric.

Lemma 1 (Kim, Sudakov and Vu, 2002). For all p satisfying n−1 ln n � p and 1− p �
n−1 ln n, a random graph G ∈ G(n, p) is symmetric with probability O(n−w) for any positive
constant w.



Entropy 2022, 24, 81 6 of 11

Proof of Theorem 2. Note that every pair of vertices in V1 or in V2 should be considered as
undistinguishable, but not the pairs of vertices in V1×V2. Recall that we write G ∼=P S for a
graph G and a structure S if S represents the structure of G (with respect to the partition P).

Let G := G(n, p, q). We first compute HG . Note that there are (n
2) possible edges in

G ∈ G, and we can view it as a binary sequence of length (n
2), where each digit is a Bernoulli

random variable. Moreover, for edges inside V1 or V2, the random variable, denoted by
X1, has expectation p and for edges in V1 × V2 the random variable, denoted by X2, has
expectation q. Thus, we have:

HG = −E[log X2(n/2
2 )

1 Xn2/4
2 ]

= −2
(

n/2
2

)
E[log X1]−

n2

4
E[log X2]

= 2
(

n/2
2

)
h(p) +

n2

4
h(q).

Now write Sn for the probability distribution on V over all partitioned unlabeled
graphs inherited from G, namely, given S ∈ ΓP , P(S) = ∑G∼=PS P(G). Let HS be the
partitioned structural entropy of Sn. Therefore, compared with our goal, it remains to
show that:

HS − HG = −2 log(n/2)! + O
(

log n
nα

)
. (2)

Note that in G(n, p, q), all labeled graphs G ∈ G such that G ∼=P S have the same
probability P(G). Thus, given a (labeled) graph G ∈ G, we have P(G) = P(S)/N(S),
where S ∈ Sn is such that G ∼=P S. So the graph entropy of G = G(n, p, q) can be written as:

HG = − ∑
G∈G

P(G) log P(G)

= − ∑
S∈Sn

∑
G∼=PS,G∈G

P(G) log P(G)

= − ∑
S∈Sn

∑
G∼=PS,G∈G

P(S)
N(S)

log
P(S)
N(S)

= − ∑
S∈Sn

P(S) log
P(S)
N(S)

= HS + ∑
S∈S

P(S) log N(S) (3)

Define S[W] be be S restricted on W for W ∈ V. Now we split S into S1 and S2,
i.e., S1 = S[V1] and S2 = S[V2]. Write Aut(Si) for the automorphism group for Si, and we
naturally have:

N(S) =
(n/2)! · (n/2)!
|Aut(S1)||Aut(S2)|

.

Combining this with (2) and (3), it remains to show that:

∑
S∈S

P(S) log |Aut(S1)||Aut(S2)| = O
(

log n
nα

)
.

In the summation above we only need to focus on S such that either S1 or S2 is
symmetric, as otherwise log |Aut(S1)||Aut(S2)| = log 1 = 0. By Lemma 1, we conclude
that the probability of S restricted on V1 or V2 is symmetric is O(n−1−α) for some α > 0,
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and for such S we use the trivial bound log |Aut(S1)||Aut(S2)| ≤ 2 log(n/2)! ≤ 2n log n.
This gives us the desired estimate in (i)

∑
S∈S

P(S) log |Aut(S1)||Aut(S2)| ≤ 2n log n ·O(n−1−α) = O
(

log n
nα

)
.

To show (ii), for a set V of n vertices and a balanced bipartition P = (V1, V2) of V, we
define the typical set Tn

ε as the set of structures S on n vertices satisfying:

(a) S is asymmetric on V1 and V2, respectively;

(b) 2−2(n/2
2 )h(p)− n2

4 h(q)−(n
2)ε ≤ P(G) ≤ 2−2(n/2

2 )h(p)− n2

4 h(q)+(n
2)ε, for G ∼=P S.

Denote by Tn
1 and Tn

2 the sets of structures satisfying the properties (a) and (b), respec-
tively, and thus we have Tn

ε = Tn
1 ∩ Tn

2 . Firstly, by the asymmetry of G(n, p) (Lemma 1),
we conclude that P(Tn

1 ) > 1− 2ε for large n. Secondly, we use a binary sequence of length
(n

2) to represent a (labeled) instance G of G(n, p, q), where the first (n/2
2 ) bits L1 represent

the induced subgraph on V1, the next (n/2
2 ) bits L2 represent the induced subgraph on V2,

and finally the rest n2/4 bits L12 represent the bipartite graph on V1 ×V2. Since all edges
of G are generated independently, both L1 and L2 have in expectation (n/2

2 )p 1’s and the
AEP property of the binary sequences implies that:

2−(
n/2

2 )h(p)−(n
2)ε ≤ P(G[V1]), P(G[V2]) ≤ 2−(

n/2
2 )h(p)+(n

2)ε

holds with probability at least 1− 2ε. Similarly, L12 has in expectation (n2/4)q 1’s and the
AEP property of the binary sequences gives that with probability at least 1− ε,

2−
n2

4 h(q)−(n
2)ε ≤ P(G[V1, V2]) ≤ 2−

n2

4 h(q)+(n
2)ε

Since these edges are independent, we finally conclude that (b) holds with probability
at least 1 − 3ε. Thus, P(Tn

ε ) ≥ 1 − 4ε. Now we can compute P(S) for S ∈ Tn
ε . By

(a), P(S) = (n/2)!(n/2)!P(G) for any G ∼= S. Together with (b) and straightforward
computation, the assertion of (ii) follows.

4. SBM Compression Algorithm

Given the computation of the structural entropy, a natural next step is to design
efficient compression schemes that are close to or even (asymptotically) achieve this entropy
limit. Choi and Szpankowski [25] presented such an algorithm (which they named SZIP) for
(unlabeled) random graphs, which uses in expectation at most (n

2)h(p)− n log n+O(n) bits
and asymptotically achieves the structural entropy given in Theorem 1. Roughly speaking,
SZIP greedily peels off vertices from the graph and (efficiently) store the neighborhood
information. This procedure can be simply reversed but the labeling of the recovered
graph may be different from the original graph, which is the reason on why a saving of the
codeword length is achieved. Refinements and analysis [25] are also provided to achieve
the proposed performance.

Here we give an algorithm that optimally compresses SBMs which uses the SZIP algo-
rithm as building blocks and matches the structural entropy computation in Theorem 2.
The algorithm consists of two stages. It first compresses S[V1] and S[V2] using SZIP and
then compresses S[V1, V2] using an arithmetic compression algorithm with the help of
SZIP decoding outputs.

To give a brief description of the compression algorithm, we again use the balanced
bipartition V1 ∪V2 as an example. The encoding and decoding procedure of the algorithm
is illustrated in Figure 1. The algorithm encodes the observed S(n, p, q) into a binary string
as follows. It uses SZIP as a subroutine to compress S[V1] and S[V2] into binary sequences
L1 and L2. Then, as part of the encoder, we run the SZIP decoder on L1 and L2 to obtain
decoded structures S′[V1] and S′[V2], respectively. We then compress S[V1, V2] as a labeled
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bipartite graph under the vertex labeling of S′[V1] and S′[V2] into L12. This “Labeled
Encoder" can be done by treating it as a binary sequence of length n2/4 and compressing
using a standard arithmetic encoder [40–42]. The concatenation of SZIP algorithms and the
arithmetic encoder forms the cascade encoder of our algorithm and obtains the codeword
(L1,L2,L12). Upon receiving the codeword, we decode them parallelly using SZIP decoder
and the arithmetic decoder. This completes our algorithm.

SBM
data

S[V1] SZIP

Encoder
L1

S[V2] SZIP

Encoder
L2

S[V1, V2]

SZIP
Decoder

SZIP

Decoder

S′[V1]

S′[V2]

Labeled
Encoder

L12

Cascade encoder

Labeled
Decoder

Ŝ[V1, V2] = S′[V1, V2]

SZIP

Decoder
Ŝ[V1] = S′[V1]

SZIP

Decoder
Ŝ[V2] = S′[V2]

Parallel decoder

Figure 1. Illustration of compression algorithm.

The main challenge in the design of our algorithm is how the decoder can retrieve
the consistency between the bipartite graph S[V1, V2] and the decoded version of S[V1] and
S[V2]. A key observation here is that since SZIP is a deterministic algorithm, although it
may permute the vertex labelings, its output is an invariant given the same input. Given
this, our solution here is to first run SZIP (both encoding and decoding) at the encoder, and
obtain structures S′[V1] and S′[V2], respectively. We then compress S[V1, V2] (as a labeled
bipartite graph) under the vertex labeling of S′[V1] and S′[V2]. This would guarantee that
the decoded structures Ŝ[V1], Ŝ[V2] and Ŝ[V1, V2] share the same vertex labeling as S′[V1]
and S′[V2], namely, S is recovered.

Before discussing the performance of the algorithm, we first describe some useful
properties of the arithmetic compression algorithm in the following lemma. We omit the
proof of the lemma, which follows from the analysis in [40–42] and AEP properties in [1,2].

Lemma 2. Let L be the codeword length of the arithmetic compression algorithm when compressing
a binary sequence with length m and entropy rate h. For large m, the following holds:

(i) The expected codeword length asymptotically achieves the entropy of the message, i.e.,

E[L] = mh + O(log m). (4)

(ii) For any ε > 0,
P(|L−E[L]| ≤ ε log m) ≥ 1− o(1). (5)

(iii) The arithmetic algorithm runs in time O(m).

The following theorem characterizes the performance of our algorithm. It is imme-
diate from Theorem 2 in [25] (performance of SZIP) and Lemma 2, we omit the detailed
proofs here.

Theorem 3. Let V = V1 ∪V2 be a set of n vertices and |V1| = |V2| = n/2. Given a partitioned
unlabeled graph S on V, let L(S) be the codeword length given by our algorithm. For large n, our
algorithm runs in time O(n2), and satisfies the following:
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(i) The algorithm asymptotically achieves the structural entropy in (1) (Note that (n/2) log(n/2)
= n log n + O(n).), i.e.,

E[L(S)] ≤ 2
(

n/2
2

)
h(p) +

n2

4
h(q)− n log n + O(n).

(ii) For any ε > 0,
P(|L(S)−E[L(S)]| ≤ εn log n) ≥ 1− o(1).

5. General SBM with R ≥ 2 Blocks

In previous sections, we discussed the structural entropy of SBM and the compression
algorithm that asymptotically achieves this structural entropy for the balanced bipartition
case (r = 2). The corresponding results in Theorem 2 and 3 can be easily generalized to the
general r-partition case. We briefly describe the generalizations below.

5.1. Structural Entropy

Our approach can deal with general SBMs similarly. In a general SBM with r ≥ 2
parts, the transition matrix, an r × r symmetric matrix P = (pij) is used to describe the
probabilities between and within the communities, where two vertices u ∈ Vi and v ∈ Vj
are connected by an edge with probability pij ∈ [0, 1] (i and j are not necessarily distinct).
We first give the result on the computation of the partitioned structural entropy of SBM.

Theorem 4. Fix r reals x1, x2, . . . , xr in (0, 1) whose sum is 1. Let V = V1 ∪V2 ∪ · · · ∪Vr be a
set of n vertices with a partition into r parts such that |Vi| = xin. Let S be a partitioned structure
on V with transition matrix P = (pij). For large n and all 1 ≤ i ≤ r satisfying n−1 ln n � pi,i

and 1− pi,i � n−1 ln n, the following holds:

(i) The r-partitioned structural entropy Hr
S for S is

Hr
S =

r

∑
i=1

(
xin
2

)
h(pi,i) + ∑

1≤i<j≤r
xixjn2h

(
pi,j
)
−

r

∑
i=1

log(xin)! + O
(

log n
nα

)
(6)

for some α > 0.
(ii) For ε > 0,

P

(
1
(n

2)
·
∣∣∣∣∣− log P(S)−

r

∑
i=1

(
xin
2

)
h(pi,i)− ∑

1≤i<j≤r
xixjn2h

(
pi,j
)
+

r

∑
i=1

log(xin)!

∣∣∣∣∣ < 3ε

)
> 1− 4ε.

5.2. Compression Algorithm

The compression algorithm for a general r with vertex partition {V1, V2, . . . , Vr} can be
viewed as a union of the compression algorithms for S[Vi] and S[Vi, Vj] (i < j ∈ {1, 2, . . . , r}).
To be more precise, we describe the algorithm as follows. It first compresses all S[Vi] into Li
using SZIP. Then run the SZIP decoder with input Li to obtain the decoded structure S′[Vi].
With the indices of S′[Vi], i = 1, 2, . . . , r, we can compress S[V1, V2, . . . , Vr] as a labeled
r-partite graph into L using an arithmetic encoder. This completes the encoding procedure
and gives the codewords L1, . . . ,Lr,L, for which we concatenate together and get the
final codeword. The decoding is to simply run the SZIP decoders and labeled (arithmetic)
decoders parallelly. The correctness of the decoding output can also be argued accordingly.

The performance of the algorithm can be obtained similar to Theorem 3 as follows.

Theorem 5. Fix r reals x1, x2, . . . , xr in (0, 1) whose sum is 1. Let V = V1 ∪V2 ∪ · · · ∪Vr be a
set of n vertices with a partition into r parts such that |Vi| = xin. Given a partitioned unlabeled
graph S on V with transition matrix P = (pij), let L(S) be the codeword length given by our
algorithm. For large n, our algorithm runs in time O(n2), and satisfies the following:
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(i) The algorithm asymptotically achieves the structural entropy in (6), i.e.,

E[L(S)] ≤
r

∑
i=1

(
xin
2

)
h(pi,i) + ∑

1≤i<j≤r
xixjn2h

(
pi,j
)
− n log n + O(n).

(ii) For any ε > 0,
P(|L(S)−E[L(S)]| ≤ εn log n) ≥ 1− o(1).

6. Conclusions

In this paper, we defined the partitioned unlabeled graphs and partitioned structural
entropy, which generalize the structural entropy for unlabeled graphs introduced by Choi
and Szpankowski [25]. We then computed the partitioned structural entropy for stochastic
block models and gave a compression algorithm that asymptotically achieves this structural
entropy limit. As mentioned earlier, we believe that in appropriate contexts the structural
information of a graph or network can be interpreted as a kind of semantic information,
in which case, the communication schemes may benefit from structural compressions which
considerably reduce the cost.
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