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Abstract: The objective of the present study was to achieve the successful encapsulation of a ther-
apeutic agent to achieve antifouling functionality regarding biomedical applications. Considering
nanotechnology, drug-loaded polycaprolactone (PCL)-based nanoparticles were prepared using
a nano-precipitation technique by optimizing various process parameters. The resultant nano-
formulations were investigated for in vitro drug release and antifouling applications. The prepared
particles were characterized in terms of surface morphology and surface properties. Optimized
blank and drug-loaded nanoparticles had an average size of 200 nm and 216 nm, respectively, with
associated charges of−16.8 mV and−11.2 mV. Studies of the in vitro release of drug were carried out,
which showed sustained release at two different pH, 5.5 and 7.4 Antifouling activity was observed
against two bacterial strains, Gram-positive Staphylococcus aureus and Gram-negative Escherichia
coli. The zone of inhibition of the optimized polymeric drug-loaded nanoparticle F-25 against both
strains were compared with the pure drug. The gradual pH-responsive release of antibiotics from
the biodegradable polymeric nanoparticles could significantly increase the efficiency and pharma-
cokinetics of the drug as compared to the pure drug. The acquired data significantly noted that the
resultant nano-encapsulation of antifouling functionality could be a promising candidate for topical
drug delivery systems and skin applications.

Keywords: cefotaxime; nanoprecipitation; nano-encapsulation; antifouling; nanoparticles

1. Introduction

Microbial infections caused by various pathogenic bacterial strains lead to serious
nosocomial infections in patients worldwide [1,2]. Pathogenic bacterial infections due
to anomalies in the care and handling of medical equipment and medical textiles, are
major sources of mortality and morbidity in developing countries. Used surgical and
nonsurgical health care textiles, contaminated with microbial agents, are attributed various
nosocomial infections [3,4]. The role of polymeric nanoparticle-associated drug loading
and delivery at targeted sites has received a great deal of attention from researchers.
Owing to their reduced toxicity, favorable pharmacokinetics, and protection against in vivo
and in vitro degradation, the nanoencapsulation of therapeutic agents in biodegradable
polymeric nanoparticles, compare to conventional treatments, has provided new routes for
research [5–7].
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Encapsulation of pharmaceutical and therapeutic agents can be achieved through
natural and synthetic polymers [8,9]. The hydrophilic nature of antifouling drugs renders
them ineffective in treating intracellular infections due to their inability to cross the plasma
membrane [10]. Polycaprolactone belongs to a class of polyesters that are promising
candidates for the nanoencapsulation of various hydrophilic and hydrophobic drugs [11,12].
The A-chirality of the PCl induces chemical stability in the hydrolysis of long polymeric
chains in encapsulation. PCL allows the sustained release of antifouling drug in a controlled
manner at a specific site [13].

Cefotaxime, a third generation semisynthetic cephalosporin, shown in Figure 1, man-
ifests a broad range antibacterial activity against various bacterial strains [14]. Its bacte-
ricidal activity is attributed to its high beta lactamase stability, inhibiting the synthesis
of the cell wall. Cefotaxime is effectively used against various microbial strains respon-
sible for skin, lower respiratory, urinary tract, intra-abdominal, bone and joint, and CNS
infections [15,16]. Thus, it is considered to be an effective antifouling agent for nanoen-
capsulation with a high in vitro activity, favorable pharmacokinetics, and a moderate
molecular weight [17].

Figure 1. Chemical structure of cefotaxime.

Nanoencapsulation of therapeutic agents is achieved through different mechanisms,
including nano-precipitation or the solvent displacement method, emulsification (followed
by diffusion/evaporation/coacervation), double-emulsion, polymersome preparation,
layer-by-layer and supercritical fluid technology (SCF) [18,19]. A nano-precipitation tech-
nique was employed to prepare azithromycin-loaded PLGA nanoparticles for efficient
antibacterial activity against Salmonella typhi and controlled in vitro release as compared
to pure drug [20]. Glycyrrhizin (GL), a hydrophilic drug-loaded chitosan-gum Arabic
nanoparticles were prepared to evaluate antibacterial activity as well as in vitro release.
Observed analyses showed improved entrapment efficiency and sustained release of gly-
cyrrhizin from the polymeric shell of chitosan-gum Arabic nanoparticles comparative
to pure drug [21]. Similarly, polylactide-co-glycolic acid (PLGA)- and polycaprolactone
(PCL)-based nanoparticles were prepared for encapsulating etoposide for treating cancer
using nanoprecipitation and an emulsification/solvent evaporation technique. Comparing
the in vitro release from PLGA co-polymer and PCL nanoparticles individually showed
slow and prolonged release up to 48 h, attributed to the hydrophobic nature of PCL NPs.
Thus, improved efficacy, safety, and stability of the drug with a good absorption ability was
demonstrated [22]. Considering bacterial-resistant isolates, Shabaan et al. synthesized PCL
and PLGA NPs for encapsulating imipenem as an antibiotic accompanied by cliastatin to
prevent degeneration due to enzymatic effect. Results drawn after subsequent characteriza-
tion of the nano-formulation clearly showed the effectiveness of PCL-based NPs compared
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to PLGA NPs in terms of the efficient antibacterial activity of imipenem and in vivo testing
further enhanced their therapeutic application [23].

The present work was done with the aim to optimize antifouling formulations for slow
and sustained release of antifouling activity. Cefotaxime, a third-generation cephalosporin
used for antifouling functionality, was encapsulated through a nanoprecipitation technique.
Optimization of the stable formulation in terms of polymer–drug efficacy, homogeneity,
and uniformity for prolong periods of time were done using varying concentrations of
active ingredients. Particle size and charge were studies using dynamic light scattering
technique (DLS). Structural analyses and surface morphology were studied though Fourier
transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). A UV-Vis
spectrometer was used to estimate the encapsulated drug inside the polymeric NPs. The
present research work appraised the drug release kinetics with in vitro and slow release
of cefotaxime-loaded polycaprolactone-based nanoparticles against two bacterial strains,
Gram-positive S. aureus and Gram-negative E. coli, respectively. Thus, novel developments
of cefotaxime-loaded PCL nanoparticles provide an innovative and simple approach for
significant antifouling activity in topical and skin-delivery applications. The graphical
abstract shows a brief overview of the experimental study and optimization of antifouling
formulations using varying parameters accompanied with pH dependent in vitro release
and antifouling activity against E. coli and S. aureus.

2. Materials and Methods
2.1. Chemicals and Materials

PCL (Polycaprolactone) (Mw-14,000 g/mol), PVA (polyvinyl alcohol) (Mw-3100 g/mol)
(Mw/Mn 4.88) and DCM (dichloromethane) (Mw 84.93) of 99.9% purity was purchased
from Sigma-Aldrich, Germany. Cefotaxime was obtained from Nectar Life Sciences, India.
Ultrapure water (conductivity = 0.055 µS, total dissolved solutes; TDS ~0.00) and deionized
water were used for solution preparation and washing for the experimental procedures.
Commercial grade materials were used as received. NaCl (Sodium chloride) as buffer
saline solution (Sigma Aldrich, Steinheim, Germany) and Mueller-Hinton II Agar (MHA)
(Biolab Diagnostics Laboratory, Budapest, Hungary) were used for antibacterial assays.
Clinical isolates were acquired from the bacterial strain Staphylococcus aureus (ATCC 6538)
and Escherichia coli (ATCC 8739).

2.2. Method
2.2.1. Optimization of Blank Nanoparticles

A nano-precipitation technique was employed to optimize polymeric nano-formulation
by developing two phases separately. An organic phase for the blank phase was prepared
by dissolving varying concentrations of PCL (25 mg, 50 mg, 75 mg, 100 mg, 150 mg, and
200 mg) in 2 mL of DCM at room temperature to get clear solution. PVA as nonionic sur-
factants, in varying concentrations (0.1%, 0.3%, 0.5%, 1% and 2%), were induced in 10 mL
aqueous phase under constant magnetic stirring at 60 ◦C for 1 h until a clear solution was
obtained. The choice of surfactant and the ratio of organic to aqueous phase, accompanied
with other experimental variables, were the key benchmarks for nanoparticles stability.

2.2.2. Optimization of Drug-Loaded Nanoparticles

Drug-loaded nanoparticles were prepared by dissolving 3 mg of cefotaxime in the fixed
proportions of PCL and DCM under constant magnetic stirring at 37 ◦C for approximate
1.5 h to acquire clear solution.

The organic phase was slowly injected into the aqueous phase with constant magnetic
agitation using a syringe and a fixed rate of 0.125 mL/min at a constant temperature. The
resultant formulation was left in the free space to remove DCM and assess the stability of
the nanoparticles according to their physical appearance. Optimization of stable nanopre-
cipitates was done by varying the concentrations of polymer, surfactant, aqueous/organic
phase ratio, temperature, stirring rate, and time, as described in Table 1.
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Table 1. Composition of various formulations in the optimization of nanoprecipitation.

Sr No
Aqueous

Phase
mL

Organic
Phase

mL

Surfactant
%

Polymer
mg

Stirring
Speed
RPM

Stirring
Time
Min

Temp ◦C
Injection

Rate
mL/min

Drug
Mg Observations

F1 10 2 0.1 25 600 10 33 4 0 Non uniform
a, unstable b

F2 10 2 0.3 - - - - - Non uniform,
unstable

F3 10 2 0.5 - - - - - Uniform,
unstable

F4 10 2 1.5 - - - - - Uniform c,
unstable

F5 10 2 2 - - - - - Uniform, less
stable d

F6 10 2 - 50 - - - - Uniform,
unstable

F7 10 2 - 75 - - - - Non uniform,
unstable

F8 10 2 - 100 - - - - Non uniform,
unstable

F9 10 2 - 150 - - - - Non uniform,
unstable

F10 10 2 - 200 - - - - Non uniform,
unstable

F11 10 2 - 25 700 - - - Uniform less
stable

F12 10 2 - - 750 - - - Uniform,
more stable e

F13 10 2 - - 800 - - - Uniform,
unstable

F14 10 2 - - 850 - - - Non uniform,
unstable

F15 10 2 - - 900 - - - Non uniform,
unstable

F16 10 2 - - 950 - - - Non uniform,
unstable

F17 10 2 - - 1000 - - - Non uniform,
unstable

F18 10 2 - - 1250 - - - Non uniform,
unstable

F19 10 2 - - 1500 - - - Non uniform
and unstable

F20 10 2 - - 750 15 - - - Uniform,
unstable

F21 10 2 - - - 20 35 - - Uniform, less
stable

F22 10 2 - - - - 37 - - Uniform,
more stable

F23 10 2 - - - - 40 - - Non uniform,
unstable

F24 10 2 - - - - 37 8 - Uniform,
more stable

F25 10 2 - - - - - 16 3 Uniform,
highly stable f

F26 10 2 - - - - - - 5 Uniform, less
stable

F27 10 2 - - - - - - 7 Non uniform,
unstable

a: Precipitates out and globular appearance visible to naked eye; b: formulation remains uniform after 1 h; c: no precipitation and globular
appearance visible to naked eye; d: formulation remains uniform up to 24 h; e: formulation remains uniform up to 7 days; f: formulation
remains uniform up to 30 days at ambient temperature.

2.3. Characterization Techniques
2.3.1. Nanoparticle Size, Charge and Morphology

The optimized formulations were subjected to analyses to determine particle size,
charge, and polydispersity index through DLS (dynamic light scattering) (Nano ZS,
Malvern Instruments, Worcestershire, UK). Both blank and drug-loaded nano-precipitations
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were diluted to study the size, charge, and distribution. Each value was taken thrice to
acquire a mean value. The size and surface morphology of the nanoparticles were further
ascertained via SEM (Model JEOL JSM 6490 LA, Tokyo, Japan). Samples were put on a
glass slide and subjected to being coating using gold sputtering, followed by drying, and
were placed under the scanning electron microscope stub.

2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)

Fourier transform infrared spectroscopy (FTIR) was used for structural analyses and
the identification of functional groups of synthesized formulations. A FTIR spectropho-
tometer (Shimadzu 8400, Tokyo, Japan) with a wavenumber of 4000 to 400 cm−1 was
employed for scanning. All formulations were subjected to analyses after making sample
pallets using KBr powder and being pressed into a disk.

2.3.3. UV-Visible Spectroscopy

The amount of antifouling drug encapsulated inside the polymeric nanoparticles as
well as the liberated amount were estimated using a UV-Vis spectrophotometer (Dynamic,
Halo DB- 20, Livingston, UK) at a wavelength of 260 nm. All samples were analyzed by
placing them directly into the cuvette inside the spectrophotometer at a specific wavelength.
A standard curve was plotted after the drug-released model was fitted, which were used to
execute drug loading and release studies.

2.3.4. Study of In Vitro Release Kinetics

The released patterns of drug from the nano-formulation were investigated at pH 5.5
and pH 7.4 for 48 h. A total of 10 mL of formulation was placed in a dialysis bag dispersed
in a beaker in 50 mL of phosphate buffer solution (PBS), and maintained under gentle
shaking at 37 ◦C. A total of 2 mL of solution was taken from the beaker after intervals of 0.5,
1, 2, 3, 4, 5, 6, 8, 12, 24, 36, and 48 h, followed by the addition of the same amount of fresh
PBS solution for compensation. After subsequent dilutions, samples were investigated
under a UV-Vis spectrophotometer at a wavelength of 260 nm to analyze the drug content.
Drug release patterns for the nano-formulation were investigated at both pH values.
Various kinetic models, such as zero order, first order, Higuchi and Korsmeyer–Papas, were
employed to study the in vitro drug release kinetics and ascertain the released mechanisms
from a given polymeric system [24].

2.3.5. Antibacterial Assay

Antibacterial activity against two bacterial strains, Escherichia coli (ATCC 8739) and
Staphylococcus aureus (ATCC 6538), were performed using a qualitative agar well diffusion
assay. Bacterial cells were first streaked onto freshly prepared nutrient broth and incubated
at 37 ◦C overnight. Bacterial colonies were selected using an inoculated wire loop from the
cultured media and put into pre-autoclaved 10-mL saline solution. The bacterial inoculum
present in saline solution was vortexed for a uniform distribution and optical densities
were adjusted using 0.5 McFarland standards [25]. A total of 25 mL of MHA solution was
poured in 9-mm Petri dishes under a streamlined flow hood in the presence of an ethanol
lamp. The solidified agar plates were placed into an incubator overnight at 37 ◦C. A total
of 0.1 mL, or 100 microliters, of microbial culture were poured into the center of each Petri
dish using a micropipette, followed by swabbing with sterilized cotton buds. Three 6 mm
wells constituting one positive control and one negative control, in addition to the sample
wells, were formed on the ager plate using sterilized blue tips. Petri dishes were covered
with their lids, stacked on top of each other in an upright position and then placed in an
incubator at 37 ◦C. The zone of inhibition around each well was measured and the data
were observed as mean ± standard deviation.
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3. Results and Discussion
3.1. Optimization of Synthesized Nano-Precipitation

In the present study, the antifouling formulation was optimized by varying the concen-
tration of constituents (polymer, surfactant, aqueous/organic phase, and drug). Cefotaxime,
a third generation cephalosporine, shows a strong affinity in binding with target enzymes,
such as those of penicillin-binding proteins, thus inhibiting the synthesis of bacterial cell
walls [26]. PCL, a semicrystalline biodegradable polymer, showed slow and sustained
release of antifouling activity, which is particularly suitable for topical delivery [22]. PVA,
used as a nonionic surfactant, exhibits excellent solubilizing efficiency with PCL-based
nano-formulations [27]. Further experimental parameters (stirring speed, stirring time,
injection time, and temperature) were studied to achieve an optimized formulation. Thus,
a preliminary design to acquire a stable consistency of nano-precipitation was initiated by
varying the amounts of surfactant and polymer in fixed proportions of the aqueous and
organic phases. After achieving approximate consistency by varying the composition, other
process parameters were varied to achieve the desire results. The codes of formulation,
variable parameters, ratios of aqueous/organic phase, physical appearance, and status of
stability of the formulated nano-precipitations are given in Table 1.

Initially, the amount of PVA as a nonionic emulsifier was varied from 0.1 to 2% in
samples F1 to F5, as shown in Table 1. It was found that, by increasing the amount of
surfactant and keeping other parameters constant, a uniform consistency of formulation
with no globular appearance and precipitation was found, but it does not remain uniform
after 24 h, as observed in sample F5. An increased amount of emulsifying agent in the nano-
precipitation technique plays a critical role in reducing coalescence of nano-formulation,
which was attributed to the reduction in the surface tension between the aqueous and
organic phases [28]. Further optimization started with 2% PVA and varying concentrations
of polymer, from 50 to 200 mg, for F6 to F10. An increase in the amount of polymer
produced a viscous and unstable consistency of nano-precipitation with a settling of
particles at the bottom [29]. Magnetic stirring speed was varied from 700 to 1500 rpm in
F11 to F19, and non uniformity and instability was observed; thus, sample F12 at a low
stirring speed was uniform and more stable with no settling and aggregation of particles in
the case of PCL, but there was an increase in the size of the nanoparticles. Nanoparticle size
decreased by increasing the rate of stirring, but this affected the rate of solvent evaporation
in the nano-precipitation technique and hindered the stability of formulation, causing
precipitation and agglomeration, similar to the results for F13 to F19 [30]. Stirring time of
the formulation after injection varied from 15 to 20 min for complete evaporation of the
solvent. Optimization of the formulation for F21 to F23 was done with the aim to adjust
the temperature while injecting the organic phase in an aqueous phase to attain maximum
uniformity and stability. In addition to other process parameters, the rate of injecting the
organic phase in an aqueous phase is another important factor for the optimization of nano-
precipitation, which varied in F24 to F25 from 0.25 to 0.125 mL/min. The slow injection rate
of 0.125 mL/min at an optimum temperature of 37 ◦C in F25 is uniform and highly stable
and was selected for loading the drug, which was initiated with a minimum amount of
drug, and was then further varied from 3 to 7 mg for F25 to F27. The above results clearly
showed that F25, with the least amount of drug loading, was most suitable optimized
formulation for the determination of size, surface charge, morphology, antibacterial activity,
and drug release kinetics.

3.2. Size and Morphology of Nano-Formulation

The size of nanoparticles and the morphology of the formulated blank and drug-
loaded nano precipitations were characterized through SEM. In Figure 2, SEM images
show the spherical morphology of the prepared polymeric nanoparticles with an average
size of 200 nm for the blank and 216 nm for the drug-loaded nanoparticles. Uniformity
in size and shape of the nanoparticles confirms the absence of coalescence in both blank
and drug-loaded nano-precipitations. The marked difference in the size between the blank
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and drug-loaded polymeric nanoparticles was attributed to the encapsulation of bioactive
functional molecules inside the shell of the PCL.

Figure 2. Scanning electron microscopy (SEM) images of (a) blank nanoparticles and (b) cefotaxime-
loaded PCL nanoparticles.

3.3. FTIR Analysis

FTIR analyses of PCL, cefotaxime and antifouling nano-precipitations were observed
in the range of 400 to 4000 cm−1, as shown in Figure 3. The characteristic peaks of PCL at
3435.50 and 2918.14 cm−1 were attributed to O-H and C-H stretching vibrations, while a
band appearing at 1728.92 cm−1 was attributed to the carbonyl group of ester [31]. The
corresponding peaks of NH stretching at 3343.06 and 3043.11 cm−1 and C-H stretching
at 2938 cm−1 appeared in the cefotaxime spectra. C=O stretching of carbonyl (β-lactam),
carbonyl (carboxylic ester) and carbonyl (amide) were observed at 1759.51, 1729.28 and
1644.22 cm−1, respectively [15]. Antifouling emulsion spectra distinctly showed all these
peaks. A broad band appeared in the range of 3300 to 3000 cm−1 depicting N-H and O-H
stretching, and both were present in the PCL and cefotaxime spectra. The other peaks
at 1272.25, 1045.36 and 687.36 cm−1 corresponded to C-O stretching and C-H bending
vibrations, present in the antifouling emulsion spectra. FTIR studies clearly revealed the
compatibility between PCL and drug in the nano-precipitation spectra. Such findings
confirm chemical stability due to the unaltered structural configurations of functional
groups present in PCL and cefotaxime [32,33].

3.4. Surface Charge, Particles Size Distribution and Polydispersity Index (PDI)

The particle size distribution and polydispersity index of both the blank and drug-
loaded nano formulations are shown in Figures 4 and 5, respectively. The average particle
size of the blank and drug-loaded NPs were found to be 200 nm and 216 nm, respectively.
The polydispersity index (PDI) was 0.4 and indicated good uniformity and homogeneity
in terms of the particle size and distribution of nanoparticles. The PDI lies in the range of
0.1–0.5. Less than 0.1 shows monodispersion while greater than 0.5 shows a high dispersion
in terms of particle size.
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Figure 3. Fourier transform infrared (FTIR) analysis of polycaprolactone, cefotaxime and drug-loaded
polymeric NPs.

Figure 4. Particle size distribution of blank NPs, F-24.
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Figure 5. Particle size distribution of drug-Loaded polymeric NPs, F-25.

The zeta potential was attributed to the stability of nano-formulation. Large positive
and negative magnitudes of charge of the nanoparticles described the high stability in the
colloidal system, attributed to the large electrostatic repulsion among them. The optimized
blank NPs of PCL showed a zeta potential of −16.8 mV, while drug-loaded nanoparticle
showed a potential of −11.1 mV, as shown in Figures 6 and 7. Negative zeta potential was
due to the presence of the carbonyl group on the surface of the nanoparticles [34,35]. The
zeta potential value of the PCL nanoparticles was found to be affected by the method of
preparation, i.e., a decreased magnitude of zeta potential, which has already discussed
in the case of the nanoprecipitation technique [36]. Owing to the encapsulation of drug
in the PCL shell, a decreased value of zeta potential was attributed to the partial ad-
sorption of cefotaxime on the surface and indicated the entrapment of drug inside the
PCL nanoparticle.

Figure 6. Zeta potential of blank NPs, F-24.
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Figure 7. Zeta potential of drug-loaded polymeric NPs, F-25.

3.5. In Vitro Drug Release Studies

In vitro drug release studies were performed using the dialysis bag diffusion method
for 48 h at two different pH, 5.5 and pH 7.4, in phosphate buffer solution at 37 ◦C [37].
The percent cumulative drug release versus time plots at pH 5.5 and 7.4 are graphically
shown in Figure 8. It is seen from the graph that there was a persistent release of about
56% encapsulated drug from the nano-formulation at pH 5.5, while 83% was released at
pH 7.4 within 48 h. A reduced amount of percent cumulative drug, released in acidic
medium (pH 5.5), compared to enhanced released in neutral medium (pH 7.4), showed
PCL nanoparticles to be promising pH-responsive nano-carriers for hydrophilic drug [38].
A substantial released in the initial 12 h at pH 5.5 (36%) and pH 7.4 (68%) was attributed to
rapid dissolution of the adsorbed drug on the surface of the PCL nanoparticles, depending
on the surface area to volume ratio [39]. This might be associated with the hydrophilic
nature of the drug. On the other hand, a slow and prolonged release in the remaining 36 h
was related to the diffusion of drug inside the core of the hydrophobic matrix [40,41].

Figure 8. In vitro drug release profile from polymeric nanoparticles at pH 5.5 and pH 7.4.

In vitro release studies of drug from polymeric nanoparticles suggested pH sensitivity
in case of PCL nano-carriers. Decreased amounts of percent release at pH 5.5 exhibited a less
favorable interaction between drug and dissolution media, as compared to drug–polymer
interactions. Thus, the higher release at pH 7.4 reflects the more favorable pharmacokinetics
of the drug in the released media [39]. A sustained release of drug from PCL nano-particles
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was much more desirable for topical application [25]. An unfinished release was observed
in case of PCL due to the crystalline and hydrophobic nature, which can be modified by
making blends and copolymers using polylactic-co-glycolic acid (PLGA), polylactic acid
(PLA) or polyethylene glycol (PEG) [42].

3.6. Kinetics of Drug Release

To predict the mechanism of drug release at different pH values, various kinetic
models were applied to fit the drug release data of the nano-formulations. Thus, in vitro
drug release kinetics was studied by applying the software DD Solver 1.0. Each kinetic
model, such as zero order, first order, Higuchi and Korsmeyer–Peppas, describes a different
extent of drug pharmacokinetics in the released medium [38]. Zero order kinetic models
show that the in vitro release of a drug is independent of the concentration and constant
over a certain time, depicted from the zero order kinetic equation, At = A∞ + kt. The first
order kinetic model ( ln

(
At

A∞

)
= k) describes the direct dependence of in vitro release on

the concentration of a drug from polymeric nanoparticles. The Higuchi model simplified
drug release from the polymeric matrix as the square root of time following the Fickian
diffusion method ( At

A∞ = k√t ). The Korsmeyer–Peppas model is the theorization of the
Higuchi model, and is applied where the release mechanism is not fully known from the
polymeric system described through the equation, ln

(
At

A∞

)
= ln k + n ln (t). Here, the

value of n, known as the release or diffusion exponent, depicts the release mechanism of a
drug from a polymeric system.

The above-mentioned kinetic models were fitted to study the in vitro drug release
mechanism of a given polymeric system as a function of R-squared, a coefficient of determi-
nation value. The R-squared value gives a goodness of best fit for linear regression models,
ranging from 0 to 1. Here, the in vitro release was experimentally studied at pH values
of 5.5 and 7.4, and comparatively exhibited favorable interactions between the drug and
the release medium. The data analyzed from these kinetic models revealed that the drug
release from both pH values (5.5 and 7.4) followed the Korsmeyer–Peppas model with
a maximum linearity of R-squared value, as shown in Figure 9. The diffusion exponent
or release exponent (n) value from Korsmeyer–Peppas winds up being 0.318 and 0.094 at
pH 5.5 and 7.4, given in Table 2, respectively. The n value gives the best fit data for the
drug release which is less than 0.5 shows a Fickian diffusion transport mechanism.

Figure 9. Korsmayer–Peppas kinetic models of drug release from polymeric nanoparticles at pH = 7.4
and pH = 5.5.
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Table 2. R-squared and release exponent (n) values acquired from the kinetic study.

pH of Release Medium Order of Kinetics R-squared Value
R2 Release Exponent (n) Mechanism of

Transport

5.5 Korsmayer–Peppas 0.9140 0.318 Fickian diffusion
control7.4 0.9649 0.094

3.7. In Vitro Antibacterial Assay

Antibacterial activity of optimized blank NPs (F-24) and drug-loaded NPs (F-25)
against two test strains, E. coli and S. aureus, were evaluated using an agar well diffusion
assay, as shown in Figure 10. The prominent zone of inhibition was shown against both
bacterial strains, including pure drug, cefotaxime, as a positive control, and polymeric
nano-encapsulated drug (F-25). No zone of inhibition was shown for the polymeric blank
nano-precipitation F-24, as a negative control in both plates against E. coli and S. aureus.
Antibacterial activity of F-25 was attributed to the slow and sustained release of drug from
NPs from the hydrophobic polymeric shell. The mechanism of bactericidal action was
associated with the high beta lactamase stability of cefotaxime which inhibits the growth
of the bacterial cell wall [43]. A greater zone of inhibition was shown by F-25 against
E. coli compared to S. aureus, which was significant as seen in the graph in Figure 11. The
bactericidal action of F-25 was due to the repulsive electrostatic interaction between the
Gram negative E. coli and the negatively charged polymeric nanoparticles as compared to
the Gram positive S. aureus [44]. Further, E. coli is more susceptible to antifouling polymeric
emulsion due to its thin cell walls compared to those of S. aureus [45]. The antibacterial
activity of pure drug was higher compared to nano-encapsulated drug NPs (F-25) with
a maximum zone of inhibition against both strains. The lesser zone of inhibition of F-25
was attributed to the release kinetics from the nano carriers of drug. Nano encapsulation
led to a slow and sustained release of antifouling functionality in 24 h and achieved more
favorable pharmacokinetics [46].

Figure 10. Antibacterial activity of blank NPs (F-24) and drug-loaded NPs (F-25) against E. coli and
S. aureus.
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Figure 11. Graphs showing the zone of inhibition (ZOI) of optimized NPs (F-25) against E. coli and
S. aureus.

4. Conclusions

Biodegradable polymeric NPs were synthesized using a nanoprecipitation technique
for encapsulating antifouling functional groups for slow release. The surface morphology
and particle size were analyzed using scanning electron microscopy and spherical PCL
nanoparticles were confirmed. The structural morphology was studied through Fourier
transform infrared spectroscopy (FTIR) which validated the characteristic peaks of the
polymer and drug in the optimized nano-precipitation. The polydispersity index (PDI)
value described the uniformity and homogeneity in terms of particle size distribution.
Average particle sizes, charges, and PDI values described a marked difference in the
morphology of optimized blank F-24 and drug-loaded F-25 NPs. The zeta potential
was found to be negative for PCL nanoparticles, −16.8 mV for blank and −11.1 mV for
drug-loaded NPs and exhibited good colloidal stability. In vitro release studies followed
the Korsmayer–Peppas model at both physiological pH values of 5.5 and pH 7.4 as a
function of R-squared value with a maximum linearity and a high diffusion exponent n
value. Cumulative drug release data showed pH-responsive nanocarriers with a maximum
release of 83% at neutral pH (7.4) as compared to an acidic pH (5.5) with a 56% release
evaluated after 48 h. The slow and sustained release of antifouling drug proves to be
the best entity for topical drug delivery application. Antifouling activity were evaluated
against Gram positive S. aureus and Gram-negative E. coli as a function of measured zone
of inhibition. It was found that the F-25 nano formulation showed a significant zone of
inhibition against E. coli and S. aureus, with maximum antifouling activity against E. coli
due to the electrostatic interaction between negatively charged PCL NPs and the thin
wall of Gram-negative bacteria. The resultant nano-formulation was proved to be a novel
approach for inducing substantial antifouling functionality for cotton textile in the future
after evaluating standard antifouling testing and safety protocols.
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