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Simple Summary: Oral squamous cell carcinoma (OSCC) constitutes more than 90% of head and
neck cancers and a high prevalence rate in some parts of the world. Alcohol consumption, use of
snuff, and several other factors including genetic makeup are associated with 90% of patients with
oral cancer. However, the molecular mechanisms involved in CLEFMA-mediated apoptotic cell
death of human OSCC remain poorly understood. Our study found that CLEFMA induced the
heme oxygenase-1 (HO-1) level by activating p38 mitogen-activated protein kinase signalling cascade
and subsequently activated caspase-dependent cell death, which is critical to the anti-cancer effect
in OSCC.

Abstract: The purpose of this research was to evaluate the impact and the underlying molecular
mechanism of CLEFMA-induced cell death in human OSCC. The anti-tumour properties of CLEFMA
in oral cancer were explored using colony formation, flow cytometry, human apoptosis array, Western
blot, and immunohistochemistry assays. The in vivo anti-tumour effect of CLEFMA administered by
oral gavage was evaluated using SCC-9-derived xenograft-bearing nude mouse models. CLEFMA
significantly suppressed colony formation and elicited cellular apoptosis in oral cancer cells. CLEFMA
treatment remarkably increased phosphorylated p38 and HO-1 along with cleavage of poly ADP-
ribose polymerase and activation of caspase-8, -9, and -3 in HSC-3 and SCC-9 cells. Administration
of HO-1 small interfering RNA significantly protected the cells from CLEFMA-induced caspase-3, -8,
and -9 activation. Attenuation of p38 activity by the pharmacologic inhibitor SB203580 dramatically
reduced CLEFMA-induced caspase-3, -8, and -9 activation and HO-1 expression in OSCC. The
subcutaneous murine xenograft models showed that CLEFMA in vivo suppressed tumour growth in
implanted SCC-9 cells. All of these findings indicated that CLEFMA induced apoptosis through the
p38-dependent rise in HO-1 signal transduction cascades in OSCC.

Keywords: CLEFMA; p38; HO-1; apoptosis; oral squamous carcinoma

1. Introduction

Drugs that act on the apoptotic machinery form one of the major treatments for
cancer management and are characterised by morphological alterations, including exten-
sive plasma membrane blebbing, condensation of chromatin, endonucleolytic cleavage
of chromosomal DNA, increased mitochondrial membrane permeability, decreased ∆Ψm,
and caspase activation [1]. Caspases are initially synthesised within cells as inactive pro-
caspases and must become active cleaved caspases during apoptosis. To undergo apoptosis,
effector and initiator caspases are activated by extrinsic stimuli through death receptors
or intrinsic stimuli that lead to mitochondrial depolarisation [2]. The stress-responsive
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MAPKs are threonine and serine protein kinases, including JNK, p38, and ERK, and have
been implied in many aspects of cell survival and apoptotic cell death regulation in various
cancer cells [3–5]. The dysregulation of apoptosis is a key driver of tumourigenesis, and
anti-tumour strategies in clinical cancer therapy focus on targeting apoptotic pathways [6].
However, a lack of apoptotic cell death may result in drug interactions or off-target effects.
Therefore, a goal and mainstay of clinical oncology in oral squamous cell carcinoma, which
is a primary cause of mortality and morbidity worldwide, is the development of molecular
targeted therapy for the regulation of apoptosis.

Phytochemicals have been broadly investigated in the clinical or preclinical trials
of chemopreventive potentials, medicative drugs, or therapeutic aspects for anti-tumour
research [5,7,8]. Among the well-studied phytochemicals, 4-[3,5-Bis(2-chlorobenzylidene)-
4-oxo-piperidine-1-yl] 4-oxo-2-butenoic acid (CLEFMA), a structural analogue of curcumin,
has pharmacological activities for clinical conditions, such as inflammation [9], shock-
associated gut injury [10], and cancer [11,12]. CLEFMA treatment exerted effects that
inhibited haemorrhagic shock-induced gut dysfunction, proteasome activity, and 20S
substrate ornithine decarboxylase degradation in a hypovolemic shock rat model [10]. The
treatment of A549 cells with CLEFMA improved cisplatin efficacy and decreased cisplatin
ototoxicity by regulating apoptosis-inducing factor and caspase-12 [12]. CLEFMA elicits
apoptotic cell death by activating intrinsic caspase 9 and extrinsic caspase 8 initiators and
targeting the JNK and p38 signalling cascades in human osteosarcoma HOS and U2OS
cells [11]. CLEFMA possesses anti-cancer activities including reduction of cell growth,
increase in cell-killing efficacy, and stimulation of autophagic cell death in H441 cells [13].
CLEFMA exhibits anti-metastatic and proapoptotic activities against osteosarcoma and lung
cancer. However, the anti-cancer effects of CLEFMA on OSCC and the targeted molecular
signalling pathways of such effects are not thoroughly established. The purpose of the
present study is to further delineate the involvement of the p38/HO-1 signal transduction
cascades by treatment of CLEFMA in human OSCC cell lines. This study provides the
signalling mechanisms for the proapoptotic activities of CLEFMA and suggests its potential
contribution and scope in the clinical development of treatment of human OSCC.

2. Materials and Methods
2.1. Cell Culture

Human tongue carcinoma cell lines HSC-3 (tumours of metastatic lymph nodes)
and SCC-9 (primary OSCC) were acquired from Merck KGaA (SCC193, Darmstadt, Ger-
many) and ATCC (CRL-1629, Manassas, VA, USA), respectively. SCC-9 was incubated
in DMEM/F12 supplemented 10% foetal bovine serum (FBS). HSC-3 was cultured in
DMEM-high glucose (SLM-120-B, Merck KGaA, Darmstadt, Germany) containing 10% FBS.
Smulow–Glickman (SG) cells (human gingival epithelial cells) were originally derived from
human gingiva and were cultured in DMEM supplemented with 10% FBS [14].

2.2. MTT Cell Viability Assay

The SCC-9 and HSC-3 cells were seeded at a density of 6 × 104 cells/well in
24-well plates, incubated overnight, and exposed to 0.1% DMSO (control group) or differ-
ent concentrations of CLEFMA (0–16 µM) for 24 h. After treatment of CLEFMA, the cells
were rinsed with PBS and incubated with a culture medium containing of MTT reagent
(0.5 mg/mL; Millipore Sigma, St. Louis, MI, USA) for 3 h. Then, 1 mL of isopropanol
was added to dissolve the MTT formazan crystals in viable cells and they were observed
spectrophotometrically at 570 nm [15].

2.3. Colony Formation Assay

Colony formation assay is a method to evaluate the cell survival and growth based on
the capacity of single cells to grow into colonies. Three thousand HSC-3 and SCC-9 cells
were seeded into a six-well plate and exposed to 0.1% DMSO (control group) or CLEFMA
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(0, 1, 2, 4, and 8 µM) for 10 days. After incubation, the cells were stained with crystal violet
and the colony number was calculated [16].

2.4. Sub-G1 Phase Ratio Analysis

SCC-9 and HSC-3 were cultured with 0–8 µM CLEFMA for 24 h and then incubated
with 0.25% trypsin-EDTA solution, collected, and fixed in cold 70% ethanol for 24 h. The
fixed cells were suspended with propidium iodide (PI) buffer at room temperature for
30 min in the dark. A BD flow cytometer system was used to analyse the distribution of
the cell cycle and Cell Quest software was used to quantitate the flow cytometry data [17].

2.5. Apoptotic Cell Death Assay

Apoptotic cell death was measured with BD Annexin V-FITC Apoptosis Detection Kit
(BD Bioscience, Becton Dickinson Co., Franklin Lakes, NJ, USA). Cells were seeded in 10 cm
dishes and exposed to 0–8 µM CLEFMA for 24 h. The cells were harvested, resuspended,
and incubated with binding buffer at room temperature. After staining, the late apoptotic
and early apoptotic cells were examined through FACS Calibur flow cytometry performed
using CellQuest software [18].

2.6. Proteome Profiler Human Apoptosis Array

The relative levels of 35 different human apoptosis-related proteins were determined
using a R&D proteome profiler human apoptosis array kit (ARY009). HSC-3 was incubated
with or without CLEFMA for 24 h and rinsed with PBS. After treatment, the cells were
solubilised at 1 × 107 cells/mL in lysis buffer on ice. The whole-cell lysates for the array
with 350 µg of protein were examined according to the guidelines of the kit’s manufacturers.
Dot blots were visualized by exposure to an X-ray film and photographed and detected
with a Bio-Rad, Hercules, CA, USA Molecular Imager Gel Doc XR system [19].

2.7. Western Blot Analysis

HSC-3 and SCC-9 cells were exposed to 0.1% DMSO (control group) or different con-
centrations of CLEFMA for 24 h. Protein lysates were prepared with a GE protein extraction
buffer kit supplemented protease inhibitor cocktails (Millipore Sigma, St. Louis, MI, USA)
for 20 min. After the cell debris was removed, protein concentration was observed through
Bio-Rad’s Bradford assays. Thirty micrograms of protein was separated in 10–12.5% SDS-
PAGE and transferred onto PVDF transfer membranes. The transferred PVDF membranes
were incubated with StartingBlock blocking buffer (Thermo Fisher Scientific, Waltham,
MA, USA) and then probed with primary antibodies for 18 h. The PVDF membranes
were reacted with specific secondary antibodies. An enhanced chemiluminescence kit
(Thermo Fisher Scientific, Waltham, MA, USA) was added to the PVDF membranes and
the chemiluminescence signal was visualised and measured using a CCD camera system
(ImageQuant LAS 4000 Mini) [20].

2.8. Detection of Active Caspase-3

Intracellular activities of caspase-3 were measured with fluorescence microscopy. A
BioTracker NucView 488 green caspase-3 dye (Merck KGaA, Sigma-Aldrich, St. Louis, MI,
USA) was used. The cells were cultured with CLEFMA (0–8 µM) and fluorescence reagent
(2 µM) for 24 h. Afterward, the cells were analysed through fluorescence microscope with
the green channel filter.

2.9. Small Interfering (Si) RNA Transfection

HMOX1 gene (heme oxygenase-1, HO-1) silencing was performed using the Silencer
Select siRNA targeting HMOX1 (#4390824, Ambion, Thermo Fisher Scientific, WinsFord,
UK) and a non-targeting siRNA (NT) (negative control siRNA, #4390844, Ambion, Thermo
Fisher Scientific, WinsFord, UK). In brief, cells were transfected with HMOX1 siRNAs
through Invitrogen transfection reagent for siRNA (150 pmol) delivery.
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2.10. Tumour Growth in Nude Mice Model

The animal research protocol was approved by the IACUC (approval number: 2156).
Four-week-old male severe combined immunodeficiency nude mice were obtained from
National Laboratory Animal Center (Taipei, Taiwan). For tumour growth assay, SCC-9
cells (2.5 × 106 cells in 0.1 mL of PBS per mouse) were injected into the right front axilla
of the mice by subcutaneous administration. After 9 days, the mice were divided into
three groups of five animals and the vehicle (0.22% polyethylene glycol 400 sterile water
solution; five times a week; control group), 0.2 mg/kg CLEFMA, and 0.4 mg/kg CLEFMA
(CLEFMA was dissolved in 0.22% polyethylene glycol 400; five times a week) were orally
administered to nude mice. Tumour growth was detected every 3 days during the study
and measured with vernier calipers. After 27 days, the primary tumour tissues were
collected, weighed, and then fixed in 3% paraformaldehyde, and paraffin-embedded slides
were probed with anti-Ki67 antibodies by immunohistochemistry analysis [21].

2.11. Statistical Analysis

Student’s t-test (Sigma-Stat 2.0, San Jose, CA, USA) was used to calculate and deter-
mine the significant differences. p value < 0.05 was indicated statistically significant. The
values involve the means ± standard deviation (SD) at three independent experiments.

3. Results
3.1. Decline in Cell Viability by CLEFMA in OSCC

The molecular structure of CLEFMA is shown (Figure 1A). To examine the anti-cancer
activity of CLEFMA on OSCC, the change in cell viability in response to CLEFMA was
evaluated. Moreover, the effect of CLEFMA on the cell viability and cytotoxicity of non-
malignant human gingival epithelial cell SG cell lines was also determined. The effects of
24 h treatment with CLEFMA at 0–16 µM on the cell viability of human gingival epithelial
cell SG cell lines, OSCC lines HSC-3 (tumours of metastatic lymph nodes), and SCC-9
(primary OSCC) were analysed by MTT assay. After 24 h treatment, the cell viability of
non-malignant SG cells in the presence of concentrations of CLEFMA (0–8 µM) was not
significantly different compared with DMSO vehicle (control group), but slightly reduced
with 16 µM CLEFMA treatment (Figure 1B). However, CLEFMA remarkably suppressed the
cell viability of human OSCC after 24 h of treatment compared with the 0.1% DMSO vehicle
(Figure 1C,D). The IC50 of CLEFMA in HSC-3 following 24 h of treatment was 6.122 µM,
while the IC50 of CLEFMA in SCC-9 cells was 4.808 µM. CLEFMA at 4 µM remarkably
reduced the viability of HSC-3 (Figure 1C) and SCC-9 cells (Figure 1D). Next, to explore
the treatment of CLEFMA on the long-term cell growth of OSCC, we tested the effect of
CLEFMA on clonogenic growth using the colony formation assay. The colony formation
assay results exhibited that CLEFMA greatly inhibited the clonogenic proliferation of HSC-
3 and SCC-9 cells after 10 days of incubation (Figure 1E). The long-term growth of HSC-3
and SCC-9 was dramatically diminished after 4 and 8 µM CLEFMA treatment compared
with the DMSO control, respectively (Figure 1E). CLEFMA at 1 µM remarkably declined
the colony formation of HSC-3 cells, while the colony formation of SCC-9 was significantly
attenuated at 2 µM CLEFMA (Figure 1F). Moreover, SCC-9 cells were incubated with
different doses of paclitaxel (taxol; clinical chemotherapy drug) at 0–10 µM alone or in
combination with CLEFMA (4 µM) to evaluate the effect of CLEFMA treatment on the anti-
cancer activity of paclitaxel by MTT assay for 24 h. The percentages of viability inhibition
reduced to 50.98% in the 10 µM paclitaxel treatment of SCC-9 cells compared with the
DMSO vehicle, respectively (Figure 1G). SCC-9 treated with a combination of paclitaxel
(0.1–0.5 µM) and 4 µM CLEFMA for 24 h reduced the viability of SCC-9 cells to the highest
extent (Figure 1G). Our finding revealed that CLEFMA could improve the inhibitory effect
of paclitaxel on cell viability.
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0–16 μM CLEFMA for 24 h and then subjected to MTT cell viability assay. (E) Digital image showing 
colonies produced by HSC-3 and SCC-9 cells, treated with 0–8 μM CLEFMA with colony formation 
assay. (F) The quantification of formed cell colonies. (G) SCC-9 cells were treated with paclitaxel 
(taxol) alone or in combination with CLEFMA and then subjected to MTT assay. Data represent the 
average ± SD from three independent experiments. * p < 0.05 compared with the DMSO control 
group. 
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state was examined via PI staining by flow cytometry. After 24 h treatment with CLEFMA, 
CLEFMA significantly increased the sub-G1 phase ratio compared with the 0.1% DMSO 
control in the HSC-3 and SCC-9 cells (Figure 2A). The apoptotic cell proportion of the cells 
in the sub-G1 phase clearly increased from 1.1% (0.1% DMSO control group) to 18.2% (p 
< 0.05, 8 μM CLEFMA group) and from 3.8% (0.1% DMSO control) to 24.8% (p < 0.05, 8 
μM CLEFMA group) in the 8 μM CLEFMA group of HSC-3 (Figure 2B) and SCC-9 (Figure 
2C). 

Figure 1. Inhibitory effects of CLEFMA on viability and formed cell colonies in human OSCC
cells. (A) The molecular structure of CLEFMA. (B) SG cells, (C) HSC-3, and (D) SCC-9 cells treated
with 0–16 µM CLEFMA for 24 h and then subjected to MTT cell viability assay. (E) Digital image
showing colonies produced by HSC-3 and SCC-9 cells, treated with 0–8 µM CLEFMA with colony
formation assay. (F) The quantification of formed cell colonies. (G) SCC-9 cells were treated with
paclitaxel (taxol) alone or in combination with CLEFMA and then subjected to MTT assay. Data
represent the average ± SD from three independent experiments. * p < 0.05 compared with the DMSO
control group.

3.2. Increase in Apoptotic Cell Distribution by CLEFMA in OSCC

Given that CLEFMA reduced the cell viability of OSCC, whether CLEFMA induced
apoptosis of SCC-9 and HSC-3 cells was determined. The impact of CLEFMA on cell
cycle state was examined via PI staining by flow cytometry. After 24 h treatment with
CLEFMA, CLEFMA significantly increased the sub-G1 phase ratio compared with the 0.1%
DMSO control in the HSC-3 and SCC-9 cells (Figure 2A). The apoptotic cell proportion
of the cells in the sub-G1 phase clearly increased from 1.1% (0.1% DMSO control group)
to 18.2% (p < 0.05, 8 µM CLEFMA group) and from 3.8% (0.1% DMSO control) to 24.8%
(p < 0.05, 8 µM CLEFMA group) in the 8 µM CLEFMA group of HSC-3 (Figure 2B) and
SCC-9 (Figure 2C).

3.3. Apoptotic Effect of CLEFMA in OSCC

Annexin V-fluorescein isothiocyanate (FITC)/PI double-staining results showed that
early apoptotic cell death (PI-negative and annexin V-positive cells in the lower right
quadrant) and end-stage (late) apoptotic cell death (annexin V/PI-positive cells in the
upper right quadrant) all dramatically increased after treatment with 4–8 µM CLEFMA in
HSC-3 and SCC-9 cells (Figure 3A). The percentages of total apoptotic cells significantly
increased to 88.9% and 76.9% in the 8 µM CLEFMA group of HSC-3 (Figure 3B) and SCC-9
(Figure 3C) compared with the DMSO control, respectively. The results showed that the
pro-apoptotic effects of CLEFMA are more potent on HSC-3 than on SCC-9 cells.
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Figure 2. CLEFMA increased the sub-G1 phase ratio in human OSCC. (A) HSC-3 and SCC-9 cells
were incubated with CLEFMA at indicated concentrations for 24 h and then incubated with a PI
buffer. After staining, the cells were subjected to cell cycle distribution analysis via flow cytometry.
The quantification results of the cell cycle population of (B) HSC-3 and (C) SCC-9 cells are shown
in the bar graph. Quantification analysis was acquired from three independent experiments and
expressed as mean ± SD.

3.4. Regulation of cIAP-1 and HO-1 by CLEFMA-Induced Caspase-Mediated Apoptosis in OSCC

Given that CLEFMA significantly increases the apoptotic cell death of OSCC, a pro-
teome profiler human apoptosis array was used in screening the expression levels of
35 apoptotic proteins. CLEFMA reduced the protein levels of the cIAP-1, whereas the
expression levels of HO-1 and cleaved caspase-3 were elevated in HSC-3 cells incubated
with 8 µM CLEFMA (Figure 4A). Quantitative analyses by human apoptosis array revealed
that CLEFMA increased the levels of cleaved caspase-3 and HO-1 up to 6.6- and 3.8-fold of
the control, but decreased the cIAP-1 by ~0.68-fold compared with the control (Figure 4B).
Green fluorescence-labelled active caspase-3 was observed and increased in HSC-3 cells
after CLEFMA treatment using NucView 488 green caspase-3 dye (Figure 4C). The Western
blot results indicated that, upon the treatment of HSC-3 and SCC-9 cells with CLEFMA, the
expression of cIAP-1 was remarkably inhibited in HSC-3 at 1 µM (Figure 4D), while the
inhibitory effect of cIAP-1 in SCC-9 was significantly reduced at 8 µM (Figure 4E). CLEFMA
at 4 µM remarkably elevated the expression of HO-1 in HSC-3 cells (Figure 4D), while
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the levels of HO-1 were significantly increased in SCC-9 at 1 µM CLEFMA (Figure 4E).
CLEFMA noticeably increased the expression HO-1 in HSC-3 (Figure 4D) and SCC-9
(Figure 4E). The inhibitory effects of cIAP-1 are more potent on HSC-3 cells compared with
SCC-9 cells after CLEFMA treatment, whereas the rising effects of HO-1 are more potent
on SCC-9 compared with HSC-3 cells treated with CLEFMA. The whole Western blot can
be found in Figure S1. CIAP1 represses the intrinsic and extrinsic pathways of apoptosis
by indirectly or directly inducing the inactivation of caspases-3, -8, and -9 [22]. Therefore,
Western blot analysis was used in determining the expression of proteins belonging to the
caspase family after CLEFMA treatment in HSC-3 and SCC-9 cells. The results showed that
CLEFMA induced the activation of caspase-3, -8, and -9 (cleaved forms) and decreased the
expression of pro-caspase-3, -8, and -9 in HSC-3 (Figure 5A) and SCC-9 (Figure 5B) cells.
Subsequently, PARP was inactivated and clove by caspase-3-inducing apoptotic cell death.
CLEFMA at 8 µM significantly elevated the expression of cleaved PARP, whereas the levels
of PARP repressed the treatment of HSC-3 (Figure 5A) and SCC-9 (Figure 5B) cells with
CLEFMA for 24 h.
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Figure 3. CLEFMA induced apoptosis in OSCC. (A) Cells were treated with various CLEFMA
concentrations and then subjected to apoptosis assay through flow cytometry with annexin V/PI
staining for 24 h. The quantification results of apoptosis assay of (B) HSC-3 and (C) SCC-9 cells
are shown in the bar graph. Data represent the average ± standard deviation (SD) from three
independent experiments. * p < 0.05 compared with the DMSO control group.
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Figure 4. Elevated effects of CLEFMA on caspase-3 activation and HO-1 expression in human OSCC
cells. (A) HSC-3 cells were incubated for 24 h with 8 µM CLEFMA and compared with untreated lysate
(DMSO control group), and the cell lysates were used to detect 35 different apoptosis-related proteases
using the human proteome profiler apoptosis array. (B) The quantification of cleaved caspase-3, HO-1,
and cIAP-1 from human apoptosis array. (C) Live cell imaging apoptosis dye for caspase-3 activity
used to detect apoptotic death using fluorescence microscopy with the corresponding filter (green
channel). Western blot was performed on HO-1 and cIAP-1 using β-actin as the internal control in
(D) HSC-3 and (E) SCC-9 cells. Quantitative data were acquired from three independent experiments
and expressed as mean ± SD. * represent p < 0.05 as compared with the DMSO vehicle.
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Figure 5. Apoptotic patterns of OSCC cells treated with CLEFMA. (A) HSC-3 and (B) SCC-9 cells
were treated with 0–8 µM CLEFMA. Western blot analysis was performed. β-actin was used as a
loading control. Proteins signals were visualised with an ECL imaging system. Quantitative analyses
were obtained from three independent experiments and expressed as mean ± SD. * represent p < 0.05
as compared with the control.

3.5. Activation of MAPK Signalling Cascades by CLEFMA in OSCC

The MAPK cascades play a central role in the regulation of multiple cellular processes,
such as cell invasion, growth, metastasis, and apoptosis in cancer cells [23–25]. We per-
formed Western blot analyses to determine MAPK signalling pathways stimulated by
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CLEFMA in OSCC cells. After treatment with CLEFMA, the levels of phosphorylation of
ERK, JNK, and p38 dramatically increased in HSC-3 (Figure 6A) and SCC-9 (Figure 6B)
cells. Quantification analysis indicated that the phosphorylation levels of ERK, JNK, and
p38 were significantly increased after the treatment of HSC-3 cells and SCC-9 with 8 µM
CLEFMA (Figure 6C,D). CLEFMA at 1 µM significantly elevated the expression of p-ERK
in HSC-3 cells (Figure 6C), while the expression of p-ERK was remarkably increased in
SCC-9 at 4 µM CLEFMA (Figure 6D). The expression of p-p38 was remarkably increased
in HSC-3 at 1 µM CLEFMA (Figure 6C), while the expression of p-p38 was significantly
up-regulated in SCC-9 at 2 µM CLEFMA (Figure 6D). Moreover, 8 µM CLEFMA treatment
increased the levels of p-p38 up to 31.94- and 3.25-fold compared with the control in HSC-3
and SCC-9, respectively (Figure 6). Activation of p-ERK by CLEFMA appeared to be
significantly more potent in HSC-3 (Figure 6C) compared with SCC-9 (Figure 6D), whereas
the increased effects of p-p38 are more potent on HSC-3 (Figure 6C) compared with SCC-9
cells (Figure 6D) after CLEFMA treatment.
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Figure 6. CLEFMA induced MAPK pathway activation in human OSCC. (A) HSC-3 and (B) SCC-9
cells were incubated with CLEFMA (0–8 µM). Cell lysates were subjected to Western blot assay
for defining the protein level of MAPK-related pathways. The densitometry of MAPK-related
protein- associated signals of (C) HSC-3 and (D) SCC-9 cells detected in (A,B), respectively. Data are
presented as the mean ± SD of at least three independent experiments. * p < 0.05 compared with the
DMSO vehicle.
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3.6. HO-1 Is Involved in Response to CLEFMA-Induced Caspase-Mediated Apoptosis in OSCC

To further investigate the role of the up-regulated HO-1 level stimulated by CLEFMA
in CLEFMA-mediated apoptotic cell death in OSCC, we silence HO-1 expression using
HO-1-specific small interfering ribonucleic acid (siRNA). Western blot was performed to
explore the silencing effects of HO-1-specific siRNA. We found that the transfection of HO-
1-siRNA clearly reversed the up-regulation of HO-1 protein expression in CLEFMA-treated
HSC-3 (Figure 7A) and SCC-9 (Figure 7B) cells. The silencing of HO-1 level dramatically
reduced the CLEFMA-induced activation of caspase-8, -9, and -3 in HSC-3 (Figure 7A)
and SCC-9 (Figure 7B) compared with non-targeting control siRNA-treated cells. More
reductions in caspase-8, -9, and -3 by HO-1-specific siRNA are seen in SCC-9 compared
with HSC-3.
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Figure 7. CLEFMA induced apoptotic cell death in OSCC through the up-regulation of HO-1. The
protein levels of HO-1, cleaved caspase-8, cleaved caspase-9, and cleaved caspase-3 were assessed by
transfection with non-targeting siRNA (NT) and HO-1 siRNA (siHo-1) in (A) HSC-3 and (B) SCC-9
cells through Western blot analysis. The densitometry of protein signals was detected (ratio to
β-actin). Data are presented as the mean ± SD of at least three independent experiments. * p < 0.05
compared with the DMSO control transfected with NT; # p < 0.05 compared with the 8 µM CLEFMA
treated group transfected with NT.
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3.7. Induction of Caspase-Mediated Apoptosis by CLEFMA Is Dependent on the Activation of p38
in OSCC

To further elucidate the role of MAPK signalling pathways in CLEFMA-induced
apoptosis of OSCC, cells were pretreated with 10 µM U0126 (ERK inhibitor), 1 µM JNK-in-8
(JNK1/2 inhibitor), and 10 µM SB20358 (p38 inhibitor), and then 8 µM CLEFMA was
added for another 24 h for Western blot analyses. SCC-9 and HSC-3 cells without CLEFMA
were also analysed. The results showed that SB203580 treatment significantly rescued the
CLEFMA-induced increase in the protein levels of cleaved caspase-8, -9, and -3 compared
with CLEFMA alone, whereas the attenuation of p38 MAPK obviously reversed CLEFMA-
induced HO-1 expression in HSC-3 (Figure 8A,B) and SCC-9 (Figure 8C,D) cells. However,
ERK and JNK1/2 inhibitors had no significant effect on the recovery of CLEFMA-induced
cleaved caspases and HO-1 expression (Figure 8). These findings suggested that activation
of the p38 MAPK signalling cascades may increase HO-1 expression and induce apoptosis
by CLEFMA in OSCC.
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Figure 8. CLEFMA induced the apoptosis of human OSCC via the regulation of p38/ HO-1 signalling
cascade. (A,B) HSC-3 and (C,D) SCC-9 cells were pre-treated with UO126, JNK in 8, or SB203580
for 2 h before CLEFMA (8 µM) treatment for 24 h and untreated cells. Western blot assay was
conducted. The quantification data are shown in the bar graph using densitometric measurement
(ratio to β-actin). * p < 0.05 compared with the control group; # p < 0.05 compared with the 8 µM
CLEFMA treated group.

3.8. Inhibition of Tumour Growth by CLEFMA Treatment In Vivo

We subcutaneously inoculated SCC-9 cells into the right flank of each nude mouse
to investigate the anti-tumour effects of CLEFMA in vivo. The mice were orally admin-
istered with a vehicle (0.22% polyethylene glycol 400 sterile water solution) or CLEFMA
(0.2 or 0.4 mg/kg). Animal images revealed that CLEFMA obviously decreased tumour
sizes after 27 days of feeding compared with the control vehicle (Figure 9A). The mean
tumour volumes remarkably decreased after 0.2 or 0.4 mg/kg CLEFMA treatment on day
27, and the volumes were 63.3% and 78.6% lower than the corresponding volumes analyzed
in the vehicle-receiving animals, respectively (Figure 9B). Moreover, the average mouse
body weights of the CLEFMA-treated mice and vehicle group were insignificantly affected
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(Figure 9C). Representative tumours were isolated from mice 27 days after subcutaneous
inoculation of SCC-9 cells (Figure 9D). CLEFMA treatment obviously reduced the average
tumour weights compared with the vehicle group (Figure 9E). CLEFMA treatment obvi-
ously reduced the intensity of Ki-67 (a proliferation marker) protein stain in the primary
tumour (Figure 9F). Immunofluorescence analysis confirmed that CLEFMA reduced Ki-67
levels in SCC-9 cells (Figure 9G).
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Figure 9. Anti-tumour effects of CLEFMA in vivo. Mice (n = 5) were orally administrated with
either vehicle (control group) or CLEFMA (0.2 or 0.4 mg/kg) after SCC-9 cells were subcutaneously
implanted. Tumour growth was then analysed. (A) After 27 days, the mice images were taken.
(B) Tumour volume at each time interval during the experiment. (C) Average body weight of the
mice during the treatment of CLEFMA. (D) Representative tumours isolated from mice. (E) Average
tumour weight at the end of the treatment. (F) Immunohistochemistry to examine Ki-67 in SCC-9
tumours. (G) Immunofluorescence analysis of Ki-67 in SCC-9 cell lines. * p < 0.05 compared with the
vehicle group.
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4. Discussion

Apoptosis is a form of programmed cell death that is a natural way of removing
aged cells and is important to the homeostasis and development of the body. Most of
the anti-tumour treatment strategies induce apoptosis and related programmed cell death
networks to defeat malignant tumours [26]. Apoptosis is also one of the most studied
topics in clinical oncology [27]. It can be trigged in tumourous cells through an external
(extrinsic) or internal (intrinsic) cell death stimulus, which converges on the regulation
of membrane blebbing, DNA fragmentation, and the caspase-mediated proteolysis of
thousands of cellular proteins [27].

The activation of initiator caspases, such as caspase 9, leads to the formation of
apoptosomes; this process can be negatively modulated by members of the IAP family
proteins. IAP proteins, a number of signalling cascades promoting anti-apoptosis, and the
cell survival effect are overexpressed in various solid and haematological malignancies [28]
and associated with poor prognostic impact and 5-FU resistance in OSCC [29]. Several
IAP family proteins function by binding to and inhibiting specific caspases and are critical
targets for anti-cancer therapy [30]. Cellular IAP-1 (cIAP-1) bound specifically to the
terminal effector cell death proteases, caspases-3 and -7, inhibited the activity of caspase-3
and -7, exerting an important influence on resistance to apoptosis in many types of cancer
and leading to cell survival. Recent research has shown that the high mRNA level of cIAP-1
is associated with distant organ metastasis in patients with breast cancer [31]. In the present
study, we demonstrated that CLEFMA up-regulated the early and late phase of apoptotic
cell population by flow cytometry. CLEFMA treatment significantly increased the protein
levels of active caspase-8, -9, and -3, whereas the expression of cleaved-PARP was elevated
in OSCC. In addition, cIAP-1 level was remarkably reduced after 24 h of CLEFMA treatment
in HSC-3 and SCC-9 cells. Nuclear factor κB (NF-κB) is an important transcription factor
regulating the gene expression of cIAP [32]. The activation of NF-κB in OSCC induces cell
growth, cell survival, and cisplatin resistance [33]. Overall, CLEFMA might improve the
therapeutic effects against OSCC by targeting the NF-κB/cIAP-1 signalling pathway, and
this hypothesis should be further investigated in the future.

In addition to cIAP-1 signalling, CLEFMA obviously elicits an increase in the HO-1
level in a proteome profiler human apoptosis array in OSCC cells. The biological properties
of HO-1 metabolise heme into iron, carbon monoxide (CO), and biliverdin or bilirubin, as
well as the cytoprotective capabilities of HO-1 against a wide range of cellular stressors
and pro-inflammatory mediators and cytokines, have been demonstrated in many studies.
An increase in HO-1 expression suppresses inflammation and carcinogenesis. Curcumin
can decrease the growth of human breast cancer cells by raising HO-1 expression, which
elicits CO expression and results in attenuation of heat shock protein 90 activities [34].
HO-1 expression is up-regulated in a number of cancer types and contributes to cancer
progression [35]. A high HO-1 expression level in bone marrow stromal cells can trigger
multiple resistances by targeting the JAK2/STAT3 pathway in myeloma [36]. These findings
suggested the dual role of HO-1 in the progression of tumours [37]. As for the role of HO-1
in OSCC, low HO-1 expression levels were remarkably correlated with a rising risk of lymph
node metastasis in patients with tongue carcinomas [38]. Moreover, the Nrf-2 transcription
factor maintains cellular homeostasis associated with oxidative stress and regulates the
expression of HO-1 [39]. The data presented here demonstrated that HO-1 expression
was obviously up-regulated in OSCC cells after treatment with CLEFMA. The silencing of
HO-1 expression remarkably attenuated CLEFMA-induced caspase-dependent cell death
in OSCC, suggesting that CLEFMA-induced HO-1 production plays a positive role in the
proapoptotic activities of CLEFMA in OSCC. In the future, the relationship between CO
and HO-1 of OSCC and the level of HO-1 by further inducing the activation and nuclear
translocation of Nrf2 following the CLEFMA treatment are worthy of further investigation.

We next explored CLEFMA-mediated upstream signal transduction in modulated
HO-1 expression. A recent report showed that induction of HO-1 expression is closely
linked to kinase signalling pathways, including ERK, JNK, and p38. The MAPK have long
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been implicated the regulation of cell proliferation, cell cycle, cell migration, and apoptosis
in many cancer cells [3,4,40]. Increasing evidence has indicated that high-expression and
activation of the MAPK signalling pathway in cancer may lead to abnormal cell division
and apoptosis resistance [41]. In the current study, the level of p-p38 was significantly
increased in HSC-3 at 1 µM CLEFMA, while the expression of p-p38 was remarkably
up-regulated in SCC-9 at 2 µM CLEFMA. The phosphorylation levels of p38 were increased
up to 31.94- and 3.25-fold compared with the control in HSC-3 and SCC-9 after 8 µM
CLEFMA treatment, respectively (Figure 6). Activation of p-p38 by CLEFMA appeared
to be significantly more potent in HSC-3 compared with SCC-9. Western blot analysis
also confirmed that p38 inhibitor SB203580 appeared to be more effective in HSC-3 than
SCC-9 in reversing the effect of CLEFMA through the p38 pathway. HSC-3 (tumours of
metastatic lymph nodes) showed a higher invasive capacity and metastatic phenotype
compared with SCC-9 (primary OSCC). These findings suggest that the pro-apoptotic and
growth inhibitory effects of CLEFMA are more potent on high-metastatic HSC-3 compared
with SCC-9 cells. Accumulating evidence indicates that the stimulation of caspase-8, -9,
and -3 activation by CLEFMA was reversed by the p38 inhibitor, SB203580, suggesting
that p38 MAPK activity is essential to the pro-apoptotic ability of CLEFMA. Moreover,
the inhibition of p38 MAPK obviously reversed CLEFMA-induced HO-1 expression in
HSC-3 and SCC-9 cells. Overall, these results suggested that the activation of the p38
MAPK signalling cascades may increase HO-1 expression and caspase-dependent cell
death induced by CLEFMA in OSCC.

It is well documented that curcumin acts against cancer by altering multiple cellular
targets and a broad set of signal transduction pathways, including up-regulation of toxic
intracellular ROS release, induction of apoptotic cell death, modulation of microRNAs,
cell cycle arrest, and regulation of various protein kinases cascades as well as NF-kB and
p53 signaling pathways [42]. However, curcumin displays limited bioavailability, poor
absorption, and rapid systemic elimination, which restrict its efficacy and contribute to
the low levels of curcumin in plasma [43]. Structural analogues of curcumin, including
CLEFMA, have now been demonstrated that have various anti-cancer efficacy and im-
proved stability and bioavailability [44,45]. Current available chemotherapy agents show
limited effectiveness, accompanied by deleterious side effects for patients with cancer. In
this study, human gingival epithelial SG cells were used to demonstrate that CLEFMA
did not cause cytotoxic effects on non-malignant gingival epithelial cells. CLEFMA could
improve the inhibitory effects of paclitaxel on the cell viability of SCC-9 cells.

5. Conclusions

In summary, we demonstrated the anti-cancer action of CLEFMA in association with
the induction of HO-1 and apoptotic cell death in OSCC. The findings from the current study
indicated that CLEFMA increased HO-1 production via the activation of p38 signalling and
subsequently activated caspase-8, -9, and -3, which are critical for the anti-cancer action
in HSC-3 and SCC-9 cells. In addition, the oral administration of CLEFMA effectively
inhibited the growth of SCC-9-derived xenograft tumour immunodeficient nude mice.
Accumulating evidence has suggested that CLEFMA is a potential adjuvant therapeutic
agent for treating OSCC.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/cancers14225519/s1. Figure S1: The whole Western blot figures.
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