
NeuroImage 230 (2021) 117786 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

A four-dimensional computational model of dynamic contrast-enhanced 

magnetic resonance imaging measurement of subtle blood-brain barrier 

leakage 

Jose Bernal a , Maria d.C. Valdés-Hernández a , Javier Escudero 

b , Anna K. Heye 

a , Eleni Sakka 

a , 

Paul A. Armitage 

c , Stephen Makin 

d , Rhian M. Touyz e , Joanna M. Wardlaw 

a , 

Michael J. Thrippleton 

a 

a Centre for Clinical Brain Sciences, Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK 
b School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK 
c Academic Unit of Radiology, University of Sheffield, Sheffield S10 2RX, UK 
d University of Aberdeen, Centre for Rural Health, Inverness, UK 
e Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK 

a r t i c l e i n f o 

Keywords: 

Digital reference object 

Blood-brain barrier permeability 

DCE-MRI 

Spatio-temporal imaging artefacts 

Endothelial dysfunction 

Cerebral small vessel disease 

a b s t r a c t 

Dynamic contrast-enhanced MRI (DCE-MRI) is increasingly used to quantify and map the spatial distribution 

of blood-brain barrier (BBB) leakage in neurodegenerative disease, including cerebral small vessel disease and 

dementia. However, the subtle nature of leakage and resulting small signal changes make quantification chal- 

lenging. While simplified one-dimensional simulations have probed the impact of noise, scanner drift, and model 

assumptions, the impact of spatio-temporal effects such as gross motion, k -space sampling and motion artefacts 

on parametric leakage maps has been overlooked. Moreover, evidence on which to base the design of imaging 

protocols is lacking due to practical difficulties and the lack of a reference method. To address these problems, we 

present an open-source computational model of the DCE-MRI acquisition process for generating four dimensional 

Digital Reference Objects (DROs), using a high-resolution brain atlas and incorporating realistic patient motion, 

extra-cerebral signals, noise and k -space sampling. Simulations using the DROs demonstrated a dominant influ- 

ence of spatio-temporal effects on both the visual appearance of parameter maps and on measured tissue leakage 

rates. The computational model permits greater understanding of the sensitivity and limitations of subtle BBB 

leakage measurement and provides a non-invasive means of testing and optimising imaging protocols for future 

studies. 
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. Introduction 

DCE-MRI is the most commonly used technique for assessing break-

own of the blood-brain barrier (BBB) in neurological diseases, such

s multiple sclerosis, brain tumours, stroke and small vessel diseases.

y detecting the signal changes following intravenous injection of a

adolinium-based contrast agent (GBCA), quantitative estimates ( K 

Trans 

r PS ) of its leakage across the BBB are obtained. While DCE-MRI is

ong-established in the context of high permeability, application of the

echnique is now rapidly growing in diseases such as cerebral small ves-

el diseases (SVD) and dementia, where BBB breakdown is typically very

ubtle. For example, recent studies have shown elevated BBB leakage in

he normal-appearing white matter (NAWM) of patients with greater

VD burden, suggesting a possible role for BBB breakdown in the de-

elopment of radiological signs and eventual clinical symptoms of the
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isease ( Wardlaw et al., 2017 ). In the field of Alzheimer’s disease, an-

ther recent study reported increased BBB leakage amongst APOE4 gene

arriers, including those without cognitive impairment ( Montagne et al.,

020 ). 

Such advanced neuroimaging studies are highly valuable for under-

tanding these diseases, whose pathophysiology is poorly understood

 Wardlaw et al., 2019 ) and which have a major clinical and societal

mpact. However, while DCE-MRI is currently the standard imaging ap-

roach to investigating BBB dysfunction, the extremely low level of leak-

ge and consequent small signal changes (typically a few percent) limit

ts accuracy and precision. Furthermore, the lack of a convenient ref-

rence method, and ethical and safety considerations around GBCA ad-

inistration, make it difficult to assess measurement reliability and im-

ede protocol optimisation, as summarised in two recent review and

ecommendation papers ( Raja et al., 2018 ; Thrippleton et al., 2019 ).
 January 2021 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.neuroimage.2021.117786
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2021.117786&domain=pdf
mailto:m.j.thrippleton@ed.ac.uk
https://doi.org/10.1016/j.neuroimage.2021.117786
http://creativecommons.org/licenses/by/4.0/


J. Bernal, M.d.C. Valdés-Hernández, J. Escudero et al. NeuroImage 230 (2021) 117786 

P  

b  

o  

v  

m  

o  

C  

o  

u  

o  

t  

t  

e  

i  

c  

m  

d

 

t  

d  

t  

W  

t  

m  

l  

i  

a  

t  

p  

t  

B

2

2

 

p  

i  

n  

i  

e  

m

 

a  

d  

s  

a  

t  

t  

d  

p  

n  

a

2

 

r  

a  

l  

r  

G  

(  

w

r  

a  

t  

s  

s  

(  

a  

T  

l  

c  

s  

p  

e

2

 

e  

(  

d  

p

𝐶

w  

i  

t  

c  

t  

p  

o  

s  

f

 

c  

e

𝑆

w  

𝜃  

l  

w

w  

e

2

 

s

 

b  

s  

f  

l

 

m  

f  

t  

b

revious computational studies have attempted to address this problem

y applying a Monte-Carlo simulation approach to generate synthetic

ne-dimensional time-signal data for tissues with pre-specified leakage

alues, yielding important insights into the effects of pharmacokinetic

odel selection, signal stability and noise on the accuracy and precision

f “permeability ” mapping ( Armitage et al., 2011 ; Barnes et al., 2016 ;

ramer and Larsson, 2014 ; Heye et al., 2016 ). However, this approach

verlooks spatio-temporal effects, such as patient motion, partial vol-

me effect and ringing artefacts, which may have a significant impact

n the appearance of parameter maps ( Heye et al., 2016 ) and, poten-

ially, on reported leakage rates. Also, this method omits the contribu-

ion of extra-cerebral tissues, which typically exhibit a greater signal

nhancement than brain tissues since they do not have a BBB, to imag-

ng artefacts. The assessment of these spatio-temporal aspects is more

onceptually and computationally demanding since both the measure-

ent process and the participant must be simulated in the three spatial

imensions and time. 

In this work, we propose an open-source computational model

hat uses in-vivo volunteer and patient data for mimicking the four-

imensional DCE-MRI acquisition process to evaluate the aforemen-

ioned confounds and enable better protocol optimisation in the future.

e used a publically available high-resolution atlas to generate realis-

ic head and neck anatomy ( Iacono et al., 2015 ) and combined it with

otion parameters and signal enhancement properties obtained from a

arge cohort of SVD patients ( Wardlaw et al., 2017 ). We used the result-

ng digital reference objects (DROs) to simulate the appearance of leak-

ge maps and measured leakage values in healthy and diseased brain

issue under realistic experimental conditions, including k -space sam-

ling, noise, gross motion and motion artefacts. Finally, we explored

he potential of image processing methods to enhance the accuracy of

BB leakage measurements. 

. Materials and methods 

.1. Digital reference object 

We identified two main requirements for devising a realistic com-

utational model for evaluating subtle BBB leakage measurement. First,

t should contain both healthy and pathological brain tissues as well as

on-brain tissues that are commonly excluded in simulations. Second,

t should simulate aspects of the acquisition process that are known or

xpected to affect the appearance of DCE-MRI parameter maps, such as

otion and truncation artefacts. 

We simulated the DCE-MRI signal generation, measurement and

nalysis processes via the steps illustrated in Fig. 1 and described in

etail below. Briefly, we used a high-resolution head model with pre-

pecified MR and ground-truth pharmacokinetic properties to gener-

te four-dimensional time-signal data. We applied spatial transforma-

ions derived from in-vivo scan data to simulate gross motion and mo-

ion artefacts, resampled the resulting data in k -space and added ran-

om noise to yield “acquired ” images at lower resolution. We post-

rocessed and analysed these scans to obtain simulated pharmacoki-

etic parameter maps. Code for generating the DROs is freely available

t https://doi.org/10.7488/ds/2966 . 

.1.1. Ground truth 

We developed the signal model based on a three-dimensional high-

esolution (0.5-mm isotropic), comprehensively-labelled and publicly-

vailable human head and neck atlas ( Iacono et al., 2015 ). 1 The at-

as is particularly suitable for application to DCE-MRI because a wide

ange of segmented tissues including both brain tissues and nearby

BCA-enhancing structures, such as vessels and muscle, are labelled

 Fig. 2 and Figure S1). We combined some of the tissue classes to
1 The MIDA human head model can be downloaded from 

ww.itis.ethz.ch/MIDA/ 

 

t  

i  

t  

2 
educe complexity and because the enhancement properties of each

re not well known. To better represent the ageing brain, we added

wo regions of neuropathology associated with elevated permeability,

pecifically white matter hyperintensities (WMH) and lacunar stroke le-

ions, using spatial occurrence templates extracted from patient data

 https://doi.org/10.7488/ds/2716 ). The stroke lesion is based on that of

 patient with one small recent lacunar stroke lesion in the basal ganglia.

he total burden of WMH would be classified as Fazekas 2 periventricu-

ar WMH and Fazekas 1 deep WMH. In total, our computational model

omprised 16 regions of interest. We assigned values for the equilibrium

ignal intensity S 0 , pre-contrast longitudinal relaxation time T 10 , blood

lasma volume fraction v P and permeability surface area product PS to

ach tissue class. 

.1.2. Generation of high-resolution 4D signal 

We simulated the GBCA concentration over time for brain vox-

ls within the high-resolution reference object using the Patlak model

 Patlak and Blasberg, 1985 ), which has previously been shown to closely

escribe tracer kinetic behaviour in the slow leakage regime at low tem-

oral resolution ( Heye et al., 2016 ; Larsson et al., 2009 ): 

 𝑡 [ 𝑡 ] = 𝑣 𝑝 𝑐 𝑝 [ 𝑡 ] + 𝑃 𝑆 ∫
𝑡 

0 
𝑐 𝑝 
[
𝑡 ′
]
d 𝑡 ′, 

here c p [ t ] represents the specified GBCA time-concentration function

n blood plasma or arterial input function (AIF) and C t [ t ] is the total

issue GBCA concentration. Although it would be possible to use a more

omplex pharmacokinetic model to simulate ground-truth concentra-

ion, by using the Patlak model we ensured that any errors in the fitted

arameters are caused by the measurement process, which is the focus

f this work. To simulate signal within tissues that do not have a BBB,

uch as muscle and skull, we used time-signal curves measured directly

rom in-vivo patient data, as described in the Supplementary Material. 

Having computed the concentration-time curves per voxel, we cal-

ulated the corresponding signal-time curves using the spoiled gradient

cho signal formula: 

 [ 𝑡 ] = 𝑆 0 

(
1 − 𝑒 − 𝑇𝑅 ∕ 𝑇 1 [ 𝑡 ] 

)
sin 𝜃𝐹𝐴 

1 − 𝑒 − 𝑇𝑅 ∕ 𝑇 1 [ 𝑡 ] cos 𝜃𝐹𝐴 

⋅ 𝑒 − 𝑇 𝐸∕ 𝑇 ∗ 2 [ 𝑡 ] , 

here 𝑇 𝑅 and 𝑇 𝐸 represent the repetition and echo times respectively,

𝐹𝐴 is the excitation flip angle and 𝑇 ∗ 2 [ 𝑡 ] is the effective transverse re-

axation time at time 𝑡 . The relaxation rate was assumed to vary linearly

ith the contrast agent concentration: 

1 
𝑇 𝑖 [ 𝑡 ] 

= 

1 
𝑇 𝑖 0 

+ 𝑟 𝑖 ⋅ 𝐶 𝑡 [ 𝑡 ] , 𝑖 = 1 , 2 ∗ , 

here r i is the relaxivity. Time-signal curves were thus generated for

ach location within the three-dimensional high-resolution model. 

.1.3. Simulation of acquired data and motion effects 

We considered the following steps to simulate DCE-MRI data acqui-

ition: 

Starting head position : First, we randomised the initial head position

y applying a rigid-body spatial transform to the high-resolution DRO,

uch that each degree of freedom was randomly distributed with uni-

orm probability over the range ± 5° for rotations and ± 2.5 mm for trans-

ations. This initial transformation was the same for all time frames. 

Gross patient movement : Second, we simulated gross patient move-

ent during the subsequent DCE-MRI acquisition by applying a dif-

erent rigid-body transformation to the high-resolution DRO at each

ime frame. Movement trajectories for each of 201 simulation runs were

ased on in-vivo patient imaging data as described in Section 2.2.1 . 

k-space sampling : Third, we calculated the k -space representation of

he high-resolution DRO for each time frame as the three-dimensional

nverse Fourier transform. We resampled it to obtain k -space data with

he acquired field of view and spatial resolution. We assumed three-

https://doi.org/10.7488/ds/2966
http://www.itis.ethz.ch/MIDA/
https://doi.org/10.7488/ds/2716
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Fig. 1. Proposed computational framework for generating 4D dynamic contrast-enhanced magnetic resonance images and simulating PS mapping under realistic 

conditions. PS: permeability-surface area product. v P : fractional blood plasma volume. 
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imensional Cartesian k -space sampling and suppressed signals from

utside the field of view in the frequency- and slice-encoding directions

o simulate band filtering and slab-selective excitation, respectively. The

nite sampling of k -space results in information loss, which may mani-

est as Gibbs ringing artefacts and partial volume effects. 

Motion artefacts : Fourth, we simulated motion artefacts using the ap-

roach of Shaw et al. (2020) . In a nutshell, we generated a composite

 -space image for each frame in which a random proportion of the suc-

essive k -space lines were acquired with the head in its initial position

i.e. that at the end of the previous time frame) and the remaining lines

cquired with the head in its subsequent position (i.e. that at the start

f the next time frame). The level of displacement between consecutive

rames and the time at which the motion occurs determines the severity

nd appearance of the motion artefacts in the resulting image, typically

anifesting as blurring, ringing and/or ghosting. 
3 
Noise and fourier transformation : Fifth, we added uncorrelated addi-

ive white Gaussian noise to the real and imaginary channels of the sam-

led k -space image, applied a three-dimensional Fourier transform and

omputed the magnitude to yield the “acquired ” four-dimensional DRO

mage including sampling artefacts, gross motion, motion artefacts and

ician noise. 

.1.4. Analysis of simulated DRO images 

We processed the simulated DCE-MRI data following the approach

escribed previously in ( Heye et al., 2016 ). Briefly, we spatially re-

ligned all frames using MCFLIRT ( Jenkinson et al., 2002 ), computed

nhancement and GBCA concentration profiles for each voxel, and fit-

ed time-concentration curves to the Patlak model using multiple-linear

egression to obtain voxelwise maps of estimated v P and PS . We have

alculated all results by omitting the first three post-contrast time points
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Fig. 2. Tissue classes included in our computational model and used to generate 4D high-resolution digital reference objects. We considered 16 regions of interest, 

comprising cerebrospinal fluid; normal-appearing white matter; white matter hyperintensities; stroke lesion; cortical grey matter; subcortical grey matter; meninges; 

muscle and cartilage; mandible and vertebrae; skull diploe; skull inner table; skull outer table; blood vessels; skin and connective tissue; adipose tissue; and eyes. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

MR protocol parameters used in our simulations. The 

values of these parameters are the same as those used 

in the Mild Stroke Study 2 ( Heye et al., 2016 ). 

MR protocol parameter Parameter value 

Repetition time 8.24 ms 

Echo time 3.1 ms 

Flip angle 12°

Field of view 24 × 24 × 18.4 cm 

Acquired resolution 0.9375 × 1.25 × 4 mm 

Temporal resolution 73 s 

Pre-contrast acquisitions 1 

Post-contrast acquisitions 20 
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rom the model fitting, to replicate the in-vivo data analysis process, as

mplemented in our previous study. 

To obtain summary parametric measures for each tissue, we per-

ormed the following steps to generate the segmentation map in the ac-

uired image space. First, we registered the high-resolution pre-contrast

1w image to the acquired one. Second, we applied the resulting affine

ransformation matrix to the binary mask of each tissue class, interpolat-

ng with a cubic approximation. Third, for each voxel, we assigned the

abel corresponding to the tissue class with the maximum probability,

esulting in a region of interest (ROI) binary mask for each tissue. 

Using the produced segmentation map, we generated a T 10 map at

he acquired resolution using the average region-wise values extracted

rom our patient cohort. For each tissue we calculated mean and me-

ian v P and PS values using two approaches: fitting of the ROI-averaged

ignal and averaging over the parametric maps. 

.2. In-silico experiments 

.2.1. MR protocol parameters and input data for generating DROs 

We explored the qualitative impact of experimental factors on leak-

ge mapping and the quantitative impact on parameter estimates using

CE-MRI data simulated using the framework described above. As a

epresentative MR protocol used for measuring low-level BBB leakage,

e simulated the acquisition protocol used in a recent DCE-MRI study

f SVD patients ( Wardlaw et al., 2017 ). Briefly, 201 patients with la-

unar or cortical mild stroke recruited prospectively in the Mild Stroke

tudy 2 (MSS2) were scanned at 1.5 T using a 3D T1-w spoiled gra-

ient echo sequence (21 time points, intravenous bolus injection of

.1 mmol/kg gadoterate meglumine) for DCE-MRI, in addition to T 10 

easurement. Specific information about the reference imaging pro-

ocol is condensed in Table 1 . The patients had a wide range of ex-

ents of neuroimaging features of SVD and were carefully phenotyped
4 
t presentation, recruitment and at up to three years of follow-up. The

n-vivo study was conducted following Research Ethics Committee ap-

roval (ref. 09/81,101/54) and according to the principles expressed in

he Declaration of Helsinki; all patients gave written informed consent.

ull details of the study protocol, image acquisition and processing, and

esults are given in ( Heye et al., 2016 ; Valdés Hernández et al., 2015 ;

ardlaw et al., 2017 ). 

We used average S 0 , T 10 , v P and PS values for NAWM, grey matter,

ecent stroke lesion and WMH obtained from this study as ground-truth

alues for generation of DRO signals. The values used in the simulations

an be found in Table 2 . For vessels, we used PS = 0 and v P = 1-Hct (Hct

as assumed to be 0.45). Given that the Patlak model does not reflect

he enhancement over time of extra-cerebral regions, we sampled their

ignal-time curves from in-vivo images manually, under the supervision

f an experienced neuroradiologist, and fitted the resulting curves us-

ng exponential or power functions to remove noise. The fitted functions

an be found in the Supplementary Material. We extracted the signal in-

ensity profiles of meninges, skin and muscle, mandible and vertebrae,

yes, and skull diploe, inner and outer tables from DCE-MRI scans of a

ingle patient in the study cohort. We used a population-average vascu-

ar input function derived from the same data ( Heye et al., 2016 ). 

We used distinct motion trajectories for each run to generate realistic

otion effects in our simulations, including examples of low, moderate

nd high degrees of motion. The classification of motion trajectories

ased on the MSS2 data can be found in the Supplementary Material.

 trajectory consisted of 20 rigid-body transformation matrices, where

ach matrix is the inverse of the transformation used to realign each time

rame in the MSS2. We generated 201 DROs using a different motion tra-

ectory, randomised starting position and newly-generated spatial noise

or each run. 

To achieve a realistic spatial noise level, we measured an in-vivo

patial signal-to-noise ratio of 91.5 for NAWM and applied the corre-

ponding noise level (scaled to match the simulated pre-contrast NAWM

ignal) to all voxels in the simulated images. 

.2.2. Experiments and reporting 

We generated and analysed synthetic DCE-MRI data for a represen-

ative SVD patient as described above. We first performed in-silico ex-

eriments to investigate the impact of k -space sampling, gross motion,

otion artefacts and noise on the appearance of parametric maps. To

urther investigate these effects, we performed simulations for different

nitial head positions and degrees of head motion; to investigate the in-

uence of non-brain GBCA uptake, we ran additional experiments with

nd without enhancement of extra-cerebral tissues. To evaluate the pos-

ible impact on study findings, we generated and analysed 201 DROs,

etermining measured PS values for each DRO and tissue, using multi-
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Table 2 

Tissue parameters used as ground truth values in our simulations. Equilibrium signal, 

S 0 , pre-contrast longitudinal relaxation time, T 10 , blood-brain barrier permeability- 

surface area product, PS , and capillary blood plasma volume fraction, v P are median 

values measured in the Mild Stroke Study 2 ( Heye, 2015 ). To simulate a stroke le- 

sion with high leakage rate, we used the third quartile of the PS and v P distribution 

measured in the same study. 

Tissue class S 0 T 10 (s) PS ( ×10 − 4 min − 1 ) v P ( ×10 − 2 ) 

Normal appearing-white matter 9726 0.99 2.75 0.57 

White matter hyperintensity 9402 1.20 3.91 0.72 

Grey matter 9298 1.34 3.85 1.20 

Recent stroke lesion 9858 1.27 7.25 1.05 

Fig. 3. PS and v P maps measured using the DRO when affected by k -space sampling, gross motion, motion artefacts and noise progressively. k -space sampling leads 

to sinc-like oscillations in the parameter maps (white arrows in coronal view), which are particularly evident in the z-direction (superior to inferior). Gross motion 

produced noticeable deviations and artefactual features in all brain regions, particularly around tissue interfaces (white dashed rectangle in sagittal view). Motion 

artefacts produced additional ringing artefacts that propagated from the signal-time data to the PS maps (solid white rectangle in axial view). A stroke lesion with 

elevated leakage is visible in the absence of motion (solid white circle in axial view) but obscured due to motion effects. Note that the artefacts observed in the 

PS maps appear at only a low level in the underlying T1w images (second column). Data correspond to a moderate degree of motion. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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le processing approaches (statistics: mean signal, median signal, mean

arameter, median parameter; post-processing: segmentation mask ero-

ion, spatial realignment, low-pass spatial filtering). For each approach,

e obtained the PS distribution across all 201 DROs, reporting the me-

ian and interquartile range (IQR) values (RStudio v1.2.5019 with R

3.5.1). 

We ran all experiments on a 189GB RAM computer running Scientific

inux 7.3 (Nitrogen; Arch x86 64; 56 CPUs Intel(R) Xeon(R) CPU E5-

683 v3 @ 2.00 GHz). Each simulation took approximately 30 min. 

. Results 

.1. Qualitative appearance of parameter maps 

Fig. 3 shows parametric maps measured from a generated DRO and

howing the cumulative effects of sampling (i.e. truncation in k -space),

ross patient motion, motion artefact and noise. The DRO was gener-

ted assuming uniform PS and v P within each brain tissue class. Data

ampling results in ringing artefacts in all three spatial dimensions, par-

icularly in the slice direction where the voxel dimension is highest;

evertheless, differential leakage between tissues is resolved, including

levated PS in the WMHs and stroke lesion and elevated v P in the grey

atter and stroke lesion. However, inclusion of moderate patient mo-

ion obscures tissue differences and induces artefactual features close

o tissue boundaries and vessels, and additional ringing artefacts. The

dditional effect of noise is small, with motion effects dominating the

isual appearance. It is noteworthy that, while the motion effects on
5 
arameter maps are severe, the degree of head motion is moderate and

he impact of artefacts on the underlying T1w images is seen to be small

n comparison to that on the parameter maps. To further illustrate the

mplications of motion, Fig. 4 shows simulated PS and v P maps in the

asal ganglia region, where areas of falsely increased (and decreased)

eriventricular leakage appear and become more apparent with increas-

ng degree of head movement. 

To quantify these effects, we created histograms to show the distri-

ution of PS and v P within each tissue for a single DRO (simulated with

ow-level patient motion, Fig. 5 ). Although we defined each tissue to

ave a uniform PS and v P , k -space sampling generates a broad distribu-

ion of values, which becomes broader when we incorporate motion and

oise in the DRO. In addition to causing a distribution of values, both

ampling and gross motion affect central tendency values (i.e. mean or

edian), especially for cortical grey matter where the bias in PS and

 P values was approximately − 0.71 × 10 − 4 min − 1 and − 0.20 × 10 − 2 (–

8.49% and − 16.66%) relative to the ground-truth value, respectively.

patiotemporal imaging considerations affect PS mapping more than v P 
apping. The effects simulated can also result in non-physical negative

S and v P values in some voxels. 

.2. Effect of head position and extra-cerebral tissue enhancement 

The spatial relationship between the voxel grid and the head po-

ition determines the appearance of partial volumes and Gibbs ring-

ng artefacts ( Kellner et al., 2016 ). We simulated the impact of this ef-

ect on leakage mapping by analysing the error after randomising the
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Fig. 4. Artefactual periventricular leakage due to sampling and motion effects. The artefactual features are evident around the lateral ventricles (white arrows) and 

in the adjacent supraventricular corona radiata (black arrows), where white matter hyperintensities frequently occur. Such artefacts, caused by sampling and motion 

effects, might potentially be confused with “periventricular BBB dysfunction ” due to subtle pathology. 

Fig. 5. Distribution of measured PS and v P values for each tissue of interest as we induced spatio-temporal effects progressively in a single patient (data correspond 

to ‘Low motion’ images shown in Fig. 4 ). The vertical lines depict the ground truth (grey) and median (red) parameter values. We used the term “sampling ” to refer 

to k -space sampling, which results in information loss and manifests as partial volume effects and Gibbs ringing artefacts. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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tarting head position (without intra- or inter-frame motion or noise).

ualitative results of this experiment for two DROs are shown in Fig. 6 .

he error caused by sampling the signal in k -space propagates differ-

ntly depending on the initial head position, causing both over- and

nder-estimation of the actual parameter values in for the two initial

ositions. 

To address the impact of extra-cerebral tissue enhancement on PS

nd v parameter maps, we performed simulations with and without
P 

6 
on-brain signal enhancement. The qualitative results for a single DRO

hown in Fig. 7 demonstrate that extra-cerebral signal enhancement is

esponsible for the observed sinc-like artefacts as they attenuated when

e disabled extra-cerebral enhancement. Residual errors persisted in

issue proximal to medium and large blood vessels. These findings were

eproducible across a range of head starting positions. Quantitative tis-

ue parameter estimates for the individual scan simulated in Fig. 7 were

ffected by up to 17% (note that the errors shown arise from multiple
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Fig. 6. Gibbs-like artefacts in the PS and v P parameter maps depend on initial head position, consistent with k -space sampling effects. Simulations excluded motion 

and noise effects. 
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ources and are not necessarily reduced when extra-cerebral enhance-

ent is disabled). 

.3. Accuracy and precision of quantitative parameter estimation 

To predict the accuracy and precision of quantitative PS and v P mea-

urements, we performed 201 simulations of the same individual, using

 different motion trajectory, noise contribution and initial orientation

ach time. For each run, tissue parameter values were estimated us-

ng both a signal-averaging (i.e. analysis of the tissue-averaged signal)

nd parameter-averaging (i.e. averaging over the PS and v P parametric

aps) approach. The results are shown in Fig. 8 and Table S1. Overall,

he parameter median approach resulted in comparable or slightly bet-

er estimates compared with other approaches. These methods clearly

verestimated PS and v P for WMH and underestimated PS for cortical

rey matter, NAWM and stroke lesion. Note these results are consistent

ith the single scan analyses shown in Fig. 5 . Gross motion caused most

f the quantification error, typically increasing both the systematic bias

nd the spread of values. Although incorporating both motion artefacts

nd noise increased the dispersion, the median value computed was not

ubstantially affected. 

.3.1. Effect of spatial realignment 

Rigid-body spatial realignment is often employed to correct for

ead motion that may have occurred during a lengthy DCE-MRI scan

 Thrippleton et al., 2019 ). However, not all studies in the field use or
7 
eport using this pre-processing step. We compared simulation results

btained with and without spatial realignment ( Fig. 9 and Table S2).

hese indicate that spatial realignment has a large beneficial impact on

oth precision and accuracy of parameter estimation, especially in cases

f moderate and high motion. We additionally considered the effect of

wo interpolation methods: trilinear (default in MCFLIRT) and sinc in-

erpolation. Both methods led to comparable estimation errors. 

.3.2. Effect of mask erosion and low-pass filtering 

Since the results described above indicate a significant error contri-

ution from partial volume effects and non-local signal due to Gibbs

inging, we tested whether the error decreased following erosion of the

egmentation masks ( Heye et al., 2016 ) using a sphere kernel with ra-

ius equal to one voxel. The corresponding PS and v P estimates showed

 Fig. 10 and Table S3) increased accuracy following mask erosion in

ost tissues of interest. For example, when we induced all spatiotem-

oral effects, the relative PS error for NAWM and cortical grey mat-

er was − 18.47 (IQR − 32.35, − 10.01)% and − 15.60 (IQR − 19.92,

 10.75)% originally versus − 8.19 ( − 11.41, − 4.76)% and − 6.58 (IQR

 9.18, − 4.31)% following erosion. 

We also tested the impact of a Bessel low pass filter (applied to the

cquired k -space images) on parameter mapping (Figure S4) and esti-

ation ( Fig. 10 and Table S3). Simulated parameter maps demonstrate

hat low-pass filtering effectively mitigates ringing artefacts, while the

mpact on parameter estimates is similar to that of erosion. 
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Fig. 7. Effect of k -space sampling and extra-cerebral tissue enhancement on parameter mapping. The sinc-like artefacts in the parameter maps disappear when 

non-brain tissue enhancement is disabled, suggesting that such errors are caused by sampling of the high spatial frequencies induced by extra-cerebral enhancement. 

Simulations excluded motion and noise effects. 
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. Discussion 

In this work, we present an open-source computational model for

imicking the DCE-MRI acquisition process for quantitative mapping of

ubtle BBB leakage under realistic conditions, including patient motion,

natomy and signal enhancement dynamics based on in-vivo clinical

ata. We found that even low levels of motion and image artefact have

 large impact on both the appearance of parametric leakage maps and

n quantitative measurements of leakage rates within regions of interest.

Previous simulation work has examined a number of other factors

hat may affect such measurements. For example, more than one re-

earch group has demonstrated the suitability of the Patlak pharmacoki-

etic model for measuring low-level PS ( Barnes et al., 2016 ; Cramer and

arsson, 2014 ; Heye et al., 2016 ). The researchers also demonstrated

he effects of noise, impaired cerebral blood flow, the number of pre-

ontrast baseline volumes acquired and the impact of scanner drift on

he accuracy and precision of PS measurements. While such findings

ave provided essential insights and informed guidance regarding op-

imal acquisition and processing strategies ( Thrippleton et al., 2019 ),

hey are based on simulations of one-dimensional time-signal data and,

hus, do not address spatio-temporal factors, which, as we have shown

ere, have a substantial influence, over and above that of noise. 

In summary, we scrutinised the impact of spatio-temporal effects on

he appearance of leakage maps by progressively inducing them in the
8 
RO. The first of these, k -space sampling, has two main consequences:

artial volume averaging and Gibbs ringing artefact. While the appear-

nce of Gibbs artefact on the source T1w images was subtle, the effect

as greatly magnified in the leakage maps. This result can be under-

tood by considering that, although the magnitude of ringing artefacts

n the source images is merely a few percent of the signal intensity,

uch a signal contribution is similar to or larger than the signal changes

aused by slow contrast agent leakage in brain tissue. The effect is par-

icularly apparent in the partition direction, where the voxel dimension

s greatest. Despite the Gibbs artefact, some tissue permeability differ-

nces remained apparent in the leakage maps. Inclusion of gross patient

otion in the simulations further degraded the leakage maps, obscur-

ng tissue differences and introducing artefactual features, particularly

round vessels, lateral ventricles and tissue boundaries. The inclusion

f motion artefact had a further impact on the quality of leakage maps,

rimarily in the form of ghosting and blurring features. While the in-

orporation of noise further degraded the appearance, the additional

elative impact was small. The oval shape of some of these artefacts im-

lies that they originate from or close to the surface of the brain, while

he observed dependence on initial head position is consistent with the

ependence of Gibbs artefact on the position of tissue boundaries in re-

ation to the voxel grid ( Ferreira et al., 2009 ). Additional simulations,

n which we switched off the much larger contrast enhancement occur-

ing in some extra-cerebral regions, suggest that finite k -space sampling
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Fig. 8. PS and v P values estimated per tissue as we progressively induced spatio-temporal effects (A: k -space sampling only. B: sampling and gross motion. C: 

sampling, gross motion, and motion artefacts. D: sampling, gross motion, motion artefacts and noise). We produced these results using spatially realigned images 

(and without erosion or filtering). The maximum width of the violin plots was kept constant. The dotted lines represent the true PS and v P values for each tissue. 

Fig. 9. Effect of spatial realignment on parameter estimation per tissue depending on the extent of motion and interpolation method used for realignment. Estimates 

were obtained using the parameter median approach (without erosion or filtering). The maximum width of the violin plots was kept constant. The definition of low, 

moderate, and high motion can be found in the Supplementary Material. These results correspond to simulations including all spatiotemporal effects. The dotted 

lines represent the true PS and v P values for each tissue. 

9 
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Fig. 10. Effect of segmentation mask erosion and low pass filtering on parameter estimation per region of interest as progressively induced spatio-temporal effects 

(A: k -space sampling only. B: sampling and gross motion. C: sampling, gross motion, and motion artefacts. D: sampling, gross motion, motion artefacts and noise). 

Estimates were obtained following spatial realignment of the images and using the parameter map median approach. The width of the violin plots was kept constant. 

The dotted lines represent the true PS and v P values for each tissue. 
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f the high spatial frequencies induced by these enhancements has a

otable impact on measured leakage patterns within the brain and is a

ource of the Gibbs-like artefacts seen in the parametric maps. 

We also assessed the impact of the same spatio-temporal imaging fac-

ors on quantitative tissue-averaged leakage measurements. We found

easonable levels of accuracy in the absence of motion effects, with

he exception of cortical grey matter and stroke lesion tissues, where

ampling factors have a proportionately larger effect due to their size

nd morphology. Gross motion combined with k -space sampling had the

argest effect on the accuracy and precision, consistent with the observed

mpact on individual leakage maps. For example, we observed a bias to-

ards lower ( − 15.60 [IQR − 19.92, − 10.75]% and − 18.47 [IQR − 32.35,

 10.01]%) values for cortical grey matter and normal-appearing white

atter due to gross motion. Both Gibbs ringing and partial volume ef-

ects cause the mixing of signals between neighbouring tissues, which

ave different pre-contrast and dynamic signal intensities; in the case of

otion, the degree of mixing is time-dependant, which may increase the

mpact on PS estimates, particularly if data are not spatially re-aligned.

or example, the predicted underestimation of PS in white matter could

e rationalised by the progressive “incursion ” of grey-matter signal into

he white matter tissue mask due to patient motion, since the size of the

ffect increases with degree of motion, and reduces following spatial re-

lignment and mask erosion. Simulation of motion artefact and image

oise was shown to have a much smaller effect. 

Our work has implications for the interpretation of DCE-MRI subtle

eakage data. First, the use of an appropriate pharmacokinetic model,

emporal resolution and sufficiently high signal-to-noise ratio are essen-

ial but not sufficient conditions to obtain reliable results, since spatio-

emporal considerations have a major impact on the accuracy and pre-

ision. Secondly, leakage maps in individual patients may be an un-

eliable source of information, as they are highly distorted by imag-

ng artefacts and motion; such maps should be interpreted with cau-

ion, since artefactual leakage features are likely to be present, even (as

imulated here) if the true leakage rate is uniform within each tissue.

herefore, it is important to acknowledge that apparent features such

s leakage “hotspots ”, “rims ”, negative leakage rates and shifts in the
10 
istribution can be caused by patient motion and data sampling effects.

his consideration is particularly relevant to studies of ageing where key

athological features, such as periventricular WMH, may coincide with

egions where the artefact level is high. Post-processing techniques de-

igned to denoise leakage maps or identify voxels with significant leak-

ge ( Raja et al., 2018 ; Taheri et al., 2011 ; van de Haar et al., 2017 ) could

lso be potentially confounded by these effects, which distort the cen-

ral value, width and shape of the measured voxel leakage distribution.

hird, quantitative leakage rates estimated for each tissue may also be

ubject to substantial systematic biases and random error as a result of

hese effects. Since the degree of patient motion is likely to be related

o severity of neurodegenerative disease, there is therefore a possibility

f inferring false associations between leakage rate and disease. 

Our work also has implications for the design of future studies tar-

eting subtle BBB leakage. The computation framework for generating

ROs presented here, which is freely available as source code, provides

 convenient means to evaluate and compare proposed DCE-MRI proto-

ols including the influence of spatial and temporal resolution param-

ters. The critical impact of motion revealed by our experiments also

rgues for the following recommendations. First, the use of spatial reg-

stration is essential as its omission can lead to greatly increased system-

tic and random estimation errors, even in cases of low motion. Second,

easures to reduce motion in the first place, such as padding of the

ead will be beneficial, as previously recommended ( Thrippleton et al.,

019 ). Third, even though we obtained comparable estimates across lev-

ls of motion after spatial realignment, abrupt movements during scan-

ing may result in image distortion, which may affect parameter map-

ing and estimation. Thus, we recommend checking realignment was

uccessful in each case. Fourth, the appearance of parametric maps is

mproved through application of a low-pass spatial filter, albeit at the

ost of image blurring. Fifth, the accuracy of quantitative parameter

stimates can be improved by eroding tissue masks or regions of inter-

st, thereby reducing signal contamination from neighbouring signals

ue to partial volume, Gibbs ringing and gross motion effects. Sixth, we

bserved similar accuracy and precision regardless of whether averag-

ng was performed over the parameter maps or over the MR images.
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onetheless, when using parameter averaging, we recommend param-

ter median as it showed slightly improved estimation compared with

arameter mean and it is more robust against outliers. 

Future studies should evaluate the effect of motion-resistant acquisi-

ion techniques, such as optical prospective motion compensation, pro-

ided temporal resolution, signal stability and other key technical ele-

ents are not compromised. Equally, the value of post-processing tech-

iques, such as retrospective spatial artefact reduction methods target-

ng truncation ( Kellner et al., 2016 ) and motion artefacts can now also

e explored. 

Our work has some limitations. First, although the DROs are gener-

ted using a high-resolution (0.5-mm isotropic) brain atlas to synthesise

he MRI signal, it may not be sufficient to model all anatomical struc-

ures and tissue boundaries accurately. To our knowledge, the MIDA

tlas is the highest resolution head and neck atlas with comprehensive

abelling available at present, however higher resolution (e.g. based on

-T MRI) atlases could be used in future. Second, we simulated data us-

ng a number of necessary assumptions and simplifications. For exam-

le, dynamic brain tissue signals were generated using the Patlak model,

ince this ensures that any errors we identified are a consequence of the

patio-temporal factors investigated here and not due to physiological

imitations of the model, which have been investigated extensively else-

here. Third, our technique for simulating motion effects resulted in

otion artefacts with realistic appearance within an acceptable com-

utation time; simulating continuous patient motion (and signal en-

ancement changes) throughout the acquisition would generate more

ealistic data but at the cost of increased computation time. Fourth,

he results presented herein correspond to a specific DCE-MRI proto-

ol and would likely be quantitatively different for a different protocol.

evertheless, the protocol simulated is typical of those described in the

iterature, concerning spatial resolution, acquisition time and pulse se-

uence. It would be straightforward to simulate alternative protocols

nd pulse sequences (e.g. saturation recovery spoiled gradient echo) us-

ng our framework. Fifth, we simulated a DRO including small vessel dis-

ase features seen in the ageing brain, such as WMH and stroke lesions.

owever, study populations typically comprise a range of disease bur-

ens and other features, such as lacunes, enlarged perivascular spaces,

icro-haemorrhages (i.e., micro-bleeds), sulcal widening and ventricu-

ar enlargement amongst others; future work could address the impact

f brain ageing and neurovascular health on the accuracy of leakage

easurements. 

In conclusion, we have developed and made publicly-available a

ovel DRO for simulating DCE-MRI measurement of subtle BBB leakage

 https://doi.org/10.7488/ds/2966 ). This development is timely, given

he rapidly growing interest in neurodegenerative diseases, such as small

essel disease and dementia, which are linked with subtle BBB dysfunc-

ion, and the growing interest in applying DCE-MRI in this area. Our

ork reveals reasons to be careful when interpreting such data, and

rovides a means to estimate and optimise the reliability of measure-

ents. 
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