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In interspecific hybrids, it is often observed that the ribosomal 
genes of one species are transcriptionally dominant over the 
ribosomal genes of the other species. This phenomenon has 
been called "nucleolar dominance" and has been reported in 
such diverse organisms as frogs (Xenopus), Drosophila, many 
genera of plants, and mammalian somatic cell hybrids. Recent 
advances in our knowledge of the structure of ribosomal genes 
and their transcription machinery have led to proposals that 
at least two different molecular mechanisms can operate to 
cause nucleolar dominance and that the relative contribution 
of each mechanism is different for different types of crosses. 
One proposed mechanism involves competition between ri- 
bosomal genes which possess unequal numbers of enhancer 
elements. This mechanism can be abbreviated as the "enhan- 
cer imbalance mechanism." The second proposed mechanism 
involves the fact that the ribosomal gene (RNA polymerase 
I) transcription machinery evolves more rapidly between spe- 
cies than does the machinery for the other two classes of 
polymerase. This leads to dominance effects based on the 
apparent inability of a key transcription factor from one 
species to recognize the ribosomal gene promoter of the other 
species. This mechanism will be referred to as the "species- 
specific factor mechanism." The purpose of this review is to 
briefly summarize the evidence for these two molecular mech- 
anisms and then to examine each of the known types of 
nucleolar dominance to assess how well the proposed mech- 
anisms can account for each case. 

EVIDENCE FOR ENHANCER ELEMENTS IN 
RIBOSOMAL GENES 

The evidence for enhancers affecting ribosomal gene tran- 
scription comes primarily from work on the frog, Xenopus 
laevis. It was initially observed that sequences in the nontran- 
scribed spacer could influence transcription from the gene 
promoter upon injection of cloned genes into either oocytes 
(l) or into developing embryos (2). Subsequently, it was 
demonstrated that the elements responsible for this effect are 
the 60/8 l-bp repetitive elements that occur in variable num- 
bers in different spacers (3). The 60/8 l-bp elements exert their 
influence in either orientation, at a distance of several kilo- 
bases from the gene promoter and even when inserted within 
the transcribed region of the gene (4, and P. Labhart, unpub- 
lished observations). Because of these characteristics, they 
have been called "enhancers" in analogy with RNA polym- 
erase II enhancers (5). 

Within each 60/8 l-bp repeat in the spacer is a core element 
of ~42bp which shares 90% homology with a 42-bp domain 
within the gene promoter itself (l, 6, 7). The 42-bp domain 
within the gene promoter is nearly coincident with a protein- 
binding domain as defined by DNaseI footprinting (8). In the 
spacers of a related species, Xenopus borealis, complete 60/ 
8 l-bp repeats are absent but several copies of the 42-bp core 
element are present (9). These observations suggest that it is 
the 42-bp core which is responsible for the enhancer effect. 
The mechanism by which the enhancers exert their influence 
on the gene promoter is not known. However, the sequence 
homology between the enhancers and the promoter, as well 
as the fact that under certain conditions the enhancers appear 
to compete with the promoter for the same factor (4), suggests 
that the enhancers may act as an entry site for a factor 
involved in promoter activation. (The evidence concerning 
possible mechanisms of ribosomal gene enhancer function 
has been reviewed elsewhere [10]). Regardless of the precise 
mechanism by which enhancers act, all available evidence 
suggests that a ribosomal gene promoter adjacent to numerous 
enhancers has a strong advantage over a promoter adjacent 
to few enhancers. In reconstruction experiments, promoters 
adjacent to varying numbers of enhancers have been injected 
in competition into both oocytes and embryos and, in general, 
the promoter with the most enhancers is transcriptionally 
dominant (l 1). 

Are ribosomal gene enhancers present in organisms other 
than Xenopus? Two reported attempts to detect any influence 
of the spacer on ribosomal gene transcription in mammalian 
species have been negative (12, 13). Other experiments, how- 
ever, suggest that a repetitive region upstream of the mouse 
ribosomal gene promoter may have enhancer activity. In 
transient expression assays a 2-kb SalI fragment (that contains 
multiple copies of a 140-bp repeating element) stimulates 
transcription (several-fold when present in either orientation) 
(B. Sollner-Webb, personal communication). The spacers of 
some species of plants contain variable length blocks of re- 
petitive elements. (The best studied example is the genus 
Triticum [14], as discussed below). Indirect evidence from 
nucleolar dominance studies suggests that these repetitive 
elements may be acting as enhancers similar in function to 
those present in Xenopus. Accumulating evidence also sug- 
gests that yeast ribosomal genes may contain an enhancer 
element in each repeating unit. Each repeat contains a 192- 
bp fragment located just beyond the termination site of the 
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ribosomal precursor gene (the so-called E-H fragment). The 
activity of the E-H fragment is strongly dependent upon the 
sequences which surround it. But, in the correct surround~,ngs, 
it functions in both orientations, on either side of the gene, 
and at a distance of at least 2 kb from the site of transcription 
initiation (15, E. Elion and J. Warner, personal communica- 
tion). Whether the yeast E-H fragment acts in the same 
manner as do the Xenopus 60/81-bp repeats is still unresolved. 
The E-H fragment acts in cis to stimulate transcription from 
the adjacent gene at least 10-fold. However, multiple copies 
of the E-H fragment appear to be inhibitory. 

These initial observations raise the possibility that enhancer 
elements will turn out to be of widespread occurrence among 
ribosomal genes of many species. 

EVIDENCE FOR SPECIES-SPECIFIC 
TRANSCRIPTION FACTORS 

As far as is known, RNA polymerase I transcribes only the 
genes for the large ribosomal RNA precursor (and in some 
cases, the intervening spacer sequences [16, 17]) and thus 
interacts with a very limited set of DNA sequences. This is 
apparently the explanation for the fact that some component 
of the polymerase I machinery (as well as the promoter 
sequence inself) is free to evolve rapidly between species. For 
example, little or no cross-reaction is seen with in vitro 
transcription systems for ribosomal genes between mouse and 
human (l 8-21) or between Drosophia virilis and D. melano- 
gaster (22). In at least one case the species divergence is 
nonreciprocal. The X. laevis ribosomal gene promoter, for 
instance, appears to work as well as the X. borealis promoter 
does when tested by injection into X. borealis oocytes. The 
X. borealis promoter, however, works very poorly in X. laevis 
oocytes (11). For mammals there is good evidence that the 
species specificity resides in a single transcription factor that 
changes from species to species. Several laboratories have 
partially purified a factor which binds tightly to phosphocel- 
lulose and which can confer the ability to recognize its own 
species' promoter when added to an extract from another 
species (l 9, 20). This factor has been extensively purified from 
human cells, and antibodies directed against it stain the 
nudeolus exclusively (23). 

These observations suggest that in crosses between distantly 
related species, where the polymerase I transcription machin- 
ery has evolved apart, the ability of either set of ribosomal 
genes to be transcribed will depend heavily upon whether or 
not the appropriate transcription factor is also expressed. In 
crosses between closely related species, where there is good 
cross-reaction between the polymerase I promoters and tran- 
scription factors, more subtle concerns (such as relative num- 
ber of enhancers present in each gene set) are likely to deter- 
mine whether a given gene is transcribed or not. 

NUCLEOLAR DOMINANCE IN FROGS 

Nucleolar dominance in frogs was first described by Blackler 
and Gecking (24; see also 25) in crosses betwen X. laevis and 
X. borealis. Both of these species have ~500 copies of the 
ribosomal genes located at a single nucleolus organizer site in 
each haploid set of chromosomes (26, 27). In normal diploids, 
two nucleoli are visible throughout early development. How- 
ever, in F~ hybrids only one nucleolus is visible, suggesting 
that one set of ribosomal genes is repressed. Biochemical 
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analysis subsequently showed that repression of the X. borealis 
ribosomal genes occurs at the level of transcription and that 
X. laevis transcription is dominant over that of X. borealis 
(28, 29). The transcriptional dominance is not due to a 
maternal effect since X. laevis is dominant regardless of which 
species supplied the egg or the sperm. The dominance of X. 
laevis ribosomal gene transcription is most striking in the case 
where an X. laevis sperm fertilizes an X. borealis egg since X. 
laevis ribosomal DNA is dominant even though the egg 
supplies all the stored transcription machinery that is used 
when the ribosomal genes first turn on in early development. 

A maternal effect is observed, however, when X. laevis 
animals carrying the anucleolate deletion (which deletes at 
least 95% of the ribosomal DNA [27, 30]) were mated with 
normal X. borealis. When X. borealis supplies the egg in such 
crosses, no repression is seen and the X. borealis genes begin 
transcription at the time they do in normal embryos, shortly 
after midblastula. From this result it was inferred that repres- 
sion ofX. borealis rDNA probably requires nothing else than 
the physical presence ofX. laevis rDNA (28). When X. laevis 
supplies the egg, however, transcription of the X. borealis 
rDNA is considerably delayed until the swimming tadpole 
stage. Thus, in the absence of the X. laevis rDNA, something 
in theX. laevis egg severely delays expression of the X. borealis 
rDNA. It has been proposed that both the enhancer imbalance 
and the species-specific factor mechanisms are responsible for 
nucleolar dominance in Xenopus (11). Between these two 
mechanisms a reasonable accounting can be made for all the 
observed phenomena. When a competing pair of ribosomal 
genes are injected into either oocytes or cleaving embryos, 
invariably the gene with the most enhancers is transcription- 
ally dominant. Since the X. laevis genes work well in both X. 
laevis and X. borealis transcription machinery and have at 
least fourfold more enhancers, it is predictable that they are 
dominant regardless of which species supplies the egg (and 
the transcription machinery). 

X. laevis rDNA promoters work well in X. borealis machin- 
ery but the converse is not true. Thus, in crosses where the X. 
laevis rDNA is deleted and X. borealis supplies the egg, the 
X. borealis genes turn on at the normal time at midblastula. 
When the X. laevis rDNA is deleted and X, laevis supplies 
the egg, however, turn-on the X. borealis genes is delayed. 
This delay is very likely due to the inability of the X. borealis 
promoters to interact with the stored X. laevis transcription 
machinery. Presumably by the swimming tadpole stage the 
paternal X. borealis genome has synthesized enough of the X. 
borealis factor so that the X. borealis genes can begin tran- 
scription. 

Dominance of the X. laevis rDNA is leaky and, in most 
crosses, expression of the X. borealis rDNA (and the presence 
of two nucleoli per cell) becomes detectable later in develop- 
ment. Since the enhancer imbalance mechanism is presumed 
only to function when a key transcription factor is limiting in 
the cell, this may mean that later in development more of the 
factor is made and it is no longer limiting. Also, in crosses in 
which X. borealis supplies the sperm, this delayed activation 
could be influenced in part by synthesis of factors specified 
by the X. borealis genome. Nucleolar dominance has been 
observed in other interspecific crosses within the genus Xen- 
opus (M. Fischberg, personal communication) and one cross 
has been found where the species are co-dominant (borealis 
x mulleri). This is very reminiscent of the dominance hier- 



archies described in plants (see below) and is readily explained 
by the enhancer imbalance mechanism. If  all enhancers are 
of equal strength, a species' position in the hierarchy could be 
determined simply by counting its enhancers. Any two species 
with the same number would be co-dominant. At present, 
there is insufficient data available to test this prediction. 

NUCLEOLAR DOMINANCE IN PLANTS 

Nucleolar dominance was first described 50 years ago by 
Navashin (31) who was working with the genus Crepis. He 
noted that the chromosome sets of any particular Crepis 
species invariably contained a pair of large chromosomes, the 
so-called D-chromosomes, that exhibited a prominent sec- 
ondary constriction during metaphase. When certain species 
were crossed, however, the D chromosomes of only one parent 
would form a secondary constriction in the hybrid. Heitz (32), 
among others, had shown that such secondary constrictions 
are the site at which the nucleolus forms during interphase 
and that constrictions only form when nucleoli are present. 
McClintock (33) reviewed Navashin's data and predicted that 
the nucleolus organizers of various Crepis species could be 
ranked in an internally consistent dominance hierarchy based 
on their ability to suppress nucleolar formation by other 
organizers or to be suppressed themselves. This prediction 
was verified by Wallace and Langridge (34) who performed 
additional crosses to test the dominance hypothesis. These 
authors proposed that dominance is due to an effect of one 
organizer on the other and they summarized the basic features 
of nucleolar dominance as recognized at that time as follows: 
(a) there is no maternal effect, i.e., the same species is domi- 
nant regardless of whether it supplies the sperm or the egg, 
and (b) the suppressed nucleolus organizer is not irreversibly 
damaged. It can be recovered in apparently unaltered form 
by appropriate backcrosses. The reversibility of suppression is 
seen most clearly during meiosis in the hybrids when haploid 
spore nuclei form. The suppressed nucleolar organizers acti- 
vate and form a nucleolus as soon as they are separated from 
the dominant organizers by a nuclear membrane. 

Similar observations have been made subsequently on a 
variety of plant genera including Salix (35), Ribes (36), So- 
lanum (37), Hordeum (38), and Triticum (39-42). The ribo- 
somal genes of Triticum have been cloned and sequencing 
has revealed that each spacer contains a large block of repet- 
itive elements that can contain varying numbers of repeats 
(14). Triticum normally contains four nucleolus organizers 
located on four separate chromosomes. By examining differ- 
ent strains that were deleted for different organizer chromo- 
somes, it was determined that the spacers in a given organizer 
all have the same length repetitive block but that the size of 
this block varies between organizers. The volume of the 
nucleolus formed by each organizer was determined as an 
approximate measure of the number of active ribosomal genes 
at that particular site. Nucleolar volume was found to corre- 
late well with increasing length of the repetitive spacer block 
but was not correlated with the number of genes at each 
organizer. A plausible hypothesis is that the repetitive blocks 
are competing for some limiting factor and organizers con- 
taining larger repetitive blocks have more active genes even 
though they may have fewer total genes (R. Flavell, personal 
communication). A related experiment was one in which a 
strain was constructed that contained a single organizer-bear- 
ing chromosome from Aegilops umbellulata in a nucleus with 

four normal Triticum organizers. A. umbellulata is closely 
related to Triticum and the rDNA from both plants is very 
similar. However, the A. umbellulata spacers have a repetitive 
block that is considerably longer than that found in any of 
the Triticum spacers. This long repetitive block may be the 
reason that the single umbellulata organizer is able to turn off 
all of the Triticum organizers (42). 

The similarities between nucleolar dominance in Xenopus 
and the nucleolar dominance seen in plants such as Crepis 
and Triticum are quite striking. In both frogs and plants 
dominance hierarchies have been observed, the dominance is 
generally independent of maternal influences, and the sup- 
pressed ribosomal genes are not irreversibly damaged or lost. 
The fact that dominance in Triticum is correlated with a 
repetitive element in the spacer strongly suggests that plants 
may also have enhancer elements in their ribosomal genes 
and that, as in frogs, enhancer imbalance is primarily respon- 
sible for nucleolar dominance. 

NUCLEOLAR DOMINANCE IN MOUSE-HUMAN 
SOMATIC CELL HYBRIDS 

When mouse and human somatic cells are fused it is often 
observed that one species will be the dominant partner in the 
hybrid. The chromosomes of the dominant partner will be 
retained while a variable number of chromosomes from the 
other species will be lost before the karyotype stabilizes (43). 
If mouse is the dominant partner, then it is also observed that 
only mouse ribosomal RNA will be transcribed (44--46) even 
though some or all of the human ribosomal DNA is retained. 
By choosing the correct cell lines for fusion, it can also be 
arranged that the human genome will be the dominant part- 
ner, human chromosomes will be preferentially retained, and 
only human ribosomal genes will be expressed (47). When 
transcription extracts are made from mouse-dominant hybrid 
ceils, the extracts are unable to recognize the human ribo- 
somal gene promoter even though they transcribe mouse 
ribosomal DNA perfectly well (48, 49). These facts suggest 
that in these hybrid cells nucleolar dominance is simply due 
to the loss (or inactivation) of the gene for the species-specific 
transcription factor. Since either species has the potential to 
be dominant, it seems unlikely that enhancer imbalance is 
involved. An obvious prediction is that the suppressed genes 
could be reactivated by transfecting the hybrid cells with the 
gene for the appropriate transcription factor. 

There are reports that the inactive ribosomal genes in 
somatic hybrids can also be reactivated either by infection 
with SV40 (50) or by treatment with phorbol ester (51). If 
true, this would argue that the gene for the species-specific 
factor is not lost but only inactivated (at least in some hybrids) 
and can be turned back on. In at least one reported case, 
however, attempts to repeat the phorbol ester reactivation 
failed (48). Whether this failure was due to differences in the 
particular hybrid cell lines employed or some other cause is 
not known at present. 

NUCLEOLAR DOMINANCE IN DROSOPHILA 

Nucleolar dominance has also been reported in crosses be- 
tween Drosophila melanogaster and D. simulans (52). In some 
respects this dominance also resembles that seen in frogs and 
plants. One species, D. melanogaster, is dominant regardless 
of the direction of the cross, and the suppressed genes are not 
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irreversibly lost or damaged. The major difference is that in 
Drosophila a second locus (in addition to the nucleolar organ- 
izer locus) has been identified that is required for suppression 
of simulans ribosomal gene transcription to occur (53). The 
second locus is a region of heterochromatin that is proximal 
to the nucleolus organizer on the D. melanogaster Y chro- 
mosome. Deletions of this region, which still retain the nu- 
cleolus organizer itself, are unable to suppress the simulans 
genes and co-dominance occurs. 

It is not yet clear whether nucleolar dominance in Droso- 
phila can be explained by some combination of the enhancer 
imbalance and species-specific factor mechanisms. The D. 
melanogaster spacers have repetitive sequences in them which 
are related to the sequence of  the gene promoter and which 
might turn out (in analogy with the Xenopus case) to have 
enhancer activity. However, such enhancer activity has yet to 
be demonstrated in the melanogaster ribosomal genes. It is 
also possible that the second heterochromatic locus in fact 
codes for a species-specific transcription factor. But, if that 
were true, it is not clear how the expression of that locus 
would cause repression of the simulans genes. Another pos- 
sibility is that Drosophila has evolved yet a third, and as yet 
unknown, mechanism for causing nucleolar dominance. 

CONCLUSION 

In crosses between Xenopus species, direct evidence suggests 
that nucleolar dominance is caused by an interaction of two 
distinct mechanisms, enhancer imbalance and species-specific 
transcription factors. However, enhancer imbalance appears 
to be the dominant mechanism and is largely responsible for 
the fact that laevis is dominant in ribosomal gene transcrip- 
tion regardless of  the direction of the cross. In mouse-human 
hybrids, the relative contribution of the two mechanisms 
seems to be reversed--loss of  a species-specific transcription 
factor explains the facts fairly well, and there is no reason as 
yet to suspect enhancer involvement. In plants, indirect evi- 
dence strongly suggests that enhancer imbalance is involved 
and could account for all the data so far. Drosophila, with 
another locus outside the nucleolus organizer that affects 
dominance, does not fit neatly into any of the above categories 
and perhaps has a third (and as yet unknown) mechanism at 
work. 
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