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Abstract

A high-performance medical image segmentation model based on deep learning depends

on the availability of large amounts of annotated training data. However, it is not trivial to

obtain sufficient annotated medical images. Generally, the small size of most tissue lesions,

e.g., pulmonary nodules and liver tumours, could worsen the class imbalance problem in

medical image segmentation. In this study, we propose a multidimensional data augmenta-

tion method combining affine transform and random oversampling. The training data is first

expanded by affine transformation combined with random oversampling to improve the prior

data distribution of small objects and the diversity of samples. Secondly, class weight bal-

ancing is used to avoid having biased networks since the number of background pixels is

much higher than the lesion pixels. The class imbalance problem is solved by utilizing

weighted cross-entropy loss function during the training of the CNN model. The LUNA16

and LiTS17 datasets were introduced to evaluate the performance of our works, where four

deep neural network models, Mask-RCNN, U-Net, SegNet and DeepLabv3+, were adopted

for small tissue lesion segmentation in CT images. In addition, the small tissue segmenta-

tion performance of the four different deep learning architectures on both datasets could be

greatly improved by incorporating the data augmentation strategy. The best pixelwise seg-

mentation performance for both pulmonary nodules and liver tumours was obtained by the

Mask-RCNN model, with DSC values of 0.829 and 0.879, respectively, which were similar

to those of state-of-the-art methods.

Introduction

According to the data released by the Global Burden of Cancer worldwide (GLOBOCAN),

cancer is the leading cause of death in the world. Early detection and treatment are the key

means to reduce cancer mortality [1]. Through effective treatment of early cancer, the five-
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year survival rate can be increased to more than 90% and the cure rate can be improved. Com-

puted Tomography (CT) and Magnetic Resonance Imaging (RMI) are non-invasive, painless

and accurate technologies for identifying human tissue lesions to help clinical experts diagnose

and plan treatment plans. Nowadays, CT is becoming more and more popular in the diagnosis

and further treatment of cancer and its progression [2]. For pathological examination of chest

and abdomen organs such as heart, lung, liver and gallbladder, the processing performance

using CT is better than that using MRI. Moreover, monitoring and analysis using CT images is

an important strategy for early cancer diagnosis [3]. Accurate segmentation of the lesion

region in the tissue will directly affect the subsequent analysis results [4].

Recently, deep learning in the medical image analysis field has accomplished remarkable

achievements—including the recognition and segmentation of lesion tissues based on deep

learning [5]. Although deep neural networks have achieved great success in medical image seg-

mentation, the lack of effective annotated data is still a major problem [6]. In addition, the

scale of some lesion tissues in CT images is very small, especially in the early stages, resulting

in the extreme imbalance of categories in the dataset. This class imbalance in the dataset affects

network convergence during the training stage, which adversely affects model performance

[7]. Therefore, given the limited data situation, it is critical to conduct research on classifica-

tion imbalance and small object segmentation methods to ensure accurate segmentation.

To further improve the segmentation performance of deep neural networks in tissue

lesions, many scholars have performed much research on networks with different network

architectures [8]. These models reached performance levels similar to those of experienced

radiologists. Wang et al. [9] proposed a central focus convolution neural network (CF-CNN),

which combines two-dimensional and three-dimensional CT images to obtain diverse combi-

nations of nodal features, allowing it to achieve good pulmonary nodule segmentation accu-

racy from CT images. Its best segmentation result was a Dice similarity coefficient (DSC) of

0.82. Kopelowitz and Engelhard [10] proposed a three-dimensional feature extraction strategy

using Mask-RCNN, which can extract three-dimensional pulmonary nodule features from CT

images, which are subsequently used to recognize and segment pulmonary nodules. Jin et al.

[11] proposed a three-dimensional hybrid residual attention perception segmentation method,

RA-UNet, to accurately extract liver interest volume (VOI) and segmented tumours from liver

interest volume by introducing a residual learning mechanism to realize the extraction and

combination of a low-level feature map and a high-level feature map. Li et al. [12] proposed a

new hybrid DenseUNet (H-DenseUNet), which consists of 2D DenseUNet for efficient extrac-

tion of on-chip features and a 3D counterpart for layered aggregation volume context in the

spirit of automatic context algorithms. The in-chip representation and interchip features can

be optimized by a mixed feature fusion (HFF) layer. The liver tumour segmentation perfor-

mance of the network was tested on the LiTS17 dataset, and a dice global value of 82.4 was

obtained, which was better than that of the first place in the LiTS17 competition with a dice

global value of 81.3. Although these methods have reached a new height in terms of perfor-

mance in tissue lesion segmentation, the generalization ability of neural network models is still

relatively weak due to the lack of effectively annotated training data.

Class imbalance in datasets is another common problem in deep learning. To solve this

problem, Wang et al. [13] proposed a new mean square error loss function that effectively and

simultaneously catches classification errors for both the majority and minority classes. This

error loss function effectively improved model accuracy on unbalanced datasets. Khan et al.

[14] proposed a cost-sensitive deep neural network that jointly optimizes the class-related

costs and neural network parameters during training to automatically learn robust features for

both the majority and minority classes. This approach improves the classification accuracy

without changing the distribution of the original data. Wang et al. [15] developed a novel fine-
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grained classification method for CT pulmonary nodules that used a generative adversarial

network (GAN) to enhance the features of pulmonary nodules and ameliorated data category

imbalances. However, training the GAN itself requires considerable training data, generating

the trained GAN requires complex iterations, and the model can easily fall into a local opti-

mum. Fortunately, in machine learning, oversampling is the most widely used method to alle-

viate class imbalance. Mateusz et al. [16] proved that oversampling to alleviate category

imbalances is a suitable technique for deep learning. Kisantal et al. [17] proposed a method to

improve the network performance in object recognition and segmentation by oversampling

small objects. This method improved both the segmentation and recognition accuracy of small

objects by 9.7% and 7.1%, respectively, on the common objects in the context (MS COCO)

dataset. Yang et al. [18] also proposed a data augmentation method and applied it to small-tar-

get segmentation in automatic driving scenes. Continuously oversampling the small-size

objects with a boundingbox less than 32 × 32 pixels increases the frequency of small targets in

the image, which might lead to an increase in the probability of more accurate small target seg-

mentation. However, these methods are not suitable for target segmentation problems with

only small amounts of data samples.

Many scholars have conducted a large number of studies to alleviate category imbalance,

but these studies are all conducted with a large number of samples or with large target objects.

However, the lack of training data and category imbalance are common problems in medical

image segmentation. In this paper, we proposed a new method for data augmentation when

data are lacking and the dataset categories are imbalanced. The main contributions are as

follows:

1. We propose a data augmentation method combining multiple oversampling and affine

transformation values. This method can increase the data diversity of the target object in

the data and improve the segmentation accuracy.

2. It is proposed to increase the number of small targets in the same image by means of

repeated sampling, which can improve the problem of category imbalance in the data, so as

to improve the ability of network segmentation of small targets.

3. By re-training the existing U-Net, SegNet, DeepLabv3 + and Mask-RCNN models on our

synthetic datasets, we obtained the best pixelwise segmentation performance for both pul-

monary nodules and liver tumours was obtained by the Mask-RCNN model, with DSC val-

ues of 0.829 and 0.879, respectively.

Materials and methods

Dataset

To evaluate the impact of the proposed data augmentation method on the performance of the

deep neural network, two open medical datasets were selected for the experiment: (1) Lung

Nodule Analysis—ISBI 2016 Challenge (LUNA16) [19] and (2) MICCAI-2017 Liver Tumor

Segmentation Challenge (LiTS17) [20].

1. LUNA16, an international public dataset, is a subset of the largest publicly available pulmo-

nary nodule baseline database, LIDC-IDRI [21]. This dataset contains a total of 888 chest

CT images with 1,186 annotated pulmonary nodules larger than 3 mm in size. The slice

thickness of all chest CT images was less than 2.5 mm, and the pixel resolution of each slice

was 512×512. The pulmonary nodules in each image were annotated by four experienced

radiologists.
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2. The LiTS17 dataset contains 131 and 70 contrast-enhanced 3D abdominal CT scans for

training and testing, respectively. The dataset was acquired by different scanners and proto-

cols from six different clinical sites, with a largely varying in-plane resolution from 0.55

mm to 1.0 mm and slice spacing from 0.45 mm to 6.0 mm. The dataset provides ground

truth for liver and liver tumours of 131 training data and 70 testing data.

The CT data provided by the above two data sets are three-dimensional data, and the train-

ing data used in this paper is two-dimensional data. we slice the z-axis to obtain the training

image. 1186 lung nodule images and 201 liver tumor images are obtained from LUNA16 and

LiTS17 respectively by the above method, and the obtained images are divided into training

set and test set in an 8:2 manner. Therefore, the number of training sets and test sets of pulmo-

nary nodules is 949 and 237 respectively. The number of training sets and test sets of liver

tumors were 161 and 40 respectively.

Methods

Fig 1 shows the framework of data augmentation based on multiple oversampling fusion for

medical image segmentation. In this section, we introduce the data preprocessing and data

augmentation methods in detail.

Data preprocessing

For medical image volume, Hounsfield units (HU) are measurements of relative density deter-

mined by CT images. The HU value ranges from -1000 to 4069. Table 1 shows Hu values for

common organs and typical objects. Because the surrounding bones, air or irrelevant tissues

may interfere with the segmentation results, the initial segmentation method is used to filter

these irrelevant objects to keep the corresponding tissues clean and segmented. In radiological

imaging, such as CT, a window width filter is often used to remove the HU value of unneces-

sary tissues. The main steps are as follows: Firstly, we set the Hu value in the corresponding

interval of different tissues. The window width of lung tissue is set to [–1000,250], and that of

liver tissue is set to [–100,250]. Most of the unrelated tissues and organs were removed after

treatment, as shown in Fig 2. Secondly, due to the relatively fixed position of human tissues,

according to the ground truth of lung parenchyma and liver tissue regions provided by the

dataset, the smallest external square was used to intercept the corresponding tissues and

enlarge their size to 512×512. Then the images were normalized to ensure that the pixel values

range from 0 to 1.

Augmentation method

In CT images, tissue lesion areas only account for a small part of the overall image. The back-

ground pixels of the image are much larger than the pixels of the tissue lesion, resulting in a

serious imbalance in the category, as shown in Fig 3. For example, in LUNA16, the ratio of pix-

els for background and pulmonary nodules, which is less than 3 mm, is only 98.2:1.8, and in

the 20 mm pulmonary nodules, the ratio of pixels for background to pulmonary nodules is

93.3:6.7. However, in LiTS17, the ratio of background to liver tumour is 89.2:10.8. This kind of

category imbalance is not conducive to network learning, so the network learns more catego-

ries of information, resulting in the final discrimination results being biased towards

categories.

Oversampling. To address the imbalanced class problem in datasets, a method of ran-

domly oversampling the tissue lesion samples within a single image was proposed, and the

method improved both the number of samples and the pixel proportion of tissue lesions in the
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image. The specific implementation process is as follows: a segmentation mask of tissue lesions

obtained by the previous label is constructed using the original tissue lesion locations and

combined with the segmentation mask of the organ region provided by the dataset. This

ensures that the tissue lesions will be oversampled within the organ region. Additionally, it

ensures that new samples do not overlap with any existing samples and are at least 5 pixels

away from the image boundary. Some examples of LUNA16 and LiTS17 are shown in Fig 4.

Table 1. HU values of typical objects and organs.

objects HU values

bone >400

blood 7~32

liver 40~70

water 0±5

air -1000

https://doi.org/10.1371/journal.pone.0274522.t001

Fig 1. The framework of the proposed small tissue lesions segmentation method.

https://doi.org/10.1371/journal.pone.0274522.g001
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Different from the oversampling where a new object is obtained by synthesizing two different

lesion regions, the proposed random oversampling strategy aims to increase the number of

lesion regions in the image using a similar repeated sampling original sample mode.

Geometric transformation:. Geometric transformation of image is the most commonly

used data expansion method in image classification and segmentation tasks. It can effectively

increase the diversity of samples in the training set. It is an effective method to solve the over-

fitting of network models. The geometric transformation of images includes translation, rota-

tion, scaling, mirroring, etc. Suppose i and j are coordinates in the image S, the rotation and

mirror image can be expressed by the Formulas (1) and (2), respectively:

i0 ¼ icosy � jsiny

j0 ¼ isinyþ jcosy

(

ð1Þ

i0 ¼ i

j0 ¼ N � jþ 1
or

i0 ¼ M � iþ 1

j0 ¼ j

8
<

:

8
<

:
ð2Þ

Where M and N denote the width and height of the image S, respectively. The scaling of the

image needs to be realized by reducing or increasing the pixels of the image. Image reduction

will reduce the number of pixels in the image, and it is usually necessary to sample the image

to ensure that the image will not be distorted. On the contrary, the enlargement of the image

will increase the pixels of the image, and the increased pixels will be filled by the difference.

Multiple oversampling fusion. To address the imbalanced class problem in datasets, a

multiple oversampling fusion augmentation Method is proposed, which improves the number

of samples and pixel ratio of tissue damage in the image. The specific process is shown in Fig 5.

Fig 2. Samples of image after preprocessing. (a) Original image of LUNA16. (b) Fig (a) after preprocessing. (c)

Original image of LiTS17. (d) Fig (c) after preprocessing.

https://doi.org/10.1371/journal.pone.0274522.g002

Fig 3. Distribution of tissue lesions in CT images. (a) and (b) are pulmonary nodules, and (c) and (d) are liver

tumours.

https://doi.org/10.1371/journal.pone.0274522.g003
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Using the original tissue damage location and combining with the segmentation mask of the

organ region provided by the dataset, the segmentation mask of the tissue damage obtained by

the previous tag is constructed. The extracted tissue lesion region is used. This ensures that the

sampled object conforms to the prior knowledge, that is, the tissue lesion must be located on

the corresponding tissue. Therefore, we randomly paste the sampled object into the tissue and

ensure that it is at least 5 pixels away from the image boundary. In order to increase the diver-

sity of samples, we randomly rotate, enlarge and mirror the sampled objects before placing

them in the tissue area. Using this method, the original lesion images from the training set are

used to increase the total number of lesion objects in the training set, but not increase the total

number of training images. Some examples of LUNA16 and LiTS17 are shown in Fig 6. The

Fig 4. Examples of oversampling. (a) and (c) show the original images of pulmonary nodules, while (b) and (d) show

postsampling examples corresponding to images (a) and (c) the sampling rate in these examples was set to 4.

https://doi.org/10.1371/journal.pone.0274522.g004

Fig 5. Specific process of multiple oversampling fusion augmentation method.

https://doi.org/10.1371/journal.pone.0274522.g005

Fig 6. Samples of multiple oversampling fusion augmentation method. (a) original image of pulmonary nodule

image, (b) is the result of (a) using fusion oversampling, (c) original image of liver tumor image, and (d) is the result of

(c) using fusion oversampling. (a red circle represents the original lesion area, a yellow circle represents mirrored and

rotated lesion area, a blue circle represents magnified and rotated lesion area, and a green circle represents magnified

and mirrored lesion area).

https://doi.org/10.1371/journal.pone.0274522.g006
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concrete implementation of the proposed data augmentation method is described in

Algorithm 1.
Algorithm 1 Multiple Oversampling Fusion augmentation method.
INPUT: Dataset D, Image without lesions I, area of organ A, Sampling
ratio m
OUTPUT: synthetically generated image I�

1: for i < m do
2: Si = Random get lesion sample for D
3: θ = Rand (0, π)
4: Hi = Rotate (Si, θ)
5: ω = Rand (0.5, 2.0)
6: Mi = Enlarge (Hi, ω)
7: Ki = Mirror (Mi, τ) #τ represents horizontal mirror or vertical
mirror
8: (w, h) = Random coordinates in the image I
9: if (w, h) 2 A then
10: Ui = (w, h, w+x, h+y) #x, y represent the width and height of Ki,
respectively
end
11: I� = I�[Ui
12: end for
13: return I�

Class weight balancing. Through the multiple oversampling fusion augmentation

method, the class imbalance in the data set can be improved to a certain extent, but the pixels

of the background in the image are still much higher than the pixels of the lesion object. In

order to further offset the imbalance of categories in the data set, we assign a larger weight to

the labels with a smaller total number and a smaller weight to the categories with a larger total

number.

If the number of pixels in a particular class is denoted as Nc, where c corresponds to back-

ground and lesion. Hence, Nc is (1×2) array. Let T represent the total number of pixels in the

images, then the (1×2) array of image frequency, Fc, of a class is the ratio of Nc to T given by:

Fc ¼
Nc

T
ð3Þ

From here, the (1×2)-array of class weight, Wc, for a set of training data can be calculated

by finding the ratio of median of Fc to Fc:

Wc ¼
medianðFcÞ

Fc
ð4Þ

Histograms of pixel distribution of LUNA16 and LiTS17 dataset, before and after applying

class weighting approach, are shown respectively in Figs 7 and 8.

Network architecture and loss function

Network architectures. We selected four segmentation models to evaluate the compara-

tive performance in medical image segmentation: Mask-RCNN, U-Net, SegNet and Dee-

pLabv3+. These four models were selected because they have yielded excellent performance in

other applications, including road scenes, biomedical images, and natural image segmentation.

Each deep neural network is briefly described below.

Mask-RCNN [22] was developed based on the Faster RCNN model and adds an ROI Align

layer and a fully convolutional network (FCN) [23]. Mask-RCNN splits classification predic-

tion and mask prediction into two network branches. Each binary mask produced by the mask
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prediction branch depends on the classification prediction result based on the separation of

objects at that moment. Mask-RCNN uses the ROI Align layer to uniformly define the ROI

size and then inputs it into the two classifier branches. The Faster RCNN network is used for

category and position prediction, while the FCN network is used for pixel-level segmentation.

The specific architecture of Mask-RCNN is shown in Fig 9.

U-Net [24] has been widely used in medical image segmentation since it was proposed.

This is because it can work and produce better segmentation performance when few training

images are available. The network is composed of an encoder decoder network, and each layer

is connected by skip connections. The encoder uses a convolution layer to extract feature maps

from the input image, while the decoder performs upsampling to recover the image resolution

Fig 7. Pixel distribution of (a) original images and (b) after class weighting for the LUNA16 dataset.

https://doi.org/10.1371/journal.pone.0274522.g007

Fig 8. Pixel distribution of (a) original images and (b) after class weighting for the LiTS17 dataset.

https://doi.org/10.1371/journal.pone.0274522.g008

Fig 9. The detailed architecture of the Mask-RCNN.

https://doi.org/10.1371/journal.pone.0274522.g009
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from the encoder feature maps. The whole architecture consists of four convolution layers.

After each downsampling, the number of filters is doubled. Correspondingly, the upsampling

stage and the two convolution operations are repeated four times; in each stage, the number of

filters is halved. Before the merging operation, the feature mapping information from the con-

volution operation of the encoder is transmitted to the decoder. Skip connections between

encoder and decoder networks help to recover information lost during pool operations.

Finally, the final segmentation result is obtained by 1 × 1 convolution. The specific architecture

of U-Net is shown in Fig 10.

SegNet [25] is a pixelwise segmentation technique that was first developed for outdoor and

indoor scene understanding. The network architecture is composed of a forward connected

encoder based on a visual geometry group architecture, an untrained layer, a group of corre-

sponding decoders and a pixel-level classifier. To make the model suitable for efficient embed-

ded systems, the designers removed the full connection layer and reduced the network

parameters from 134M to 14.7M. The maximum pooling and subsampling operations reduce

the resolution of feature mapping and output, which leads to the poor performance of the net-

work applied to pixel segmentation. To solve the problem that the resolution of the input

image is different from that of the output image, SegNet uses the stored pool index to upsam-

ple the low-resolution feature map. This not only improves the ability of the network to obtain

boundary information but also reduces the number of parameters that must be trained. The

specific architecture of SegNet is shown in Fig 11.

Fig 10. The detailed architecture of the U-Net.

https://doi.org/10.1371/journal.pone.0274522.g010

Fig 11. The detailed architecture of the SegNet.

https://doi.org/10.1371/journal.pone.0274522.g011
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DeepLabV3+ [26] is a semantic segmentation network with encoder–decoder. This archi-

tecture is characterized by the use of atrous or dilated convolution and atrous spatial pyramid

pooling (ASPP). DeepLabV3+ used the Xception model as the backbone and replaced the

maximum pooling layer with a depthwise separable convolution to maintain the spatial resolu-

tion of the output feature map. In contrast to using standard convolution, deep separable con-

volution is used, which divides the operation into depthwise convolution and point

convolution. Feature maps are obtained by applying depthwise convolution to each input

channel, which performs separable convolution using zeros placed in continuous filters. The

output of depthwise convolution is accumulated by utilizing pointwise convolution. The spe-

cific architecture of DeepLabV3+ is shown in Fig 12.

Loss function

It is common for tissue lesions to occupy only a very small area in medical images. This usually

leads to the learning process falling into the local minimum of the loss function, resulting in a

network whose prediction is strongly biased towards the background. We adopted the

weighted cross-entropy (WCE) loss function for the CNNs because this loss assists the network

in differentiating between background and tissue lesions. The WCE loss function penalizes

each class based on its median frequency, which is formulated as follows:

WCE ¼ �
1

n

Xn

i¼1

Wc;i TilogPi þ ð1 � TiÞlogð1 � PiÞ½ � ð5Þ

This sum is executed for all the training images, n. The variable Pi is the predicted segmenta-

tion class, Ti is the target or the ground truth segmentation label, and Wc,i is the class weight

calculated from Eq (4).

Evaluation metrics

Precision (P), Recall (R), Dice similarity coefficient (Dice) and Volumetric Overlap Error

(VOE) metrics are used to evaluate the segmentation performance of the different models.

DSC is a widely used metric for measuring the overlap between two segmentation results.

VOE indicates the error rate of the segmentation result. They are defined as follows:

P ¼
TP

TP þ FP
ð6Þ

Fig 12. The detailed architecture of the DeepLabV3+.

https://doi.org/10.1371/journal.pone.0274522.g012
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R ¼
TP

TP þ FN
ð7Þ

Dice ¼
2TP

2TPþ FPþ FN
ð8Þ

VOE ¼ 1 �
TP

TP þ FP þ FN
ð9Þ

where TP, FP and FN represent the number of true positive, false positive, and false negative

samples, respectively. In order to verify the performance of each algorithm, we used 10-fold

cross validation to train and test the model. All the following results are presented as

mean ± standard deviation (mean ± std).

Experiments and results

Experimental parameter settings

For this experiment, we developed the code for our method using Keras, and the models were

implemented in Python. The models were executed on a computer equipped with an Ubuntu

16.04 operating system, 32 GB of memory, an Intel Core i7-8700k (3.7 GHz) CPU, and a

GeForce RTX 2080ti GPU (with CUDA 10.1 and 11 GB of memory). We selected the Adam

optimizer as the network optimization algorithm. The learning rate was set to 0.0001. The

minimum batch size was set to 2. The number of training iterations for each network was lim-

ited to 5000. The experiment assesses the influence of different data augmentation methods on

the four networks and uses the test results of each network without data augmentation as the

reference value for the corresponding network.

Augmentation technique analysis

To verify the influence of the data augmentation method proposed in this paper on the perfor-

mance of network segmentation. We compared the segmentation performance of the four net-

works with and without data augmentation training on LUNA16 and LiTS17, and the results

are shown in Tables 2 and 3, respectively. no-aug, mof-aug represent no augmentation and

multiple oversampling fusion augmentation respectively. We used a 10-fold stratified cross

validation strategy to test all algorithms, in which each image appeared once in the test set over

all folds. All results are multiplied by 1000 and the bold font highlights the best results.

Table 2. Performance of pulmonary nodules segmentation on LUNA16 data sets.

Models Methods LUNA16

P R Dice VOE

Mask-RCNN no-aug 745±68 664±61 702±70 459±59

U-Net 731±54 790±51 759±50 388±60

DeepLabV3+ 755±55 693±57 723±71 434±58

SegNet 725±58 752±63 738±56 415±61

Mask-RCNN mof-aug 806±51 854±49 829±45 292±43

U-Net 819±53 806±51 812±48 316±45

DeepLabV3+ 830±49 769±56 798±52 336±51

SegNet 803±53 831±59 817±55 309±49

https://doi.org/10.1371/journal.pone.0274522.t002
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Tables 2 and 3 shows the results of segmentation performance of all algorithms. The results

show that the multiple oversampling fusion augmentation technique is capable of segmenting

lesion area with high performance compared to the other techniques.

Results of calculation efficiency

The running time of implementing different methods on the testing data is shown in Table 4.

It can be seen from the table that the running speed of U-Net is the fastest, and its running

speed can reach 1.53 fps. Next are SegNet, Mask-RCNN and DeepLabV3+, whose running

speeds are 1.42 fps, 1.24 fps and 1.09 fps, respectively.

Comparison with other methods

To illustrate the effectiveness of this method, we compared the results with other methods. we

used the best performing model from Tables 2 and 3, namely the Mask RCNN model. We

tested three different training configurations of Mask RCNN to evaluate their performance in

more detail: (1) training using translate, rotate and dilate data augmentation(t-aug), (2) Sam-

plepairing data augmentation (sp-aug) [27], (3) mixup data augmentation (mix-aug) [28], (4)

training using multiple oversampling fusion augmentation(mof-aug). For fairness of compari-

son, we expanded the number of images in the training set of each method to the same num-

ber. We used a 10-fold stratified cross validation strategy to test all algorithms, in which each

image appeared once in the test set over all folds. The results are shown in Table 5. All results

are multiplied by 1000 and the bold font highlights the best results. According to the experi-

mental results shown in Table 5, the proposed method is superior to the existing augmentation

methods.

To allow a visual comparison of different approaches, the segmentation results are given in

Fig 13. We show the segmentation results of different size lesions on LUNA16 and LiTS17 test

sets for visual comparison. For large-scale objects, all methods can ensure good segmentation

accuracy. However, when segmenting small-sized lesions, t-aug and ap-aug may miss

Table 3. Performance of liver tumor segmentation on LiTS17 data sets.

Models Methods LiTS17

P R Dice VOE

Mask-RCNN no-aug 754±65 717±58 735±68 419±61

U-Net 747±60 786±55 766±51 379±59

DeepLabV3+ 711±54 789±56 748±67 403±63

SegNet 760±63 726±61 743±65 409±57

Mask-RCNN mof-aug 859±48 901±51 879±40 215±39

U-Net 861±50 824±50 842±44 273±42

DeepLabV3+ 827±47 839±53 833±47 286±48

SegNet 852±49 805±55 828±45 294±50

https://doi.org/10.1371/journal.pone.0274522.t003

Table 4. The running time of different methods in segmenting lesion.

Models Parameters FPS(fps)

Mask-RCNN 39.1M 1.24

U-Net 28.8M 1.53

DeepLabV3+ 41M 1.09

SegNet 29.4M 1.42

https://doi.org/10.1371/journal.pone.0274522.t004
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segmentation, and method 1 may recognize pulmonary vessels as pulmonary nodules. The

implementation of Samplepairing is very simple. The pixels of two pictures are added directly

to average, and the supervised label is unchanged. This increases data diversity and also intro-

duces noise. So the lifting effect of this method is very limited. Mix-aug can recognize and seg-

ment it, but there is a large gap between the segmentation accuracy and the real value. This

method can accurately identify small target objects, and the segmentation accuracy is obvi-

ously better than that of mix-aug.

Performance comparison with state-of-the-art

To illustrate the efficiency of the proposed method, we compared the results with those of

other methods. Two different comparisons are provided: (1) We compared the network with

the best segmentation performance (Mask-RCNN) achieved with the recently proposed seg-

mentation methods. (2) We selected the network with the best performance at present to

expand the training data with the method proposed by us and compared the impact on net-

work performance before and after dataset augmentation.

Table 5. Performance of lesion segmentation on LUNA16 and LiTS17 data sets.

Models LUNA16 LiTS17

P R Dice VOE P R Dice VOE

Mask-RCNN t-aug 698±59 783±61 738±64 415±51 785±64 781±63 783±68 357±56

Mask-RCNN sp-aug 792±53 736±52 763±57 383±47 805±55 844±53 824±53 299±44

Mask-RCNN mix-aug 758±55 795±57 776±60 366±49 854±53 826±57 837±55 276±43

Mask-RCNN mof-aug 806±51 854±49 829±45 292±43 859±48 901±51 879±40 215±39

https://doi.org/10.1371/journal.pone.0274522.t005

Fig 13. A visual comparison of the lesion segmentation results. (a)t-aug. (b)sp-aug. (c)mix-aug. (d)mof-aug. The red

and green contours denote the ground truth and the segmentation results, respectively.

https://doi.org/10.1371/journal.pone.0274522.g013
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Tables 6 and 7 show the segmentation performance of other methods and our work on pul-

monary nodules and liver tumours, respectively. Our work cannot be directly compared with

other methods due to the different datasets, pretreatment methods and training data volumes

used. If we only consider the final segmentation result (DSC value), the best performance in

pulmonary nodule segmentation was demonstrated by CoLe-CNN, proposed by Pezzano et al.

[29] with a DSC value of 0.829±0.054. The network with the best liver tumour segmentation

performance was MS-UNET proposed by Kushnure et al. [30], with a DSC value of 0. 889

±0.051 Mask-RCNN trained by using the proposed method can achieve 0.829±0.045 and 0.879

±0.04 in the segmentation of pulmonary nodules and liver tumours, respectively. By compari-

son, the segmentation performance of Mask-RCNN trained by the proposed method after data

augmentation is comparable to that of the existing optimal segmentation network. It can be

seen from the above that the best lesion region segmentation effect is obtained on mask RCNN

using the data augmentation method proposed in this paper.

Discussion

Automatic lesions segmentation plays an important role in cancer diagnosis. It provides the

precise contour of the lesions inside the anatomical segments of the organ, which assists doc-

tors in the diagnosis process. However, lack of training data and imbalance of classes are com-

mon problems of medical data. In this paper, a multiple oversampling fusion data

augmentation method be proposed to solve the problem of data shortage and classes imbal-

ance. With a variety of synthetic data generation techniques we use the lesion region of the

original data to augment the data for training the deep neural network. Benefiting from data

generation strategy of oversampling we showcased the efficiency of the technique in compari-

son with other data augmentation.

To show the generalization capability of our method in the clinical practice. We compare

the segmentation performance before and after using our proposed data augmentation on four

Table 6. Comparison of our work to pulmonary nodule segmentation state-of-the-art methods. All results are multiplied by 1000 and the bold font highlights the best

results.

Work Year Dataset Network DSC

Wang et al. [9] 2017 LIDC-IDRI CF-CNN 793±91

Shen et al. [31] 2017 LIDC-IDRI MC-CNN 788±82

Sun et al. [32] 2017 LIDC-IDRI MCROI-CNN 802±74

Havaei et al. [3] 2017 LUNA16 Cascaded-CNN 818±78

Cao et al. [33] 2020 LIDC-IDRI DB-ResNet 827±62

Pezzano et al. [29] 2021 LUNA16 CoLe-CNN 829±54

Our work LUNA16 Mask-RCNN 829±45

https://doi.org/10.1371/journal.pone.0274522.t006

Table 7. Comparison of our work to liver tumour segmentation state-of-the-art methods. All results are multiplied by 1000 and the bold font highlights the best

results.

Work Year Dataset Network DSC

Jin et al.[11] 2020 LiTS17 RA-UNet 719±81

Qin et al.[34] 2018 LiTS17 SBBS-CNN 740±73

Li et al.[12] 2018 LiTS17 H-DenseUNet 831±53

Seo et al. [35] 2020 LiTS17 Modified U-Net 856±48

Kushnure et al. [30] 2021 LiTS17 MS-UNet 889±51

Our work LiTS17 Mask-RCNN 879±40

https://doi.org/10.1371/journal.pone.0274522.t007
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common deep convolution neural networks. The results show that the segmentation accuracy

of the trained network model is improved after the data augmentation on LUNA16 and

LiTS17. There may be two reasons for this. First, the integrated oversampling data augmenta-

tion method is helpful to improve the imbalance classification of the dataset, which makes the

decision threshold shift to the major category and improves the discriminant ability of the net-

work. Second, oversampling and affine transformation increase the diversity of training data.

They can also change the class distribution and sample number of the dataset. As shown in

Tables 2 and 3, the best segmentation performance is obtained on Mask-RCNN, whether

LUNA16 or LiTS17. This is closely related to the network structure and training strategy of

Mask-RCNN. Mask-RCNN is composed of two parts: a regional suggestion network and an

ordinary CNN network. In practice, it is easy to miss smaller tissue lesions in the process of

identification and matching, so the performance of the whole network is affected. The multiple

oversampling fusion augmentation method increases the number of samples in the same

image, which can effectively reduce the probability of missing small target objects in the pro-

cess of network training. In the training process, more anchors are matched with the training

samples (as shown in Fig 14), thus improving the network segmentation performance for

small target objects [17].

It can be seen from Tables 2 and 3 that the proposed data augmentation method achieves

different improvement effects on LUNA16 and LiTS17 dataset. Probably because the morpho-

logical diversity and complexity of lung nodules is significantly higher than that of liver

tumours, as shown in Fig 15. It might be hard to guarantee a full coverage of all possible types

of lung nodules. Meanwhile, most of the liver tumours were larger in size than those of the

Fig 14. Schematic diagram of anchor frame matching with pulmonary nodules. (a) Anchor frames that matched

images of pulmonary nodules in the baseline training set. (b) Anchor frames that matched images of pulmonary

nodules in the training set after random oversampling.

https://doi.org/10.1371/journal.pone.0274522.g014

Fig 15. The images of lung nodules and liver tumors. (a) images of lung nodules. (b) Liver tumor image.

https://doi.org/10.1371/journal.pone.0274522.g015
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lung nodes. We analyze the effectiveness of the proposed method for different size lesions. The

results are shown in Table 8. We can observe that the proposed method obtains a better perfor-

mance improvement for the large lesions than the small lesions. The number of small lung

nodules in LUNA16 dataset was significantly higher than that of small liver tumours. There-

fore, the performance of the network on LiTS17 dataset will be better than that on LUNA16

dataset. In the future, we will focus on the segmentation for small lesions. Recently, generative

adversary network (GAN) has been proposed for small object detection and classification. For

example, Li et al. [36] generated a super-resolution representation of small objects by finding

the intrinsic structural correlation between small-scale and large-scale objects, which may also

be a potential direction to deal with this challenging problem.

Conclusions

In this study, we propose a multidimensional data augmentation method that combines affine

transform and random oversampling strategy to address the segmentation problem of unbal-

anced data distributions. Our main conclusions are as follows:

1. Compared with the other data augmentation method, the multiple fusion oversampling

data augmentation method proposed in this paper has a good effect on small target segmen-

tation in the case of unbalanced sample distribution. The experiments on the common

datasets LUNA16 and LiTS17 further prove that the proposed data augmentation method

can effectively improve the performance of different network models in tissue damage seg-

mentation. The best pixelwise segmentation performance for both pulmonary nodules and

liver tumours was obtained by the Mask-RCNN model, with DSC values of 0.829 and 0.879,

respectively.

2. Compared with the latest CNN based technologies such as MS-Unet, CoLe-CNN and Mod-

ified U-net, it is proved that the Mask-RCNN trained through the multiple fusion oversam-

pling data augmentation method and class weight balancing has comparable performance

with them in lesion region segmentation. This can be attributed to its network combination

and Region Proposal strategy.
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