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Abstract: While boundary-driven acoustic streaming resulting from the interaction of sound, fluids
and walls in symmetric acoustic resonances have been intensively studied in the literature, the
acoustic streaming fields driven by asymmetric acoustic resonances remain largely unexplored. Here,
we present a theoretical and numerical analysis of outer acoustic streaming flows generated over a
fluid–solid interface above which a symmetric or asymmetric acoustic standing wave is established.
The asymmetric standing wave is defined by a shift of acoustic pressure in its magnitude, i.e., S0, and
the resulting outer acoustic streaming is analyzed using the limiting velocity method. We show that,
in symmetric acoustic resonances (S0 = 0), on a slip-velocity boundary, the limiting velocities always
drive fluids from the acoustic pressure node towards adjacent antinodes. In confined geometry where
a slip-velocity condition is applied to two parallel walls, the characteristics of the obtained outer
acoustic streaming replicates that of Rayleigh streaming. In an asymmetric standing wave where
S0 6= 0, however, it is found that the resulting limiting velocity node (i.e., the dividing point of
limiting velocities) on the slip-velocity boundary locates at a different position to acoustic pressure
node and, more importantly, is shown to be independent of S0, enabling spatial separation of acoustic
radiation force and acoustic streaming flows. The results show the richness of boundary-driven
acoustic streaming pattern variations that arise in standing wave fields and have potentials in many
microfluidics applications such as acoustic streaming flow control and particle manipulation.

Keywords: acoustic streaming; boundary-driven streaming; asymmetric resonance; acoustofluidics

1. Introduction

Acoustic streaming is the steady flow driven by acoustic energy dissipation in a viscous
fluid. The acoustic energy dissipation in a fluid could occur from two different mechanisms,
dissipation in the boundary layers and attenuation in the bulk of the fluid [1]. The resulting
streaming from the former case is known as boundary-driven acoustic streaming, which
is usually observed in standing wave fields near walls or suspended objects, while the
streaming produced by the latter case is called ‘quartz wind’ or Eckart streaming [2], which
is typically observed in the bulk of channels much larger than the acoustic wavelength [3].
Understanding the driving mechanisms of acoustic streaming and its variations is important
for the design of acoustofluidic devices to enhance or to suppress its effect for lab-on-a-
chip applications [4], such as heat and mass transfer enhancement, microfluidic actuation,
sensing, sonoporation and drug delivery, and particle manipulation.

In most micro-acoustofluidic systems of interest where standing waves are typically
generated, the acoustic streaming fields are generally dominated by boundary-driven
acoustic streaming. As early as 1787, the German physicist Chladni [5] observed that
randomly distributed fine particles on a vibrating metal plate could move to the antinodes,
which was later studied by Faraday [6], who found that it was due to air currents in the
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vicinity of the plate, i.e., the boundary-driven acoustic streaming. Theoretical analysis on
boundary-driven streaming was initiated by Rayleigh [7], who presented an analytical
solution for acoustic streaming between two infinite parallel plates in a one-dimensional
(1D) standing wave field. Rayleigh found that in the standing wave direction two streaming
vortices per half-wavelength could be generated in each half channel, which is now known
as outer acoustic streaming or Rayleigh streaming. After that, a series of modifications
have been developed for particular cases [8–14], which have paved the fundamental
understanding of acoustic streaming flows. While classical Rayleigh streaming patterns
have been widely studied in the literature, in the last decade, the mechanisms behind
some new (i.e., those that cannot be explained by Rayleigh’s classical theory) outer acoustic
streaming patterns have been explored, such as the transducer-plane streaming [15–17],
which generates streaming vortices in planes parallel to the driving boundary, and the
modal Rayleigh-like streaming [18], in which vortices have a roll size greater than the
quarter wavelength of the main acoustic resonance. These aforementioned analyses (and
others) on boundary-driven acoustic streaming, starting from Rayleigh to today, have
largely focused on those generated in fluid channels or surfaces of rectangular [19] or
circular [20] cross-sections where symmetric acoustic resonances (i.e., those with equal
magnitude of acoustic pressure crests and troughs) are excited.

In this work, we investigate the outer acoustic streaming fields near a fluid–solid
interface (FSI) by combining the basic theory of acoustofluidics and the limiting velocity
method. A generalized standing wave field either symmetric or asymmetric to the acoustic
pressure node is considered. We verify numerically the outer acoustic streaming in the
symmetric case with the classical theory of Rayleigh streaming, and discuss the outer acous-
tic streaming patterns in various asymmetric acoustic resonances. Our analysis of outer
acoustic streaming in asymmetric acoustic resonances elucidates fundamental physical
aspects and further has potential applications in micro- and nanoparticle manipulation.

2. Mathematical Model

In micro-acoustofluidics systems of particular interest where standing waves are
typically excited, the acoustic streaming field that has received more attention than any
other is that which arises from acoustic dissipation near FSIs, which, in most cases, could
disturb the movements of particles (especially those of nano size) induced by the acoustic
radiation force. Here, we aim to analyze and compare this type of acoustic streaming driven
by symmetric and asymmetric acoustic resonances. The basic acoustic streaming equations
have been presented in the Appendix A.

We assume that the time variation of each of the first-order acoustic quantities is
sinusoidal with ω, and let p1 (and the components of u1) be represented as the real part of
a complex value with time factor eiωt. Based on this relation, we consider here a generic
1D standing wave field in the x-direction, where the distribution of acoustic pressure is
given by

p1 = A0 sin(kx) + S0, (1)

here, k = 2π/λ is the wave number with λ being the acoustic wavelength, S0 (with
|S0| ≤ A0) is the magnitude of pressure shift, which could be potentially influenced by the
geometry of the fluid channel, and A0 is the acoustic pressure amplitude for the symmetric
case: A symmetric 1D standing wave field that has same magnitude of pressure peaks and
troughs is obtained for S0 = 0.

Here, outside the boundary layer, the first-order acoustic velocity is irrotational and
has only an x-component. Following the acoustic pressure distribution described in
Equation (1), the x-component first-order acoustic velocity field can typically be deter-
mined using the linearized Euler’s equation, i.e., ρ0∂u1/∂t +∇p1 = 0, and is given by

u1 =
iA0

ρ0c0
cos(kx), (2)
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where c0 is the sound speed in fluid. This equation is applicable to conditions where the
magnitude of the acoustic velocity is small compared with the sound speed in the fluid, i.e.,
|u1| � c0.

Here, for a 1D standing wave in the x-direction of fluid channel, since v1, w1 and their
derivatives are zero, the expression for the x-component limiting velocity (Equation (A12))
reduces to

uL = − 1
4ω

Re
{

u1
du∗1
dx

+ u∗1

[
(2 + i)

du1

dx

]}
, (3)

and the y-component limiting velocity vL ≡ 0. For a pure imaginary expression of acoustic
velocity derived in Equation (2), Equation (3) further reduces to uL = −(3/4ω)u∗1∂u1/∂x,
from which it can be seen that the direction of uL is that in which the magnitude of u1 de-
creases. Moreover, it also indicates that it is the product of the acoustic velocity and its spa-
tial gradient rather than either of them that determines the magnitude of limiting velocity.

Hence, by substituting Equation (2) into (3), the limiting velocity that drives the
outer acoustic streaming field for the generalized 1D standing wave case presented in
Equation (1) is obtained, which follows

uL = −
3A2

0

8ρ2
0c3

0
sin(2kx). (4)

It is interesting to notice that the limiting velocity that drives the outer acoustic
streaming field is independent of the pressure shift S0.

3. Results and Discussion

We now take up the outer acoustic streaming flows associated with a 1D standing
wave over a FSI, assuming a slip-velocity condition at the boundary. As shown in Figure 1a,
a FSI located at z = 0 was considered. We let the first-order acoustic pressure field be given
by Equation (1) in the near field of the FSI in the range −L/2 < x < L/2 (with λ = 2L and
x = ±L/2 are periodic conditions), which is constant in the z-direction.

The special case S0 = 0 was firstly considered. Without a pressure magnitude shift,
as plotted in Figure 1a, it presents a symmetric standing wave with equal magnitude of
pressure crests and troughs. The corresponding limiting velocity distribution over the FSI
was plotted in Figure 1b. It can be seen that the limiting velocity (and the outer acoustic
streaming presented below) and the acoustic pressure share the same location of nodes
(denoted by PN and SN, respectively). On the slip-velocity boundary (ubnd·t = uL, where
the subscript in ubnd indicates the velocity on the boundary), the limiting velocity points
from the pressure node to the adjacent antinodes (see arrows). As a result, continuous outer
streaming flows could be driven by the limiting velocities near the slip-velocity boundary
and for mass conservation (i.e., the total amount of fluid is constant) return flow must occur
and vortices could be formed in a confined chamber. Figure 1c shows the outer acoustic
streaming vortical flow when a slip condition (ubnd·n = 0) was applied to the top boundary
z = h. Two vortices per half acoustic wavelength were generated in the standing wave
direction (i.e., x), while the streaming vortex pattern in the z-direction is dependent on the
boundary condition in the far field in the z-direction (e.g., z = h), which could be a nonslip
(ubnd = 0), slip, slip-velocity or symmetric condition, determined by the configuration of
the real experimental acoustofluidic device. For example, in a rectangular channel which
contains another slip-velocity boundary at z = 2h (or a symmetric condition at z = h), two
outer acoustic streaming vortices (symmetric to z = h) could be generated between the two
parallel slip-velocity boundaries; that is, by symmetry a similar outer streaming pattern to
that presented in Figure 1c exists in the other half of the channel (in the range h < z < 2h).
This type of boundary-driven acoustic streaming generated between two parallel walls
which are at z = 0 and z = 2h in a symmetric 1D standing wave field is the well-known
Rayleigh streaming.
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Figure 1. Acoustofluidic fields in a symmetric one-dimensional acoustic resonance over a fluid–solid
interface (FSI). (a) Acoustic pressure magnitude |p1| for S0 = 0 over the FSI in a one-dimensional
standing wave field (red and blue for maximum and 0, respectively); (b) the limiting velocity field
uL (see Equation (4)) over the FSI; and (c) outer acoustic streaming in a confined fluid driven by the
limiting velocities of a half-wavelength standing wave. PN and SN represent locations of acoustic
pressure node and acoustic streaming node, respectively.

However, for the asymmetric cases, i.e., S0 6= 0, it was found that the acoustofluidic
effects and their relations could be vastly different. As shown in Figure 2, two cases with,
respectively, S0 = A0/2 and S0 = −A0/2 are presented and compared. It can be seen
that the resulting outer acoustic streaming (solved with slip-velocity boundary at z = 0
and a slip condition at the top boundary z = h) is identical for these two cases. Moreover,
although still two outer acoustic streaming vortices are generated in the half-wavelength in
the x-direction, it is interesting to notice that the acoustic streaming node (i.e., the dividing
point for limiting velocities) for both cases stays at the channel center rather than at the
pressure nodes, different from the situation seen in symmetric acoustic resonances. This,
however, is easy to understand from the expression of the limiting velocity; that is, the
explanation lies in the fact, to be demonstrated in more detail later, that the magnitude of
pressure shift S0 is unrelated to the distribution of the x-component limiting velocity (see
Equation (4)), which thus has no effect on the outer acoustic streaming pattern.

Figure 3 plots the distributions of various acoustofluidic fields for a particular case
S0 = A0/2, from which we aim to obtain further insight into the mechanism of boundary-
driven acoustic streaming and to illustrate why the location of limiting velocity nodes (or
outer streaming nodes) is independent of S0 in asymmetric acoustic resonances and how
it could affect acoustophoresis of particles in a microfluidic channel. The square-line in
Figure 3 plots the distribution of normalized limiting velocity in−L/2 < x < L/2, showing
that its node (value of zero or dividing point) locates at x = 0 (i.e., the center of the slip-
velocity boundary), which is explained by the term sin(2kx) in its expression. Moreover,
it is worthy of note that, as shown in Equation (4), this distribution is independent of
magnitude of pressure shift and thus is valid for any value of S0. This relation can also be
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obtained from alternative explanations. Since the derivative of p1 with respect to x does
not contain the term S0, both u1 (star-line in Figure 3) and du1/dx (triangle-line in Figure 3)
are independent of S0. The limiting velocity uL, which is proportional to the product of u1
and du1/dx (see Equation (3)), is zero when any of these two values reaches zero, and thus
we have uL ≡ 0 at the center x = 0 for zero value of sin(kx) in du1/dx (marked as SN in
Figure 3).

Figure 2. Outer acoustic streaming due to one-dimensional asymmetric acoustic resonances over
a fluid-solid interface (FSI). (a) S0 = A0/2; and (b) S0 = −A0/2. The background colors plot
normalized acoustic pressure magnitudes and the streamlines show outer acoustic streaming in a
confined fluid driven by the limiting velocities over the FSI. PN and SN denote locations of acoustic
pressure node and acoustic streaming node, respectively.

Figure 3. Distributions of the normalized acoustofluidic fields in a one-dimensional asymmetric half-
wavelength standing wave field (for S0 = A0/2, see Equation (1)) over a fluid–solid interface (FSI),
including the acoustic pressure p1 (asterisk-line), x-component acoustic velocity u1 (star-line) and its
derivative to x (triangle-line), x-component acoustic radiation force Fx (circle-line), and the limiting
velocity uL (square-line). PN, FN and SN indicate positions of nodes of pressure, acoustic radiation
force and limiting velocity (or acoustic streaming) on the slip-velocity boundary, respectively.

For the acoustic pressure and velocity distributions presented in Figure 3, the corre-
sponding distribution of x-component acoustic radiation force on suspending particles in
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water over the FSI was plotted in Figure 3 (circle-line), which was calculated using the
Gorkov potential [21],

Fx =
∂

∂x

{
4πr3

3

[
3
(
ρp − ρ0

)
2ρp + ρ0

Ekin −
(

1−
ρ0c2

0
ρpc2

p

)
Epot

]}
, (5)

where r (� λ) is particle radius, Ekin = ρ0|u1|2/4 and Epot = |p1|2/
(
4ρ0c2

0
)

are the time-
averaged kinematic and potential energy density, ρp and ρ0 are the density of the particle
and fluid, cp and c0 are the sound speed in particle and fluid. As shown, the acoustic
radiation force tends to move rigid particles towards the acoustic pressure node, which
is similar to the case seen in symmetric acoustic resonances. As known, in an acousto-
microfluidic channel, the combination of acoustic radiation force and acoustic streaming-
induced drag force plays a vital role in particle acoustophoresis. As discussed above, we
see spatial separation of acoustic radiation force and limiting velocities (or outer acoustic
streaming flows) in asymmetric acoustic standing wave fields, indicating that it should be
possible to build up different asymmetric acoustic resonances to obtain different groups of
acoustic radiation force and acoustic streaming-induced drag force.

4. Conclusions

We have demonstrated here that outer acoustic streaming flows driven by 1D sym-
metric and asymmetric standing wave fields near a FSI could behave very differently. The
results for symmetric acoustic resonances replicate the characteristics of Rayleigh streaming:
Nodes of acoustic pressure and limiting velocity (or outer acoustic streaming) share same
locations; that is, on a slip-velocity boundary which drives circulations of outer acoustic
streaming the direction of limiting velocity always goes from acoustic pressure nodes to
adjacent antinodes. For asymmetric acoustic resonances, it is interesting to notice that
acoustic streaming nodes on a slip-velocity boundary always locate at the channel center
wherever the acoustic pressure nodes are, enabling spatial separation of acoustic pressure
nodes and acoustic streaming flows. Asymmetric acoustic resonances could potentially
be generated in fluid channels where neighbor FSIs are not orthogonal (e.g., channels of
triangular or quadrilateral cross-section). In a fluid channel of irregular cross-section, the
acoustic pressure field may slightly vary in other directions (e.g., z) of the channel, which,
however, will not greatly affect the resulting acoustic streaming field. This is based on the
fact that it is the gradient of the acoustic velocity in the main standing wave direction that
determines the distribution of limiting velocities (and thus the location of acoustic stream-
ing vortices and the streaming velocity magnitudes), as described in Equations (A12) and
(A13). Therefore, although it is assumed here a 1D standing wave in the x-direction of the
fluid channel (which is perhaps the simplest case), the results presented here are applicable
for the analysis of outer acoustic streaming fields generated in asymmetric resonances in
other more complex structures or geometries. We anticipate that with precisely engineered
positions of nodes of acoustic pressure and streaming in microfluidic systems, desired
combinations of acoustic radiation and acoustic streaming-induced drag forces in a fluid
could be designed and obtained, which could provide versatile means for acoustofluidic
manipulation of micro- and nano-particles.
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Appendix A

We assume a homogeneous isotropic fluid in which the pressure, density and velocity
at any point in the fluid are given by p, ρ and u, and the continuity and momentum
equations for the fluid motion are, respectively,

∂ρ

∂t
+∇·(ρu) = 0, (A1)

ρ

(
∂u
∂t

+ u·∇u
)
= −∇p + µ∇2u +

(
µb +

1
3

µ

)
∇∇·u, (A2)

where µ and µb are the dynamic and bulk viscosity coefficients for the fluid, respectively.
To obtain, respectively, the acoustic and streaming equations, let us now introduce the

perturbation theory. It approximates that a steady second-order acoustic streaming flow
(absent without acoustic actuation) is superposed on the first-order acoustic velocity field.
Using the perturbation method, we can write the fluid density, pressure, and velocity in
the form

ρ = ρ0 + ρ1 + ρ2 + · · · , (A3)

p = p0 + p1 + p2 + · · · , (A4)

u = u1 + u2 + · · · , (A5)

where the subscripts 0, 1 and 2 represent the static (i.e., absence of acoustic excitation),
first-order and second-order quantities, respectively.

Substituting Equations (A3)–(A5) into Equations (A1) and (A2) and taking the first-
order into account, the continuity and momentum equations become

∂ρ1

∂t
+ ρ0∇·u1 = 0, (A6)

ρ0
∂u1

∂t
= −∇p1 + µ∇2u1 +

(
µb +

1
3

µ

)
∇∇·u1. (A7)

To obtain equations for acoustic streaming, we keep terms up to second order and
take the time average of the continuity and momentum equations. Equations (A1) and (A2)
are then turned into

∇·ρ1u1 + ρ0∇·u2 = 0, (A8)

− ρ0u1∇·u1 + u1·∇u1 = −∇p2 + µ∇2u2 +

(
µb +

1
3

µ

)
∇∇·u2, (A9)

where the upper bar X indicates time-average of X. The left-hand-side of Equation (A9)
represents the Reynolds stress force [1], which is generated by absorption of acoustic energy
due to the viscous effects of fluids and is determined once the first-order acoustic velocity
u1 is known.

In fluid channels of most acousto-microfluidic devices where standing waves are
generated, the acoustic streaming field is generally dominated by boundary-driven acoustic
streaming (when the Eckart type streaming [2] contribution is ignored), which results
from the acoustic energy dissipation in the thin boundary layer due to the presence of a
nonslip condition at the FSI. Furthermore, in most acoustofluidic devices working at MHz
frequencies, the thickness of boundary layer (i.e., size of inner acoustic streaming vortices),
expressed by δv =

√
2ν/ω with ν = µ/ρ0 and ω being the kinematic viscosity of fluid and

angular frequency, is typically much smaller than the channel dimensions (for example,
δv ≈ 0.53 µm for 1 MHz frequency), and thus usually only the acoustic streaming fields
outside the boundary layer (i.e., the outer acoustic streaming) are of interest.
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Outside the boundary layer, ρ1u1 is zero because ρ1 and u1 differ in phase π/2 for
plane standing waves; Equations (A8) and (A9) can thus be simplified to

∇·u2 = 0, (A10)

−∇p2 + µ∇2u2 = 0. (A11)

The Reynolds stress force term has also been dropped from Equation (A11) because,
in most cases, outside the boundary layer it can only set up hydrostatic stresses, but cannot
cause flow rotation in the bulk of the fluid in the absence of attenuation. These equations
can be applied to effectively solve the outer acoustic streaming fields when the limiting
velocity (the streaming velocity just outside the boundary layer, which is a function of the
first-order acoustic velocity field) is applied as a slip-velocity boundary condition.

The analysis of limiting velocities outside the boundary layer was initiated by Schlicht-
ing [8] and later modified by Nyborg [10] and Lee and Wang [12] to more generalized
cases. Typically, in three-dimensional Cartesian coordinates (xyz), the limiting velocities
are simply expressed by [15]

uL = − 1
4ω

Re
{

u1
du∗1
dx

+ v1
du∗1
dy

+ u∗1

[
(2 + i)∇·u1 − (2 + 3i)

dw1

dz

]}
, (A12)

vL = − 1
4ω

Re
{

u1
dv∗1
dx

+ v1
dv∗1
dy

+ v∗1

[
(2 + i)∇·u1 − (2 + 3i)

dw1

dz

]}
, (A13)

where uL and vL are the x- and y-components of limiting velocities over a flat surface that
is normal to z, ω is the angular frequency, the asterisk ∗ represents the complex conjugate,
i =
√
−1 is the imaginary unit, and u1, v1 and w1 denote, respectively, the x-, y- and

z-components of the acoustic velocity vector u1.
Ignoring the inner acoustic streaming, the modelling of outer acoustic streaming by

limiting velocities is known as the limiting velocity method, which is more computation-
ally efficient than the Reynolds stress method [19] and is suitable for three-dimensional
numerical modelling of boundary-driven acoustic streaming fields. In the last decade,
using the limiting velocity method, in symmetric acoustic resonances various types of
boundary-driven acoustic streaming patterns such as the classical Rayleigh streaming [22],
modal Rayleigh-like streaming [18] and transducer-plane streaming [17] in thin-layer glass
capillaries and Rayleigh-like streaming patterns in phononic crystals [23–25] have been
modelled and elucidated through numerical simulations.
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