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Abstract: Over the years, anthropogenic factors have led to cadmium (Cd) accumulation 

in the environment causing various health problems in humans. Although Cd is not a 

Fenton-like metal, it induces oxidative stress in various animal models via indirect 

mechanisms. The degree of Cd-induced oxidative stress depends on the dose, duration and 

frequency of Cd exposure. Also the presence or absence of serum in experimental 

conditions, type of cells and their antioxidant capacity, as well as the speciation of Cd are 

important determinants. At the cellular level, the Cd-induced oxidative stress either leads 

to oxidative damage or activates signal transduction pathways to initiate defence responses. 

This balance is important on how different organ systems respond to Cd stress and 

ultimately define the pathological outcome. In this review, we highlight the Cd-induced 

oxidant/antioxidant status as well as the damage versus signalling scenario in relation to Cd 

toxicity. Emphasis is addressed to Cd-induced pathologies of major target organs, 

including a section on cell proliferation and carcinogenesis. Furthermore, attention is paid 

to Cd-induced oxidative stress in undifferentiated stem cells, which can provide 

information for future therapies in preventing Cd-induced pathologies. 
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1. Introduction 

Cadmium (Cd) is considered to be of major concern for public health by the World Health 

Organization [1]. Agricultural and industrial activities have led to the entry of Cd into the soil and 

subsequently into ground and drinking water. Due to the highly soluble nature of Cd compounds as 

compared to other metals, they are readily taken up by plants resulting in storage in crops for food and 

feed production [2]. This high soil-to-plant transfer rate makes the diet, in general, the primary source 

of Cd exposure in humans [3]. Vegetables and cereals are the main source of dietary Cd. A lesser 

percentage of Cd is found in meat products [4] and fish, except for crustaceans and molluscs that 

accumulate large amounts from contaminated aquatic environments [4]. Other sources of Cd exposure 

include smoking, occupational exposure and house dust [5]. Exposure to Cd via house dust is, besides 

the food, a significant entry route in areas with Cd-contaminated soils [4]. Cadmium is a major 

component of tobacco due to the hyperaccumulating characteristics of Nicotiana tabacum, which lead 

to high leaf Cd concentrations independent of the soil-Cd content [6]. In general, the Cd content in 

tobacco leaves ranges between 1 and 2 μg/g dry weight resulting in 0.5–1 μg Cd/cigarette. 

Furthermore, the Cd oxide generated during smoking either is deposited in lung tissues or absorbed 

into the systemic blood circulation of smokers [6]. This gives smokers 4–5 times higher Cd levels in 

blood and 2–3 times greater amounts of Cd in their kidneys than non-smokers [6]. Occupational 

exposure to Cd takes place in industrial factories such as zinc (Zn) smelters, battery manufacturing and 

metal recovering factories, Cd refining companies, paint and pigment production units as well as via 

other anthropogenic factors like waste incineration and fossil fuel combustion. 

In addition to external factors, also intraspecies variation contributes to differences in the Cd body 

burden. Cadmium has a long biological half-time of 10–30 years in the human kidney, with women 

having a higher Cd body burden than men due to increased intestinal absorption of dietary Cd at low 

iron (Fe) stores [7]. Individual variations in Cd sensitivity and kidney Cd accumulation found in 

human population studies suggest that a considerable number of individuals may have toxic levels of 

Cd in their kidneys, despite the modest population mean values for Cd body burden [4]. Cadmium 

nephrotoxicity ensues at renal concentrations of 50 µg Cd/g wet tissue weight [4,7]. Although 

estimated dietary Cd intake varies widely in different countries [6], daily levels of Cd intake should be 

kept below 30 mg per person to be on a safer side [4]. 

The most important target organ for chronic low-level exposure to Cd is the kidney [8] and is 

reflected in proteinuria, calciuria, aminoaciduria, glycosuria and tubular necrosis [6]. Chronic low 

levels of Cd can lead to end-stage renal failure, deregulated blood pressure, diabetic complications and 

it also affects bone structure thereby leading to osteoporosis [6]. Chronic high levels of Cd exposure 

via oral ingestion, as was the case in Japan via contamination of rice fields, endemically led to the  

Itai-Itai disease. This contamination occurred as a result of irrigation with water polluted by Zn mine 

effluents located in the upper reaches of the Jinzu River basin [9]. The Itai-Itai disease is clinically 
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characterized by tubular and glomerular dysfunction, and bone injury consisting of a combination of 

osteoporosis and osteomalacia [9]. Furthermore, Cd is also associated with airway inflammation [10], 

cardiovascular diseases [11], diabetes [12], neurological diseases [13] and several different organ 

cancers [14]. 

Information on the underlying molecular mechanisms of Cd-induced pathologies is rather 

fragmentary, however multiple studies indicate that Cd exposure induces oxidative stress at the cellular 

level [15]. Therefore, the current review focuses on the central role for oxidative stress as an underlying 

mechanism in Cd-induced pathologies. In this regard, pathologies in differentiated (organ toxicity) and 

non-differentiated cells are distinguished and discussed in relation to Cd-induced oxidative stress. 

2. Cellular Mechanisms of Cd Toxicity: A Central Role for Oxidative Stress 

The exact mechanism by which Cd is accumulated in cells remains vague, but it is considered that 

deregulation of transition metal homeostasis and use of cellular transport systems dedicated to 

essential elements contributes to the cellular uptake mechanisms of Cd [16,17]. It is hypothesized that 

Cd uptake involves competition with calcium (Ca), Fe and Zn and makes use of their transport  

systems [18–20]. Once taken up enterally, Cd reaches the liver where it binds to metallothioneins 

(MTs), glutathione (GSH) and other proteins or peptides [21]. Metallothioneins induced upon Cd 

exposure can act as a “double-edge sword”. On one hand MTs bind to Cd, thereby detoxifying and 

removing it from the cellular environment. On the other hand, due to its thiol groups, MTs can 

scavenge reactive oxygen species (ROS) that are produced as a result of Cd-induced oxidative stress [22]. 

However, the latter results in Cd dissociation from MTs due to the corresponding decreased metal 

binding stability [15,23]. Intracellular Cd, in bound or unbound form, culminates in mitochondrial 

damage, and/or cell death [21]. Cadmium interferes with mitochondrial oxidative phosphorylation and 

in higher doses can inhibit basal respiration [24]. It also affects the regulation of mitochondrial genes 

such as Hsp60 that play a role in cell protection and programmed cell death [24]. Different modes of 

cell death associated with Cd toxicity are dose-dependent and include necrosis, apoptotic-like cell 

death as well as autophagy exhibited by different cell types [25]. In brief, it seems that sub-micromolar 

concentrations of Cd lead to proliferation or delayed apoptosis, intermediate concentrations of 10 µM 

Cd cause various types of apoptotic cell death, and very high concentrations (>50 µM Cd) lead to 

necrosis [25]. 

As Cd has no known useful function in humans, it evokes a number of cellular responses in which 

the cellular redox status plays a crucial role [15,26]. An overview on how Cd can disturb the redox 

balance is presented in Figure 1 and reviewed in Cuypers et al. [15]. In addition, it was demonstrated 

that oxidative stress could be part of early cellular responses affecting organ systems that ultimately 

lead to oxidative stress-induced pathologies (cfr. infra). It is therefore important to gather information 

on Cd-induced alterations on the cellular redox state and how this can lead to Cd-induced pathologies. 

As a non-fenton metal, Cd is unable to directly induce ROS [15]. However, indirectly, Cd induces 

oxidative stress by (1) a displacement of redox-active metals, (2) depletion of redox scavengers, (3) 

inhibition of anti-oxidant enzymes and (4) inhibition of the electron transport chain resulting in 

mitochondrial damage [15,21]. 
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Figure 1. Simplified overview of the components involved in cellular Cd-induced 

oxidative stress. Reactive oxygen species (ROS); antioxidants (AOx); catalase (CAT); 

superoxide dismutase (SOD); glutathione peroxidase (GPx); glutathione reductase (GR); 

glutathione (GSH); glutathione disulphide (GSSG); ascorbic acid (AsA); vitamin E (VitE); 

superoxide (O2
°−); hydrogen peroxide (H2O2); hydroxyl radical (OH°). 

 

Several studies demonstrate the ability of Cd to replace Fe, a redox-active metal, thereby increasing 

the availability of free Fe in cells and hence inducing oxidative stress (Figure 1). As a redox-active element, 

Fe in its turn produces highly damaging hydroxyl radicals (°OH) via the Fenton reaction [15,27]. 

Casalino et al. [27] demonstrated that in Fe-free conditions, lipid peroxidation, by means of TBARS 

(thiobarbituric reactive substrates) production, was absent in liposomes from male Wistar rats exposed 

to 75 µM CdCl2, indicating the inability of Cd to directly induce lipid peroxidation. On the other hand, 

TBARS production, induced upon Fe exposure alone (25 µM Fe2+), equalled that of lipid peroxidation 

induced by a combination of Cd and an Fe-containing (75 µM CdCl2 and 25 µM Fe2+) incubation 

medium. Also in rat Leydig cells, Cd-induced Fe displacement from its binding sites and consecutively 

Fe redistribution in these cells caused oxidative stress [28]. 

Cadmium also explores other ways to induce oxidative stress. As a thiol-affectionate metal, free Cd 

primarily targets the highly abundant cellular GSH, a ROS scavenger [15]. Depletion of the GSH pools 

leads to poor scavenging of Cd, which thereafter results in disturbance of the cellular redox balance 

leading to oxidative stress. Apart from antioxidant metabolites like GSH, antioxidant enzymes are also 

affected upon Cd exposure (Figure 1). Activities of superoxide dismutase (SOD), for example 

cytosolic CuZnSOD, can be differently altered to Cd intoxication depending on the duration of 
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exposure. The activity of this enzyme is strongly inhibited by Cd when incubated for a short time 

(100–300 µM CdCl2 for 4 h) in contrast to its significant activation upon prolonged Cd exposure  

(100–300 µM CdCl2 for 8 h) in CRL-1439 normal rat liver cells [29]. This is also observed for catalase 

(CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities that are known to 

increase or decrease depending on different experimental conditions [27,29–31]. Cadmium not only 

interferes with antioxidant defence mechanisms, also the mitochondrial electron transport chain is one 

of its main cellular targets. Cadmium mainly inhibits complex II (60%) and III (77%), whereas it can 

only weakly inhibit complex I (20%) and IV (30%) in mitochondria isolated from liver, brain and heart 

of male Dunkin-Hartley guinea pigs and exposed in vitro to different Cd concentrations [32]. The 

impairment of electron transfer through complex III by Cd may possibly be the route of ROS 

generation as Cd can bind to complex III resulting in accumulation of unstable semiubiquinones, 

which then transfer an electron to molecular oxygen, resulting in the formation of superoxide [32]. 

Although the complete pathology evoked by Cd toxicity is unknown, the ability of Cd to elicit an 

oxidative stress response seems apparent. Based on the fact that Cd-induced oxidative stress responses 

are dose, duration and tissue dependent [33,34], this review focuses on the main target organs of  

Cd-toxicity with special attention for the Cd-induced oxidative stress signature herein. 

3. Cd-Induced Pathologies: A Central Role for Oxidative Stress 

3.1. Kidney 

Oxidative stress is an important mechanism underlying Cd-induced nephrotoxicity. In female  

Sprague-Dawley rats, a chronic exposure of 5 µmol CdCl2/kg body weight (subcutaneous injection), 

five days per week, lasting for up to 22 weeks showed that oxidative stress is a primary mechanism of 

chronic Cd-induced renal toxicity [35]. After 22 weeks, there was a 5.4-fold increase in TBARS renal 

levels, which could be reduced by co-treatment with antioxidants [35]. Cadmium exposure to primary 

culture of rat proximal tubular cells (1.25–40 µM CdAc2 for 12 h), demonstrated a concentration and 

time-dependent loss of cell viability (mostly apoptotic). Cytotoxicity was also observed in kidney 

tubular epithelial cells (Cos7) exposed to CdCl2 (0–80 µg/mL) for 24 h. This cytotoxicity was caused 

by Cd-induced oxidative stress and could be inhibited by antioxidant treatment of these cells with 

Propolis, a natural antioxidant product produced by honey bees [36]. The ability of the antioxidant  

N-acetylcysteine (NAC) to partially reverse apoptotic cell death implicates a definite role of oxidative 

stress in the apoptotic mechanism mediated by Cd [37]. The ROS production in these cells (at 2.5 and 

5 µM CdAc2) can be the consequence of mitochondrial alterations as Cd-exposure induces a 

breakdown of the mitochondrial membrane potential. In a proximal tubular cell line, WKPT-0293 

Cl.2, 5 µM Cd enhanced ROS production in 4–8 h. This further led to the degradation of  

Na+/K+-ATPase, a membrane protein that drives reabsorption of ions and nutrients through  

Na(+)-dependent transporters in the proximal tubules, via proteasomal and endo-/lysosomal proteolytic 

pathways [38]. This, in its turn contributes to the 'Fanconi-like syndrome’ in which Na+-dependent 

transport is diminished and is associated with Cd-induced nephrotoxicity [38]. Furthermore, in these 

cells treatment with antioxidant agents such as NAC and pyrrolidine dithiocarbamate (PDTC), 

prevented ROS induction after Cd exposure (5 µM CdCl2 for 4–8 h). Increased ROS levels in  
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WKPT-0293 Cl.2 cell lines induced the gene expression of the multidrug resistance transporter gene 

(mdr1) by a process involving NF-B activation. This overexpression of mdr1 protects proximal 

tubule cells against Cd-mediated apoptosis [39]. Mitochondria also play a crucial role in Cd-mediated 

proximal tubular toxicity [40]. An intraperitonial injection of 0.3 mg Cd as CdMT/kg body weight to 

Sprague-Dawley rats resulted in Cd accumulation in mitochondria, resulting in mitochondrial swelling, 

electron transfer inhibition as well as oxidative phosphorylation [41]. 

3.2. Liver 

It has been shown that a daily oral administration of a low dose Cd (4.4 mg CdCl2/kg) via drinking 

water during 120 days in female Sprague-Dawley rats resulted in the formation of ROS, which 

enhanced hepatic lipid peroxidation and nuclear DNA damage [42]. Cadmium-induced lipid 

peroxidation in the liver could be counteracted by supplementation of vitamin E in rabbits [43], where 

white rabbits were given tap water with or without Cd (1 g CdCl2/L), or tap water containing CdCl2 

plus vitamin E (100 mg/dL -tocopheryl acetate in 0.2 mL corn oil) on a daily basis for 30 days. Liver 

protection by pre-treatment with antioxidants (heated garlic juice and ascorbic acid; each 100 mg/kg 

body weight for 4 weeks) was also demonstrated in adult male Wistar rats. Whereas the rats received  

4 mg/kg body weight CdCl2 for three days at the last week of antioxidant treatment, lipid peroxidation 

could be significantly decreased [44]. Administration of 10 mg Cd/L (as Cd acetate) to Wistar rats 

during gestation and lactation also increased lipid peroxidation and CAT activity in pup liver, and is 

highly hepatotoxic to pups from the first day of birth on [45]. Looking at the antioxidative defence 

system, it was demonstrated that Cd exposure resulted in GSH depletion in rat liver when male albino 

rats were intraperitoneally exposed to 0.1 mg and 1 mg CdCl2 /body weight for three months (five 

days/week) [46]. The authors argue that the depletion of GSH at a low dose (0.1 mg CdCl2/kg body 

weight) might be due to differences in dose, route of exposure and long duration while the GSH 

depletion at higher dose (1 mg CdCl2/kg body weight) occurs due to ROS. In addition to antioxidant 

metabolites, antioxidative enzymes are also affected by Cd stress. Intraperitoneal administration of 0.4 

mg Cd/kg weight to male albino rats for 45 days inhibited GPx and CAT activities in liver [47]. 

Activities of SOD, CAT, glutathione reductase (GR) and GPx were diminished in a normal rat liver 

cell line, CRL-1439, upon a 4 h exposure to Cd ranging from 100 to 300 µM CdCl2 [29]. In these cells, 

more oxidative stress was observed in mitochondria rather than in cytoplasm and depending on 

different concentrations of Cd (0–150 µM CdCl2 for 24 h), antioxidant enzymes were activated or 

inhibited. A CAT assay was performed separately on mitochondrial (mit) and cytoplasmic (cyt) 

extracts of Cd-treated cells, which showed an increased mit-CAT activity of 60.3%, 88.0%, and 80% 

to 50, 100 and 150 µM of CdCl2 respectively while an increase in cyt-CAT activity was restricted to 

10.4% and 50.5% at 50 and 100 µM CdCl2 [48]. A further increase in dose to 150 µM CdCl2 decreased 

the cyt-CAT activity to the untreated control levels. This was also true for GR activity, which 

increased in mitochondria and cytoplasm at 50 µM CdCl2, but drastically decreased in mitochondria at 

100 and 150 µM. The cyt-GR activity was the highest at 100 µM CdCl2. It appears that mitochondrial 

enzymes were more effective in reducing various ROS than their cytoplasmic counterparts and the 

activities of antioxidant enzymes in the cytoplasm were not as high as the mitochondrial enzymes upon 

Cd treatments [48]. Although the mitochondrial antioxidant system is very effective, Cd-induced ROS 
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production in mitochondria is strongly associated with cell death. In a human hepatocarcinoma cell 

line, Hep3B, Cd exposure (2.5–10 µM, 48 h) induced apoptosis independently of caspase activation 

through a mechanism involving nuclear translocation of 2 mitochondrial proteins, endonuclease G 

(involved in induction of caspase-independent DNA fragmentation) and apoptosis-inducing factor  

(AIF) [49]. This study showed that the release of these mitochondrial proteins was closely associated 

with massive ROS production, which resulted in alteration of mitochondrial homeostasis leading to 

calcium (Ca)-induced dissipation of mitochondrial membrane potential as well as decreased expression 

of anti-apoptotic bcl-xL protein regulated by NF-B [50]. While electron spin resonance studies on 

ROS detection has shown a minimal role for ROS in chronic Cd hepatotoxicity [50], it provides direct 

evidence of involvement of ROS in acute exposure conditions in vitro and in vivo [50–52]. 

3.3. Bone 

Extensive epidemiological studies provide repeated evidence of increased Cd exposure correlating 

significantly with decreased bone mineral density (BMD) and increased fracture incidence at lower 

exposure levels of Cd [53]. Cadmium is also negatively associated with bone mineral density in  

post-menopausal women [54] and a relation between the oxidative/antioxidative status, and bone 

mineral density (BMD) and fracture rate was noted in osteoporotic patients [55,56]. Even though the 

first epidemiological argument for Cd-induced bone effects was the clear-cut interference of low level 

Cd exposure with Ca metabolism [54], there are only a few studies that imply oxidative stress as a 

mechanism for Cd-induced osteotoxicity [56,57]. Smith et al. proved in vitro in an osteosarcoma cell 

line, Saos-2, using 5–50 µM CdCl2 for 3–48 h that Cd-induced oxidative damage led to a decrease in 

RUNX2 expression resulting in osteoblast apoptosis suggesting RUNX2’s anti-apoptotic role in 

osteoblasts. RUNX2 is an osteoblast transcription factor, which is known to play a protective role 

against osteoporosis in postmenopausal women [57]. A protective role of macrophage migratory 

inhibitory factor (MIF) was also demonstrated in murine osteoblast MC3T3-E1 cell lines. In these cell 

lines, noncytotoxic concentrations of Cd (0–1 µM CdCl2 for 24 h) induced an upregulation of this 

factor [58]. It is thought that Cd-induced ROS results in NF-B activation that subsequently enhances 

the transcription of the MIF gene and other protective target genes [58]. In vivo studies by Brzoska and 

colleagues showed that Cd (5 or 50 mg Cd/L), when fed to male Wistar rats in drinking water for six 

months, weakened the antioxidative capacity of the bone tissue and led to oxidative stress [56]. There 

was increased lipid peroxidation and H2O2 production as well as decreased activities of GPx, SOD and 

CAT. The accumulated ROS and oxidised lipids may affect the metabolism of bone tissue and these 

Cd-induced changes in the bone oxidative/antioxidative status can lead to disorders in the bone 

marrow turnover and mineralization. It was shown that delicate interactions between nitric oxide, ROS 

and antioxidant enzymes take place in the process of bone loss in post-menopausal women [55]. 

3.4. Lungs 

The lung is also considered as one of the target organs of Cd toxicity. Cadmium enters the lung via 

house dust, smoking and/or occupational exposure (cfr. supra) [5]. Cadmium can induce apoptosis in 

rat lung epithelial cell lines and a possible underlying mechanism is the induction of ROS. This 

conclusion is based on the fact that exposure of these cell lines to 20 µM CdCl2 during 24 h resulted in 
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a 4-fold increase of the oxidized GSH pool (glutathione disulphide: GSSG), thereby altering the GSH 

homeostasis. Cadmium (10–50 µM CdSO4 for 1–3 days) is known to decrease the expression of cystic 

fibrosis transmembrane conductance regulator (CFTR) protein in human airway epithelial (Calu3) 

cells and subsequent decrease of chloride transport in the cell [59]. The antioxidant α-tocopherol was 

able to prevent the loss of this protein indicating a role for oxidative stress. This protein is also 

responsible for GSH secretion to protect lung tissue against damage [60] and any mutation in this 

protein can result in low GSH levels in the cell leading to an oxidative stress environment [61]. 

Apoptotic concentrations of Cd (0–30 µM CdCl2, 0–72 h) led to (1) the upregulation of antioxidative 

genes like glutathione-S-transferase-α (GST-α), γ-glutamylcysteine synthetase (γ-ECS; 1st biosynthetic 

enzyme in GSH synthesis) and MT 1 and (2) also augmented the DNA binding activities of  

redox-regulated transcription factors like AP-1 and NF-B [62]. However, another study in primary 

cultures of epithelial cells, like alveolar type 2 cells and Clara cells, isolated from rat lung showed that 

the Cd-induced apoptosis (1–10 µmol/L for 20 h) was Bax and p53 dependent, but was independent of 

oxidative stress pathways [63]. This apparent contradiction can be explained by the different exposure 

conditions (time and dose), but needs further investigation.  

Smoking is known to cause chronic obstructive pulmonary disease (COPD) in 90% of the smokers 

and is characterized by chronic airway inflammation and airflow limitation [10,64]. The components 

of tobacco smoke, aside from nicotine, such as heavy metals and carcinogens can lead to an oxidative 

stress environment [65]. Cadmium, a major constituent of cigarettes has proven to cause pulmonary 

oxidative stress, emphysema and persistent airway inflammation in rat models that mirror the 

conditions observed in COPD patients [10]. Sprague-Dawley rats that received nebulised Cd via 

inhalation (0.1% CdCl2 in 0.9% NaCl) during a single exposure of 1h showed acute increase of GSSG 

in their bronchoalveolar lavage fluid (BALF), which was balanced by simultaneous increase of GSH. 

Animal groups that underwent repeated exposure to Cd (1 h for 3–5weeks) showed progressive 

increase of BALF-GSH, which is in agreement with findings observed in COPD patients [10]. The 

universal antioxidant transcription factor Nrf2 has been recently implicated in broad range of 

responses involved in both the initiation and progression of lung injuries caused by smoking [65]. 

Mice lacking Nrf2, when exposed to cigarette smoke (7 h per day, 7 days per week, during six months) 

were more susceptible to emphysema, had elevated levels of alveolar DNA oxidation as well as enhanced 

alveolar oxidative stress that regulates the intensity of alveolar cell inflammation and apoptosis [66].  

3.5. Cardiovascular System 

Cadmium is an independent novel risk factor for cardiovascular diseases (CVDs) and induces CVDs  

in vitro and in vivo [11,67]. The exact role of Cd in CVDs is controversial [68], but it can alter 

endothelial gene expression and lead to patho-physiological changes at low levels of exposure [11,69]. 

Oxidative stress induced by Cd might be one of the reasons for cardiovascular effects as low-density 

lipoprotein (LDL) modification by oxidative damage is a key event in development of atherosclerosis 

and oxidized LDL particles are found in atherosclerotic lesions [68,70]. Male Buffalo rats that were given 

50 or 200 ppm Cd in drinking water exhibited increased lipid peroxides and GSH. It also increased 

arterial blood pressure and blunted the vascular responses to vasoactive agents [69]. Donpunha et al. 

demonstrated the presence of oxidative stress in Cd-induced hypertension and vascular dysfunction, 
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when a subchronic dose of Cd (100 mg CdCl2/L in drinking water) was supplied to male ICR mice for 

8 weeks [71]. The oxidative damage was alleviated by supplementation of ascorbic acid (50 or  

100 mg/kg body weight), possibly by suppressing ROS formation and maintaining the GSH pool and 

hence, redox balance [71]. Low concentrations of ZnCl2 (10 µM) could also significantly inhibit  

Cd-induced ROS production and apoptosis caused by exposure of bovine endothelial cells, isolated 

from calf aorta, to 0.1–100 µM CdCl2 for 24 h [72]. The mechanism suggested for the inhibition of 

apoptosis is the ability of Zn to inhibit Ca2+-dependent endonuclease activity. Thereby DNA 

fragmentation, which is the terminal step in apoptosis, is inhibited. However, the authors could not 

exclude that the inhibition of apoptosis might have been caused by a decreased accumulation of 

intracellular Cd, when applied together with Zn. 

3.6. Brain 

Cadmium cannot penetrate the adult blood brain barrier (BBB), although it might diffuse across the 

BBB with the help of a vehicle such as ethanol [73]. Cadmium can more effectively pass the BBB 

during the developmental stage in an organism and is more toxic in newborns [74,75]. Once inside, it 

accumulates in different areas of the brain, induces lipid peroxidation and weakens the antioxidative 

defence [74,76]. In battery workers Cd-induced oxidative stress was demonstrated to cause 

amyotrophic lateral sclerosis due to reduced brain SOD activity [77]. Cadmium (0.4 mg CdAc2/kg 

body weight) injected intraperitoneally to young albino rats for 30 days generated free radicals in the 

brain causing region-specific membrane changes, which in turn led to significant alterations in 

membrane fluidity, intracellular Ca concentrations and phospholipid composition [78]. It also resulted 

in a decreased GSH/GSSG ratio as well as activities of GR and glucose-6-phospate-dehydrogenase 

(G6PDH) in various brain regions, although the decrease in GSH/GSSG was not seen in the 

hippocampus and midbrain [79]. Cadmium-induced oxidative damage also induced enhanced lipid 

peroxidation and protein carbonylation in male Swiss albino mice that received 4 mg CdCl2/kg body 

weight orally for three days [74]. The oxidative impairment was characterised by increased ROS 

production, reduction of total thiols and the GSH pool together with an increase in GSSG level. In 

addition, also activities of antioxidant enzymes such as SOD, CAT, GST, GR, GPx and G6PDH were 

diminished. The authors also showed the protective abilities of taurine (single oral dose of 100 mg/kg 

body weight for five days before Cd treatment) and vitamin C (single oral dose of 100 mg/kg body 

weight for five days before Cd treatment) against oxidative impairment in brain tissue caused by Cd. 

Furthermore, vitamin C was also demonstrated to reverse Cd-induced apoptotic cell death in cortical 

neurons, while necrotic cell death remained unaltered. This confirms the involvement of ROS in 

apoptosis [31]. In a mouse neuroblastoma cell line HT4, it was shown that cell death mechanisms and 

pro-inflammatory responses induced upon Cd exposure are redox-dependent. Cd-induced oxidative 

responses could be reversed in these cells, when treated with NAC and COX-2 inhibitor celecoxib. 

COX2 activation is necessary for Cd-induced pro-inflammatory responses and is mediated by a 

signalling cascade comprising of PI3K (phosphatidylinositide 3-kinase), a flavoprotein and p38 MAPK 

(mitogen-activated protein kinase) [80].  

Whereas Cd exposure clearly leads to oxidative damage, it has been shown that Cd-induced ROS 

generation (10–20 µM CdCl2) in rat pheochromocytoma (PC12) and human neuroblastoma  
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(SH-SY5Y) cells resulted in activation of signalling pathways such as JNK, Erk1/2, p38 MAPK and 

their upstream kinases like ASK1, MKK4, MEK1/2, and MEK3/6 leading to caspase-dependent and 

independent apoptosis. Pre-treatment with NAC remarkably inhibited Cd-induced phosphorylation of 

these kinases [81] and the authors suggest the use of antioxidants as well as inhibitors of JNK or 

ERK1/2 to be exploited for prevention of Cd-induced neurodegenerative diseases. Sustained 

phosphorylation of these stress-activated kinases, JNK and p38 MAPK, and their downstream targets, 

c-Jun, ATF-2 and CREB were also observed in a mouse neuroblastoma cell line, HT4, in response to 

Cd (3–30 µM CdSO4 for 24 h) characterised by increased ROS production and heme oxygenase-1 

(HO-1) induction [82]. The variable effects of Cd on oxidative stress signature in different experimental 

set-ups are also reported in brain cells [83]. 

3.7. Testis 

Exposure of Swiss mice to CdCl2 (1 mg/kg body weight) for 5–8 weeks, increased testicular lipid 

peroxidation, thereby impairing intracellular defences leading to altered spermatogenesis [84]. A 

significant reduction in enzymatic activities of SOD, GPx as well as CAT was observed in these cells 

together with a decline in ascorbic acid content [84]. Supplementation of vitamin C and E could 

ameliorate testicular stress to a certain extent. Also in Cd-exposed rats an increase in testicular lipid 

peroxidation and a decrease in the antioxidant enzyme activities, such as GPx and SOD, were 

observed. Pretreatment with vitamin C and E reduced testicular ROS production, thereby restoring 

normal testicular function [85]. In addition, the nutritional antioxidant beta-carotene alleviated 

oxidative stress and loss of antioxidants in adult male rats intragastrically exposed three days a week to 

2 mg CdCl2/kg body weight during3–6 weeks [86].  

The high membrane lipid content of testicular Leydig cell mitochondria and microsomes makes 

these cells more susceptible to Cd-induced lipid peroxidation [87]. Testicular Leydig cells are also the 

target cell population for Cd carcinogenesis. A single carcinogenic dose of CdCl2 (30 µmol/kg body 

weight) caused severe hemorrhagic damage in rat testis within the first 12 h after exposure together 

with increased Fe content, H2O2 production and lipid peroxidation [28]. At this point, GSH levels were 

decreased, concomitantly with a rise in GSSG levels. Also GPx activity was increased, GR and CAT 

were reduced and SOD remained unaltered. Atrophy with calcification occurred in 2–3 months and 

atrophied tissues were regenerated towards the end of 1 year after exposure. The authors concluded 

that the Cd doses that compromise cellular defence mechanisms and hence induce oxidative stress, 

may have an important role in the initiation of carcinogenesis within the target cell population. 

4. Cancer 

Cadmium is classified by the International Agency for Research on Cancer [88] and by the US National 

Toxicology Program [89] as a human carcinogen. As such, the negative effect of Cd on pulmonary tumour 

formation was indicated in both epidemiological and experimental studies [14,90,91]. There is also 

clear evidence of cancer progression due to Cd toxicity within the prostate [92–94],  

kidney [95,96], breast [97,98], endometrium [99], bladder [100–103] and pancreas [14,104–106]. 

Evidence for the involvement of Cd in the development of stomach, liver and hematopoietic cancers, 

however, is not very convincing [14,107]. Cadmium-induced carcinogenesis is a well-discussed topic 
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recently reviewed by several independent researchers [25,107–112]. Both, oxidative stress and 

inhibition of repair of oxidative DNA damage undoubtedly influence this process, although some 

papers state that the role of ROS in the process of cancer formation is minimal [50,113]. Several 

studies discuss the impact of induced adaptation mechanisms upon chronic Cd exposure, where 

diminished ROS levels were detected as a result of increased antioxidant levels such as GSH and  

MTs [22,50]. As a consequence, a condition of increased apoptotic resistance is created where DNA 

damaged cells can escape from elimination through apoptosis, and proliferate with inherent DNA 

lesions, eventually progressing to a malignant phenotype. Nevertheless, multiple studies indicate Cd-induced 

ROS formation, which affect different pathways in the development of malignancies, thereby inducing or 

strengthening Cd-provoked carcinogenesis. Within the perspective of the current review, carcinogenic 

processes will be highlighted in function of their sensitivity to redox disturbances induced by Cd based 

on relevant literature that supports the role of ROS in the formation of cancer tissue (Figure 2).  

Figure 2. Schematic overview of Cd-induced carcinogenesis. Reactive oxygen species 

(ROS); nucleotide excision repair (NER); base excision repair (BER); mismatch repair 

(MMR); non-homologous end-joining (NHEJ); phosphatidylinositide 3-kinases (PI3K); 

mitogen activated protein kinase p38 (P38); c-Jun N-terminal kinase (JNK); nuclear factor  

(erythroid-derived 2)-like 2 (NRF2); extracellular-signal-regulated kinases (ERK); tumour 

protein 53 (P53); nuclear factor kappa-light-chain-enhancer of activated B cells (NFκβ). 
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4.1. ROS Interconnect with Signalling Pathways 

Both Cd and ROS interfere with the activation of oncogenes, the inhibition of tumour suppressor 

genes and influence signal transduction processes via the modulation of transcription factors. More 

specifically, Cd replaces Zn in Zn-binding domains while ROS attack thiol groups of cysteine residues. 

One of the affected pathways involves the activation of c-fos and c-jun transcription factors, which 

together form AP-1. This transcription factor is responsible for the activation of proto-oncogenes 

involved in cell growth and division [114]. Tumour formation in BALB/c-3T3 cells (an established 

fibroblast cell line from albino mice), exposed to 6 and 12 µM CdCl2 for 72 h, was accompanied by 

higher expression levels of c-fos and c-jun [115]. The same effects were seen in the rat liver epithelial 

cell line TRL 1215, exposed to 1 µM CdCl2 up to 28 weeks [113].  

Another signal transduction pathway that links ROS with carcinogenic processes is the mitogen 

activated protein kinase (MAPK) pathway. In human neuroblastoma cell lines, an exposure to 10 and  

20 µM of CdCl2 for 24 h led to an increased activity of c-Jun N-terminal kinase (JNK) and  

extracellular-signal-regulated kinases (ERK) after ROS-induced disruption of serine/threonine 

phosphatases 2A and 5 [81]. Both JNK and ERK1/2 are regulators of apoptosis and cell proliferation 

and contribute in the transition of cells to cancer [111]. However, care should be taken, as Cd-induced 

redox alterations not always provoke identical responses concerning the MAPK cascade. In human 

prostate epithelial cells (RWPE-1) chronically exposed to 10 µM of CdCl2, for example, the induction 

of cancer was accompanied by disruption of the JNK pathway via Bcl2 overexpression [116]. 

Also the phosphatidylinositide 3-kinases (PI3K) pathway, responsible for inhibition of apoptosis 

and stimulation of proliferation through protein kinase B (AKT) and mammalian target of rapamycin 

(mTOR), is affected after Cd exposure in a ROS-dependent way. In chronically exposed human 

bronchial epithelial BEAS-2B cells to 2 μM Cd (for 2 months), the induction of cell transformations 

into cancer cells was linked to the induction of AKT [117], an effect that diminished after antioxidant 

treatment (transfection with CAT, SOD1 or SOD2). Both ERK and AKT interact with ROS signalling 

in immortalized human lung epithelial BEAS-2B cells and normal human bronchial epithelial cells 

exposed to 5 µM of CdCl2 for 4 h, thereby inducing the expression of the proangiogenic molecule 

hypoxia-inducible factor-1 (HIF-1). HIF-1 is a promoting factor in tumour formation.  

Cadmium also interferes with the (de)activation of other signalling proteins such asp53, NRF2 and  

NF-κβ [112,118]. They are involved in maintaining the balance between proliferation and apoptosis 

and when disrupted by Cd, hyperproliferation or apoptotic resistance can be induced. The involvement 

of ROS herein, however, still remains to be elucidated.  

4.2. ROS-Induced DNA Damage 

DNA damage generated by Cd-induced ROS is not easily repaired, as Cd interferes with all DNA 

repair systems, among which are nucleotide excision repair (NER), base excision repair (BER), 

mismatch repair (MMR) and non-homologous end-joining (NHEJ) [112,119]. A lot of proteins 

involved in DNA repair systems have Zn-binding proteins that can directly be disrupted by  

Cd [107,112]. However, there is also a link between Cd-induced ROS and the inhibition of DNA 

repair. Critical cysteine residues on 8-oxoguanine DNA glycosylase (OGG1), one of the compounds of 
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the BER system, can be indirectly oxidized by Cd, thereby inhibiting proper functioning of this 

enzyme [120,121]. 

The link between Cd-induced ROS and DNA damage has been accounted to the formation of  

8-hydroxy-2'-deoxyguanosine (8-OHdG), a critical marker for oxidative stress and carcinogenesis [122,123]. 

An association between Cd and the formation of 8-OHdG was also seen in glass production  

workers [124]. On the other hand, the link between the progression of cancer tissue and the presence of  

8-OHdGs has been proven in both human and animal tumour models [125–127]. These data combined 

could give an indication that the formation of 8-OHdGs as a result of Cd-induced ROS formation is an 

important element in the progression of cells towards cancer.  

4.3. ROS and Epigenetic Alterations 

The epigenetic state of the genome determines the gene expression profile of an organism without 

changing the DNA sequence, and is determined by the function of different proteins such as DNA 

methyltransferases (DNMTs), histone deacetylases (HDACs), histone acetylases, histone 

methyltransferases and the methyl-binding domain protein MECP2 [128]. Cadmium interferes with the 

epigenome, thereby changing gene expression profiles in favour of carcinogenesis [129]. In chronic 

myelogenous leukemia (K562) cell lines exposed to 2 µM of CdCl2, global DNA hypomethylation was 

associated with Cd-stimulated cell proliferation [130]. Also in rat liver cells exposure up to 500 µM 

CdCl2 led to an increased activity of DNA methylation proteins (DNMT) [131]. In immortalized 

normal human prostate epithelial cells exposed to 10 µM of CdCl2 for 10 weeks, the overexpression of 

DNMTs and genomic hypermethylation were associated with Cd-exposure [132]. In human bronchial 

epithelial cells (16HBE) exposed to CdCl2, DNMT genes were overexpressed which resulted in global 

DNA hypermethylation [133]. Either way the result is hypomethylation or hypermethylation of 

respectively oncogenes and tumour suppressor genes, which could induce altered gene expression 

patterns that lead to carcinogenic events.  

Huang et al. [130] tested if the changes in global DNA methylation during Cd exposure could be 

accounted to elevated ROS levels. Elimination of ROS via NAC did not reset the global DNA 

methylation changes. This could indicate that hypomethylation or hypermethylation is the result of 

direct interference by Cd and not ROS [130]. However direct exposure to ROS (without the 

involvement of Cd) has shown to induce epigenetic changes as well, so mechanisms through  

Cd-induced ROS can still apply [134,135].  

5. Stem Cells 

In the previous part, we discussed how the redox balance contributes to the transition of normal 

cells to cancer cells. Carcinogenic processes (1) can be initiated in specialized cells, which often result 

in dedifferentiation, or (2) can start in undifferentiated cells [136]. Undifferentiated cells or stem cells 

are characterized by their high capacity of self-renewal and differentiation. They are highly resistant to 

many stressors such as chemical compounds, ultraviolet light, radiation and oxidative stress [118,137], 

a property that makes them unique for studying cellular maintenance and protection. Stem cells wield 

two main defence strategies, quiescence and damage control, which are discussed below in function of 

their responses to redox-related changes. 
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5.1. Defence Mechanisms in Stem Cells 

Quiescent cells are cells that are kept in a G0 resting phase, a process that is critical to preserve 

successful self-renewal [138,139]. The defence strategy of quiescent cells resides in the fact that they 

have a low metabolic status, a high efflux capacity (of cytotoxic compounds) through ATP-dependent 

transporters such as MDR1 [116] and an extensive network of scavengers [118,137,140]. Moreover, 

quiescence is characterized by a strict regulation of the redox balance in which ROS levels are kept  

low [118,137]. In some conditions, damage is inevitable, and damage control mechanisms are 

activated. Depending on the level and type of damage inflicted, stem cells can repair damaged DNA, 

drive the cells into cellular senescence or induce apoptosis [118,137,141]. 

5.2. Cadmium and Stem Cells 

Stem cells are designed to maintain low levels of ROS [142]. Within these cells, Cd will raise the 

levels of ROS concomitantly with several defence mechanisms. Despite the limited data available on 

this topic, a few strategies of stem cells coping with Cd-induced oxidative stress are hypothesized 

(Figure 3). On one hand, increased levels of ROS can be removed directly through activation of  

anti-oxidative mechanisms. On the other hand, ROS levels are indirectly controlled via signalling 

mechanisms during the quiescent stem cell mode, to maintain low ROS levels. Examples of these 

regulators are PTEN [143,144], ATM [145,146], MDM2 [147], PRDM16 [148], HIFs [149,150], 

FOXO [151,152] and NRF2 [153,154]. A third way of responding is the induction of apoptosis to 

prevent an accumulation of damaged stem cells. 

Cadmium induces ageing-like effects via oxidative stress, a process that was counteracted in murine 

fertilized zygotes after treatment with antioxidants [155]. A direct removal of Cd-induced ROS was 

also observed in alveolar type II epithelial stem cells (that are able to differentiate into type I cells) [156]. 

The levels of both, MT and GSH, were strongly induced when these cells were exposed to CdO 

aerosols (1.6 mg Cd/m³) for 5 to 7 weeks [157]. The impact of (antioxidative) defence mechanisms in 

the coping strategy of a stem cell was also demonstrated in the pluripotent stem cells of planaria 

(organisms capable of extreme regeneration). Planarian stem cells, also known as neoblasts, showed an 

increased expression of heat shock proteins (HSP60 and HSP70) when exposed to 2.5, 5 and 10 µM of 

CdCl2 from two days up to 1 week [158]. In this manuscript, the authors hypothesize an important role 

for HSPs in the stem cell defence, guiding survival and proliferation during Cd stress. The 

involvement of other antioxidative enzymes important in somatic cell defence [15], is not yet clear for 

Cd-exposed undifferentiated cells. However, based on the studies described above, a degree of 

similarity can be concluded. 

Overall, among different types of stem cells, an increased number of quiescent cells is observed 

during Cd stress. As such, the number of divisions and the grade of differentiation was strongly 

inhibited in murine embryonal carcinoma cells exposed to Cd [159], in murine embryonic stem cells 

(mESC) exposed to 110 µM CdCl2 for 1 h [160] and in mESCs exposed to cigarette smoke or cigarette 

smoke condensate for 4 weeks [155]. A similar inhibition of self-renewal and proliferation was also 

observed in prostate stem progenitor cells exposed to 450 µM CdCl2 for 8 weeks [161]. Also for the 

pluripotent stem cells of the planarian Polycelis felina mitotic activity was decreased when exposed to 
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1, 10 and 100 µM of CdSO4 [162]. All these (temporary) proliferation stops indicate that a large 

amount of stem cells goes into a quiescent mode or dies to protect them from further Cd-induced 

stress. A decrease in cell proliferation not only coincides with cell death, but is also associated with the 

induction of cell differentiation. As such, undifferentiated neural precursors were forced into astate of 

active differentiation after exposure to Cd [163] and references herein). All of these findings are in 

contrast with the number of mitotic divisions measured in the planarian Schmidtea mediterranea, 

which increased when exposed to 2.5, 5 or 10 µM of CdCl2 for at least two weeks [158]. This result is 

not totally unexpected since the stem cells of these organisms are pluripotent and powerful towards 

stress and ageing [164,165]. However the elevation in mitotic divisions can also be explained by the 

fact that the cells were measured via histochemical visualization in the M-phase, which could indicate 

that dividing cells still need to enter the G0 phase. Contradictory responses on stem cell proliferation 

after Cd exposure were also observed in neural precursor cells, an effect that appeared to be 

concentration-dependent [163]. This corresponds with somatic cell responses, where increased 

proliferation during low Cd exposure is often classified as an hormesis effect [166–170].  

Figure 3. Schematic overview of Cd toxicity in stem cells in general. Intoxication of stem 

cells by Cd could indirectly induce oxidative stress by impairment of the redox balance. 

The excess of reactive oxygen species (ROS) can induce DNA damage. The reaction of 

stem cells to Cd-induced toxicity is ambiguous. Increased levels of ROS can either be 

removed directly through induction of antioxidative mechanisms or indirectly through 

induction of the quiescent stem cell model. Quiescence will keep the level of ROS 

generation low by signalling through FoxO transcription factor (FOXO), phosphatase and 

tensin homolog (PTEN), ataxia telangiectasia (ATM), murine double minute oncogene 

(MDM2), PR domain-containing 16 (PRDM16), hypoxia inducible factors (HIFs) and 

nuclear factor erythroid-2-related factor 2 (NRF2). On the other hand the increased levels 

of ROS will trigger signalling cascades that induce apoptosis to prevent the accumulation 

of damaged stem cells by ROS. 
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When defence strategies fail, damage is inevitable, even in stem cells. In mesenchymal stem cells, 

an exposure to 15 and 45 µM of CdCl2 for 24 or 48 h led to an elevated level of DNA damage which 

led to nuclear breakage and chromatin condensation [171]. This effect was confirmed in mESCs 

during both acute and chronic exposure to 20 µM of CdCl2 [172]. Damage to DNA strongly affects 

normal function or even viability of cells, resembled by telomere shortening during chronic exposure 

of mESCs to 20 µM of CdCl2 [172]. A cellular defence mechanism against extreme (molecular) 

damage is apoptosis. In mESCs the exposure to 20 µM of CdCl2 for 1 h led to the activation of JNK 

through phosphorylation of MKK4 and MKK7, which led to the induction of apoptosis [173]. In Hela 

cells exposed to 50 µM of CdSO4 for 6 h the intrinsic pathway of apoptosis was induced, while in 

contrast the extrinsic pathway of apoptosis was inhibited, but in the end it led to cell death [174].  

Genomic instability not only induces cell death, but as described earlier, Cd-induced genomic 

instability also leads to neoplastic transformation. Evidence for stem cells involved in Cd-induced 

cancer, was reported by Hart et al [157]. They showed that Cd inhibits DNA repair in alveolar 

epithelial stem cells exposed to CdO aerosols (1.6 mg Cd/m3) for 5 to 7 weeks, which led to neoplastic 

transformations. Also the reprogramming and transformation of prostate stem cells and early stage 

progenitor cells into cancer cells by Cd was reviewed recently [175]. Nevertheless, more information 

is needed to further elucidate a clear role for stem cells in Cd-induced carcinogenesis.  

Overall, stem cell responses to Cd stress are ambiguous. Thanks to their extensive defence 

strategies, among which quiescence, damaging processes can be overcome more easily. If damage 

does occur and accumulates after Cd intoxication, stem cells can be triggered into apoptosis.  

Cadmium-induced damage such as genomic instability, however, is not always re-balanced, and can 

give rise to neoplastic transformations. 

6. Conclusions 

Induction of ROS by Cd at cellular level has been shown repeatedly [15] and the organ/cell-specific 

effects of ROS induced by Cd at different experimental conditions are reviewed here. The different 

experimental set-ups include differentiated cells at the whole animal level (including humans), tissue 

level, primary cell cultures and/or cell lines as well as non-differentiated cells. The appearance of 

ROS, depletion of scavengers, interference with antioxidant enzymes and/or damage to mitochondria 

results in loss of function or cell death in multiple organs. While Cd-induced ROS result in the 

degradation of Na/K pump function in kidney leading to dysfunctional transport, lipid peroxidation 

induced by Cd can be the detrimental cause of damage in bones. In general, it might be of interest to 

compare the Cd exposure levels in vivo to those in vitro, though comparisons between experiments 

should be done with caution. This is true in case of cell lines as they are generally more resistant to 

stress. Many studies use high concentrations of Cd or other test substances that might cause effects in 

cell lines, which could be irrelevant in terms of environmentally realistic exposures. Cadmium, in its 

carcinogenic role, activates oncogenes, inhibits tumour suppressor genes as well as affects signalling 

cascades. While Cd can interfere with DNA repair directly by replacing Zn in proteins involved in the 

repair, the appearance of 8-OHdG shows involvement of ROS in Cd-tumorogenesis. Epigenetic 

regulation induced by ROS has been demonstrated in studies and further investigations are needed to 

unravel the role of Cd and its interference with the epigenome. The last section of this review discusses 
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stem cells that are highly resistant to multiple stressors. Stem cells defend themselves against Cd by 

being quiescent (keeping ROS levels low), thereby activating damage control systems (increasing the 

levels of MT and GSH) or by triggering apoptosis. Alternatively Cd-induced genomic instability may 

lead to neoplastic transformation and cancer. Taken together, a definite and important role for 

oxidative stress is evident in Cd-induced toxicity and pathogenesis, and the answer to the question, 

“where is the oxidative balance lost?” depends on a multitude of experimental and possible 

environmental conditions available for the cell and thereby organs. 
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