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malaria parasites
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Previous studies have suggested that Plasmodium parasites can manipulate

mosquito feeding behaviours such as probing, persistence and engorgement

rate in order to enhance transmission success. Here, we broaden analysis of

this ‘manipulation phenotype’ to consider proximate foraging behaviours,

including responsiveness to host odours and host location. Using Anopheles
stephensi and Plasmodium yoelii as a model system, we demonstrate that mosqui-

toes with early stage infections (i.e. non-infectious oocysts) exhibit reduced

attraction to a human host, whereas those with late-stage infections (i.e. infec-

tious sporozoites) exhibit increased attraction. These stage-specific changes in

behaviour were paralleled by changes in the responsiveness of mosquito

odourant receptors, providing a possible neurophysiological mechanism

for the responses. However, we also found that both the behavioural and

neurophysiological changes could be generated by immune challenge with

heat-killed Escherichia coli and were thus not tied explicitly to the presence of

malaria parasites. Our results support the hypothesis that the feeding behaviour

of female mosquitoes is altered by Plasmodium, but question the extent to which

this is owing to active manipulation by malaria parasites of host behaviour.
1. Introduction
Malaria’s transmission is inextricably linked to the foraging and feeding beha-

viours of its insect vectors [1,2]. Since the 1980s, evidence has been collected

suggesting that infection with Plasmodium parasites can alter mosquito beha-

viours (reviewed by Cator et al. [3]). Intriguingly, the nature of these changes

appears dependent on the developmental stage of the parasite, with evidence

for reduced foraging and feeding during the pre-infectious oocyst stage of infec-

tion [4–6] and increased foraging and feeding during the infectious sporozoite

stage [4–6]. These observations have been interpreted as evidence for parasitic

manipulation of mosquito behaviour [7,8], because reducing ‘risky’ feeding-

associated activities during the non-infectious stages of parasite development

(the highest daily rates of adult mosquito mortality are associated with finding

and taking a blood meal [9]) and increasing probing and feeding at the infec-

tious stages, is predicted to increase the overall likelihood of transmission [3].

If these behavioural alterations are due to parasite adaptations, whereby para-

site genes encode traits which cause behavioural changes and have been

favoured by natural selection because they do so, then this would be a classic

case of an ‘extended phenotype’ [10–12].

The majority of evidence for behavioural alteration following infection with

malaria focuses on ‘at-host’ foraging activities. At a range of less than 30 cm,

Anderson et al. [5] demonstrated decreased biting persistence of female mosqui-

toes on a human host when infected with oocysts, and increased biting persistence
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by females when infected with sporozoites. Once on the host,

studies have reported that sporozoite-infected females probe

more frequently [4–6,13] and also take smaller blood meals

[13], which could translate to multiple feeds per gonotrophic

cycle [14,15]. To date, however, to our knowledge there have

been no investigations of the effects of malaria infection on

upstream feeding behaviours such as initiation of host-seeking,

host orientation or host location. All these behaviours are strongly

odour-mediated and research has shown that the peripheral

olfactory system of malaria mosquitoes is highly malleable. For

example, it is strongly responsive to ingestion of a blood meal

[16,17] and can be altered by infection with fungal pathogens

[18]. Whether Plasmodium infection also impacts olfaction and

associated odour-related behaviours remains unknown.

To address these questions, we investigated the neuro-

physiological and behavioural responses to vertebrate host

stimuli in the malaria mosquito Anopheles stephensi dur-

ing different stages of infection with the malaria parasite,

Plasmodium yoelii. Using this rodent model, we observed

parasite stage-specific changes in the sensitivity of odorant

receptors in the maxillary palps, which correlated with changes

in long- and short-range attraction of female mosquitoes to

hosts. These results are consistent with the manipulation

hypothesis, while broadening current understanding of the

phenotype. However, we also observed similar physiological

and behavioural changes in mosquitoes that had taken an infec-

tious blood meal but showed no positive signs of malaria

infection, raising questions over the specificity of the response.

In light of this, we examined the effects of a general immune

challenge on behavioural and neurophysiological phenotypes.

We found that activation of the mosquito immune system

was sufficient to induce roughly equivalent changes in mos-

quito attraction and olfactory sensitivity to those associated

with malaria infection. Our results strengthen the case for

Plasmodium infection altering the behaviour of mosquitoes,

but challenge the conventional notion of parasite manipulation.
2. Material and methods
(a) Mosquitoes and Plasmodium infections
Eggs from over 1000 An. stephensi (NIH strain) females were placed

in plastic trays (25 � 25 � 7 cm) filled with 1.5 l of distilled water.

Upon reaching second instar, larvae were transferred to fresh trays

at a density of 400 larvae per 1.5 l of distilled water. We fed larvae

10 mg of ground fish flakes (TetraFin, Melle, Germany) a day. We

collected pupae and placed them in cages for emergence. Adults

were provided with a 10 per cent glucose solution supplemented

with 0.05 per cent para-aminobenzoic acid.

On day three post-emergence females were offered their

first blood meal on an anaesthetized female mouse (C57 BL/6).

One group of females received a blood meal from a mouse

infected with 105 P. yoelii parasites (clone 17XNL, from the

World Health Organization Registry of Standard Malaria Para-

sites, University of Edinburgh, Edinburgh, UK) 4 days prior.

Infected mosquitoes were tested on days 1–8 post-infection for

oocyst-infected treatments and 9–28 days after infection for spor-

ozoite-infected treatments (for exact days measured for each

experiment, see below). Control females for all experiments

were from the same rearing cycle that received an uninfected

blood meal on the same day as females in the treatment group

were offered an infected blood meal. At the conclusion of each

behavioural assay, we dissected the midgut and salivary glands

of each female from the infected treatment to determine infection

status and to ensure that the proper stage of infection was
measured. Females with oocysts in the midgut, sporozoites in

the haemolymph or salivary glands were categorized as ‘infected’.

Females that had taken an infectious blood meal, but did not have

evidence of parasites were considered ‘exposed’. Infection preva-

lence and intensities for each experiment and replicate are listed

in the electronic supplementary material, table S1.
(b) Electropalpograms
Electrophysiological responses of the maxillary palps to 1-octen-

3-ol were measured throughout the course of infection with

P. yoelii following the methods of George et al. [18]. Briefly, elec-

tropalpogram (EPG) recordings were performed on mosquito

maxillary palps using tungsten electrodes. A 10 ml aliquot from

a 1 mg ml21 hexane solution of 1-octen-3-ol was dispensed onto

a standard 15 � 3 mm piece of Whatman filter paper, the

hexane allowed to evaporate, and the paper then inserted into

a 14-cm-long glass Pasteur pipette. Each odourant cartridge

was thus loaded with 10 mg of odourant stimulus. Airborne

puffs of the odourant were delivered to the palp preparation

during the experiments via a 10 mm i.d. glass tube having a con-

stant stream of charcoal-purified, humidified air passing through

it and onto the preparation. Each odourant was puffed into the air

stream through the Pasteur pipette odour cartridge, whose tip was

inserted through a small hole in the airstream tube 11 cm away

from its end. A stimulus flow-controller (Syntech, Hilversum,

The Netherlands) delivered a 0.05 s pulse (2 ml) of air containing

the volatiles into the air stream and onto the preparation. The

EPG slow-potential (DC) responses to the stimuli were recorded

and analysed using Syntech AUTOSPIKE software (Syntech).
(c) Experimental conditions for behavioural assays
All behavioural experiments were conducted 30 min after the insec-

tary switched to the dark portion of the daily light cycle. Insectary

conditions were set to 248C with 80 per cent relative humidity. All

females were deprived of sugar for 10–14 h prior to experiments.

For the long-range host-seeking assay, experiments were con-

ducted under low light (approx. 1 lux), whereas the short-range

host-seeking experiments were conducted under red light.
(d) Long-range host-seeking
Groups of 30 females which had received either a control or

infected blood meal were transferred to a 30 � 30 � 30 cm

mesh cage fitted with a remote release door. Each trial started

when the release door was lifted and female mosquitoes were

allowed to move into a 0.7 � 1.5 � 5 m mesh enclosure (see the

electronic supplementary material, figure S1). A human host

(L.J.C.) was positioned at the far end of the enclosure. Females

were collected using a mouth aspirator as they approached the

host. Each trial was conducted over a 1 h period. We aspirated

females into individual cartons and noted time of capture. We

also recorded the proportion of females exiting the release cage

and the proportion approaching the host. The order of treatments

(control blood meal or infected blood meal) was alternated on

each evening to control for release order.

In the first replicate of the study, host-seeking assays were con-

ducted one day prior to infection (pre-infectious) and then on day

6 for oocyst-stage infection and day 17 for sporozoite-stage infec-

tion. In the second and third replicates, females were tested on

days 2, 4, 6, 8, 12, 15, 17 and 28 after a blood meal. After testing,

the midgut and salivary glands of each female in the infected treat-

ment were dissected and infection status and stage were assessed.

We dissected midguts to detect oocysts-stage parasites on days

6–8 post-infection. Salivary glands were dissected the morning fol-

lowing testing. On the same day of dissections, the right wing of

each female was removed and stored for measurement.
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(e) Short-range host-seeking
To investigate the effect of infection on short-range response to host

cues, individual females were released into a 16� 16 � 16 cm mesh

cage. This release cage was fitted to a 48 cm clear plastic tube that

was 12 cm in diameter (see the electronic supplementary material,

figure S1). The other end of this tube opened into a ‘host cage’ (iden-

tical to the release cage), in which the hand of a human host (L.J.C.)

was placed. A flap prevented test females from entering the tunnel

prior to the start of the trial. Trials began when the flap was lifted

and we recorded whether females responded to host cues and if

so, the time it took to enter the host cage. Females failing to initiate

active searching within 4 min were categorized as non-responders.

We tested 25 females from each treatment group on days 6/7

(oocyst-stage) and days 14/15 (sporozoite-stage) for a total of 200

females per replicate. We rotated between treatment groups every

five individuals to control for time of day effects. All treatment

females were dissected to determine infection status. This

experiment was replicated twice.

( f ) Immune-challenges
In order to determine whether the ‘manipulation’ phenotype was

due specifically to exposure to Plasmodium parasites or to general

immune challenge, we compared behavioural responses of

females receiving a Plasmodium-infected blood meal with those

challenged with heat-killed Escherichia coli directly following an

uninfectious blood meal. Heat-killed E. coli has been shown to

stimulate several immune pathways in the mosquitoes [19].

We divided 3–5-day-old females into two groups. One group

received an infectious feed as described above. The other group

received a blood meal from uninfected control mice. The females

from this latter group were then further divided into four

groups. The first group was anaesthetized briefly on ice and micro-

injected with 200 000 heat-killed E. coli (tetracycline resistance

green fluorescent protein expressing dh5 alpha strain). The

second group was anaesthetized on ice and injected with 0.2 ml

of sterile Luria–Bertani’s rich nutrient medium (LB, positive con-

trol for injury associated with injection). The third group was

merely anaesthetized on ice (positive control for ice manipulation).

The fourth and final group was an unmanipulated control.

To obtain heat-killed E. coli, we followed the methods in

Murdock et al. [20]. Briefly, cultures in LB medium were grown

overnight in a 378C shaking incubator. We determined the injec-

tion dose of E. coli by reading the absorbance (OD600) from each

dilution with a NanoDrop (Thermo Scientific, Wilimington, DE)

and comparing it to a standard curve. Escherichia coli were heat-

killed by autoclaving at 1108C for 25 min [20]. We compared

the short-range host-seeking responses of females from the unma-

nipulated control, cold anaesthetization control, injury, E. coli
challenged and P. yoelii challenged groups. Twenty-five females

from each of the five treatments were tested on days 6–8

post-blood meal and days 14–16 post challenge to coincide with

Plasmodium infection stages. The experiment was replicated twice.

(g) Statistical analysis
Mean daily EPG amplitudes were compared on each day post-

infection using a t-test with a Bonferroni correction in SAS

(v. 9.2, SAS Institute Inc., Cary, NC). We used a general linear

model to assess the effect of infection status on EPG amplitude

within the females which received an infected blood meal.

We used a generalized linear model (GLM) fitted with a

binary logistic regression in SPSS (v. 20, IBM, Armonk, NY) to

determine the effect of infection on the likelihood that females

approached the host in both the long-range and short-range

assay. The significance of treatment (infected blood meal/control

blood meal), stage (days corresponding with oocyst/sporozoite

infection), replicate, release order and wing length parameters

were assessed. In order to determine the effect of exposure
(receiving a blood meal from an infected mouse) versus infection

(harbouring malaria parasites at the time of dissection), we ran

the model on the females from the infected treatment alone

and instead of treatment group tested the effect of infection

status (infection/exposed).

We also used a GLM fitted with a binary logistic regression to

determine the effect of immune challenges on the likelihood that

females were attracted to the host. In this case, we determined

the statistical significance of treatment (control/cold anaesthe-

tized/sham injected/heat-killed E. coli injected/Plasmodium
challenged), stage (periods corresponding with oocyst infection

(days 6–8) and sporozoite infection (days 14–16)) and wing

length on the likelihood of a positive response using a binary logis-

tic regression. In order to compare responses between the two

stages and within a treatment group, we ran the model for each

treatment group separately. We additionally ran the model separ-

ately with only the groups challenged with heat-killed E. coli and

P. yoelii, the heat-killed E. coli and injury control group, and

the injury control group and heat-killed E. coli group to further

characterize the relationships between these treatments.

In all cases, full models were reduced through stepwise elim-

ination of non-significant interactions and terms. Significance

values reported for significant terms were those taken from the

final model. Significance values reported for non-significant

terms were those computed in the final step prior to removal

of the term from the model. Non-significant values were only

reported if they had a significant interaction with another par-

ameter. All data were deposited in the Dryad Repository:

doi:10.5061/dryad.j4n89.
3. Results
(a) The effect of infection on palp sensitivity
Females from the infected and control groups all exhibited

equally high EPG amplitudes in response to 1-octen-3-ol

on day 0, before they were offered a blood meal (n ¼ 8,

t ¼ 0.458, p ¼ 0.624; figure 1a). Once the females had been

blood-fed, EPG amplitudes decreased, and females from both

infected and uninfected blood meal groups exhibited relatively

low EPG amplitudes on day 1 post-feeding (n ¼ 8, t ¼ 0.363,

p . 0.05). By day 4, EPG amplitudes from control females

began to increase and were significantly higher than those

from the infected group (n ¼ 8, t ¼ 4.72, p , 0.001; figure 1a).

This pattern continued with infected females exhibiting signi-

ficantly lower EPGs (n ¼ 9, t ¼ 6.92, p , 0.001) throughout the

nominal oocyst stage up to days 10–11 (figure 1a). After day

14, EPG amplitudes in the infected group increased. This

increase corresponded with the migration of the sporozoites to

the salivary glands and the females becoming infectious.

During this same period, control females began to show a gra-

dual decrease in EPG amplitude possibly owing to senescence

[21]. This resulted in the EPG amplitudes of infected females

becoming significantly higher than control females (n ¼ 10, t ¼
5.69, p , 0.001; figure 1a). Similar results were found for different

concentrations of 1-octen-3-ol and other known host odours

(see the electronic supplementary material, figures S2–S4).

(b) The effect of malaria-infected blood meal on
host-seeking

The differences in electrophysiological response were

paralleled by behavioural responses in the both long- and

short-range assays. In the long-range assay, we confirmed

that females assessed prior to the blood meal were equally

http://dx.doi.org/10.5061/dryad.j4n89
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as likely to respond to the host (n ¼ 78, Wald x2 ¼ 1.30, p ¼
0.25). Females fed on infected blood were less likely to

approach the host at the oocyst stage and more likely to

approach the host at the sporozoite stage than their age-

matched controls (figure 1b,c; treatment by malaria-stage

interaction: long-range assay: n ¼ 898, Wald x2 ¼ 16.859,

p , 0.001; short-range: n ¼ 438, Wald x2 ¼ 31.40, p , 0.001).

(c) The effect of infection status on olfactory sensitivity
and host-seeking

The malaria dissection data (visual assessment of oocyst and spor-

ozoite prevalence and intensity) did not indicate that infection

status affected the likelihood that mosquitoes fed on infected
blood exhibited the altered phenotype. Females that fed on

malaria-infected blood but in which parasites were not detected

were as likely to display the altered phenotype as those with

detectable parasites (electropalpgram recordings: n¼ 38, Wald

x2¼ 0.47, p¼ 0.49, the likelihood of recruiting to the human

host in the short-range assay: n¼ 200, Wald x2¼ 8.61, p¼ 0.13;

long-range assay: n¼ 486, Wald x2¼ 1.04, p¼ 0.90).

(d) The effect of immune challenge on olfactory
sensitivity and host-seeking

Mosquitoes challenged with heat-killed E. coli directly after

taking an uninfectious blood meal and P. yoelii-infected

mosquitoes exhibited similar phenotypes (figure 2a).
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When we compared the response in the two test periods

within a treatment, females in both unmanipulated and cold

anaesthetized control groups were less likely to respond in the

later test period (Wald x2 ¼ 314.17, p ¼ 0.001, Wald x2 ¼

18.80, p , 0.001, respectively). The response of the injury control

did not vary significantly between the two test periods (Wald

x2 ¼ 0.07, p ¼ 0.78). Females challenged with heat-killed

E. coli showed the ‘manipulation phenotype’ and, similar to

the females challenged with P. yoelii, these females exhibited a

significantly greater attraction response during the later test

period (heat-killed E. coli, n ¼ 265, Wald x2 ¼ 4.36, p ¼ 0.037,

P. yoelii, n ¼ 269, Wald x2 ¼ 15.13, p , 0.001). When we further

investigated the relationships, we found that the response across

stages for the P. yoelii challenged group was similar to the

group challenged with heat-killed E. coli (test period � group

interaction, Wald x2
2 ¼ 1.75, p ¼ 0.185), but significantly differ-

ent from the injury control group (test period � group

interaction, Wald x2
1 ¼ 8.99, p ¼ 0.003). The heat-killed E. coli

group response was not significantly different from that

of the injury control (time period� group interaction, Wald

x2
1 ¼ 3,37, p ¼ 0.07).

The EPG responses of the heat-killed E. coli group also

mirrored the malaria-exposed group, both showing signifi-

cantly lower EPG amplitudes than controls at 6–7 days

post-blood meal (n ¼ 14, t ¼ 12.60, p , 0.001; figure 2b)

and rebounding beyond the controls by days 14 and 15

(figure 2b). However, while qualitatively similar, the magni-

tude of the rebound in the E. coli group was slightly less

than the malaria group and did not differ significantly from

the controls (n ¼ 16, t ¼ 1.33, p . 0.05; figure 2b).

4. Discussion
Our observations expand the behavioural changes associa-

ted with malaria parasite infection to include stage-specific
changes in host-seeking and attraction. Female mosquitoes car-

rying the pre-infectious oocyst stage of the parasite were less

likely to be attracted to a host, whereas those at the infectious

sporozoite stage became more likely to approach the host

and attempt to feed. These stage-specific behavioural changes

were paralleled by changes in the sensitivity of the mosquito

olfactory neurons. Lefevre et al. [22] determined that the

head proteome of Anopheles females infected with Plasmodium
berghei contained proteins not found in uninfected females.

Some of these proteins were associated with regulation of the

insect central nervous system (CNS; [22]). Other studies also

report effects of various parasites on interneuron activity and

electrical excitability of neurons in the CNS [23]. However,

ours is the first example, as far as we are aware, of stage-specific

alterations in the sensitivity of peripheral sensory neurons in

any parasite–host manipulation system.

Unexpectedly, we observed the behavioural phenotype

and components of the neurophysiological phenotype in

both females definitively containing malaria parasites and

those simply exposed to an infectious blood meal (females

that either did not pick up parasites or cleared the infection

at a very early stage). Given that we determined infection

status using microscopy, it is possible that some females with

low-intensity infections could have been incorrectly classified

as uninfected. However, we also found that general immune

stimulation with heat-killed E. coli generated equivalent

‘stage-specific’ changes in host-seeking and produced similar

changes in the sensitivity of the maxillary palp olfactory neur-

ons. There were some small quantitative differences between

the EPGs of the malaria-infected and immune-challenged

females, which could indicate that the parasite is impacting

the mosquito in a different way to E. coli. Alternatively, these

differences could be owing to variation in the strength or

nature of immune response triggered by the respective chal-

lenges (it would be surprising if our single heat-killed E. coli
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challenge was exactly equivalent to the P. yoelii challenge). Such

quantitative differences notwithstanding, there was a striking

qualitative similarity between the EPGs of females challenged

with heat-killed E. coli and Plasmodium. This observation

suggests that while altered mosquito behaviour may be a pro-

duct of parasite interaction with the immune system, the

pathways used are not uniquely stimulated by the parasite.

A number of behaviours have been assigned to the

‘manipulation phenotype’. ‘At-host’ behaviours such as prob-

ing and engorgement success have been found to be altered

with malaria infection [4,6,13]. These behaviours have been

mechanistically explained by decreased production of apyr-

ase, an enzyme important for feeding efficiency [4]. There is

also evidence that infection modifies the threshold at which

females reach satiation, causing infected females, which are

already taking longer to engorge owing to difficulty probing,

to take smaller blood meals [13]. Decreased blood meal size

could lead to multiple blood meals from multiple hosts per

gonotrophic cycle [14]. Additionally, others have reported

that the head proteome [22] and salivary protein profiles

[24] differ between infected and uninfected females. The

involvement of the peripheral nervous system and immune

response reported in this study offer new insights into poten-

tial mechanisms underlying these altered phenotypes.

In our experiments, injury alone was not sufficient to trigger

an altered phenotype equivalent to Plasmodium challenge,

whereas immune activation by heat-killed E. coli and exposure

to malaria parasites (independent of whether parasites actually

established) produced roughly equivalent changes in behaviour

and neurophysiology. There was a partial response from

the injury control group that was statistically similar to the

heat-killed E. coli challenge (this might be expected as the heat-

killed E. coli challenge also included injury), but this did not

match the P. yoelii treatment indicating an additional role of para-

site/pathogen challenge. Thus, at least some of the changes we

observe appear linked to immune stimulation. This observation

does not negate the possibility that the behavioural changes

observed with infection are parasitic manipulation. It can be

extremely difficult to separate host from parasite adaptations

as causes of altered behavioural phenotypes, and many parasites

rely on host-mediated changes in behaviour to enhance trans-

mission [23]. However, given that the presence of Plasmodium
parasites was not required for manifestation of the altered
behavioural phenotype, it seems unlikely that they are directly

manipulating the mosquito via constant secretion of neuro-

modulators or other molecules that require their physical

presence in key tissues/organs like the brain [23], or that if

they are, they are manipulating pathways readily stimulated by

antigens alone. There is extensive interaction between the ner-

vous and immune system [25] and these connections are often

exploited in parasitic manipulation [23]. Furthermore, given

the apparent general nature of the response and that other insects

adaptively respond to immune challenge by altering feeding

behaviours [26], our findings also do not exclude a potential

role of an adaptive host response as a driver of this phenotype.

Whether or not the suite of behavioural changes associated

with malaria infection is parasite manipulation, host response

or some combination thereof, our results support the hypo-

thesis that malaria parasite-infected females exhibit altered

feeding phenotypes. Given the altered phenotypes appea-

red linked to a highly generalized response to infection, we

expect our results to extend to other mosquito species chal-

lenged with human malaria. Even modest effects on these

aspects of mosquito behavioural ecology could have important

consequences for transmission. All else being equal, a 20 per

cent reduction in feeding-associated mortality during the pre-

infectious stage (this is the magnitude of response we observed

in the long-range host-seeking assay) could increase the rela-

tive force of malaria infection by 60 per cent [3]. Such

impacts highlight the need to better characterize the foraging

and feeding behaviour of malaria mosquitoes and in particu-

lar, the behaviour of the small proportion of the mosquito

population actually responsible for transmission.
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