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Abstract: DNA methylation is the most studied epigenetic mechanism that regulates gene expression,
and it can serve as a useful biomarker of prior environmental exposure and future health outcomes.
This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking
city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske
Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The
main characterization of the localities, differing by major sources of air pollution, was defined by
the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed
by a genome-wide microarray method. No season-specific DNA methylation pattern was discov-
ered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison
between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = −1.92,
p = 8.30× 10−4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated
loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were
linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of
the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway
was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that
could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions
and biological processes of cell junctions and adhesion assembly. The study demonstrates that
the differences in the type of air pollution between localities can affect a unique change in DNA
methylation profiles across the human genome.

Keywords: air pollution; DNA methylation; environment; molecular epidemiology; epigenetics

1. Introduction

Long-term exposure to air pollutants has an adverse health impact and affects the
genome and epigenome [1]. DNA methylation is one of the most studied epigenetic mecha-
nisms that regulates gene expression and affects genome stability [2]. DNA methylation can
serve as a useful biomarker of exposure, and an analysis of DNA methylation gives a better
understanding of the effects of environmental exposure, as well as the role of epigenetic
mechanisms, on human health [3,4]. CpG loci, as significant biomarkers of exposure, were
summarized in a recent review [5]; they were further identified as a biomarker of tobacco
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smoke exposure in adults [6] and in smoking pregnant women [7,8], and were linked
with alcohol consumption [9]. CpG loci were also found as environmental biomarkers for
cumulative exposure to lead [10].

There is a wide range of methodological approaches for measuring the level of DNA
methylation. A commonly used method is quantitative global DNA methylation, which
represents an effective, fast and cheap solution [11,12]. However, this method cannot
distinguish between important hypo- and hypermethylated sites. Other methods are used
in epigenome-wide association studies (EWAS) [13]; these are currently mostly based on
gene-specific genome-wide DNA methylation (microarray approaches).

The effect of air pollution was widely studied in children, who are more sensitive than
adults, and in newborns, to clarify the effect of prenatal exposure [14,15]. In these studies,
the authors found an association between prenatal exposure to NO2 and particulate matter
(PM) and significant CpG loci that regulate activity of genes associated with asthma and
other pulmonary diseases. DNA methylation alterations induced by benzo(a)pyrene (B[a]P)
contributed partially to abnormal DNA methylation in air pollution-related lung cancer
samples. These changes may affect the development and progression of lung cancer [16].

Czech studies focused on the impact of air pollution on the human genome have a
long tradition [17]; a contributory factor is that one of the air pollution hot-spots in Europe
is situated in the Moravian-Silesian district, in particular in the Ostrava region. In Ostrava,
the highest concentrations of B[a]P and fine PM < 2.5 µm (PM2.5) recorded in the Czech
Republic are consistently being detected [18]. Thus, inhabitants of this locality have often
been studied in molecular epidemiological research [19]. DNA methylation profiles were
examined in asthmatic and healthy children [20]. Whole-genome gene expression was
assessed in newborns from districts with different levels of air pollution [21], and city
policemen [22,23] who worked in cities with different concentrations of air pollutants. The
assessment of cancerogenic risk after the ambient air inhalation in inhabitants of industrial
and non-industrial localities was also performed [24]. In the city of Ostrava, depending
on the locality, the prevalence of respiratory diseases, such as asthma, or recurrent airway
inflammation, is higher than the national average [25–27].

This study is a continuation of a long-term research project on air pollution’s impact
on the human genome. In this part, using microarray EPIC BeadChips (Illumina), we
evaluated the genome-wide gene-specific DNA methylation in city policemen from three
localities in the Czech Republic: Ostrava, Prague and Ceske Budejovice (CB). The study can
be regarded as both an occupational and environmental exposure investigation because the
city policemen were living in the study localities and, simultaneously, they spent most of
their working time outdoors, where they were mostly exposed to engine emissions from
car traffic, and to pollutants from local industry. Here, we aimed to find specific DNA
methylation patterns based on the quantitative data of the annotated 856,865 CpG sites,
which could be characterized by work and life in environments affected by different types
of air pollution.

2. Results
2.1. Characteristics of Study Subjects

The data on 125 city policemen (250 samples) were obtained from detailed question-
naires describing personal information, exposure history and lifestyle factors. All subjects
were nonsmoking males, who had been residents in the study cities for at least 3 years.
Table 1 shows the most important data, characterizing the potential differences between
the groups. The age spectrum of policemen covered the entire productive age, ranging
from 21 to 63 years. No differences (ANOVA, p = 0.61) in age between the city groups were
observed (40.4 vs. 39.4 vs. 38.0, respectively). The BMI of subjects covered normal weight
to obese with similar distributions in all localities. Mean values were almost identical for
all study localities (28.6 vs. 28.4 vs. 28.2, respectively) and without statistical significance
(ANOVA, p = 0.85). In the last row of Table 1, the occupation duration is shown. Most of
the subjects had a long occupation history as city policemen, with no significant differences
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between localities (ANOVA, p = 0.13; mean values are 13.94 vs. 11.78 vs. 10.22, respectively).
Only six subjects in Prague, four subjects in Ostrava and four subjects in CB, have worked
as policemen for less than 2 years and they have all completed at least secondary education.
The health data in the questionnaires showed that all policemen were of normal health
without specific dietary issues or excessive alcohol consumption.

Table 1. Basic characteristics of subjects grouped according to the study locality.

Study Locality Ostrava Prague CB

Number of samples/subjects 108/54 110/55 32/16

Age (years) 40.4; 9.3
(42.0; 21–61)

39.3; 9.2
(38.0; 23–63)

38.0; 6.4
(38.0; 22–48)Mean; SD (median; min–max)

BMI 28.6; 4.1
(28.3; 20.4–44.8)

28.4; 3.9
(28.7; 19.4–36.8)

28.2; 3.7
(27.3; 23.2–41.0)Mean; SD (median; min–max)

Occupation duration (years) 13.9; 7.9
(14.0; 0.8–26.8)

11.8; 6.7
(12.0; 1.1–25.9)

10.2; 7.5
(10.0; 0.8–26.5)Mean; SD (median; min–max)

2.2. Air Pollution Monitoring

The concentrations of air pollutants (Table 2A), used for the characterization of the
air pollution in the study cities in the three-month period before sample collection, were
obtained from the Czech Hydrometeorological Institute (CHMI; Annual tabular overview).
Further details regarding measuring frequencies and stations are described in Section 4.2.

In Ostrava, the concentrations of PM2.5 were the highest during both seasons com-
pared to other localities (p < 0.05 for Ostrava vs. others). Interestingly, the concentra-
tions of PM2.5 in Prague and CB were comparable (p = 0.42 and p = 0.15 for winter and
summer, respectively).

The concentrations of B[a]P did not significantly differ between Ostrava and Prague
in winter (p = 0.29). However, it was not the mean but rather the median in the Ostrava
and Prague winter that showed a greater difference (2.6 vs. 1.6). We found a significant
difference between Ostrava and Prague in summer (p < 0.05), and also between Ostrava
and CB (p < 0.05 for both seasons).

There were no differences in the NO2 concentrations in winter between Ostrava and
other localities (p = 0.38 and p = 0.05 for Prague and CB, respectively). However, during
the summer season, significant differences were found in all localities (p < 0.05 for both
Ostrava vs. Prague and Ostrava vs. CB). The highest NO2 concentration was observed in
Prague in summer.

For a broader comparison of long-term exposure, we summarized the mean annual
concentrations of these air pollutants in the last four years (Table 2B).

The concentrations of pollutants were relatively stable over the years. In 2019, the
lowest levels of air pollution were noted in all cities compared to previous years. The
differences between the localities correspond with the data shown in Table 2A. The highest
concentrations of NO2 were detected in Prague when compared with Ostrava.

2.3. General DNA Methylation Profiling

First, we analyzed the proportion of blood cell types in samples grouped to lo-
calities to exclude the possible effects of sample collection. The results are shown in
Figure A1 (Appendix A). The proportion of B cells, Tc cytotoxic cells (CD8T), neutrophils
and natural killer cells had a stable, comparable profile in all groups. The results for the
proportion of monocytes were on the border of significance. We found a significant variance
(p < 0.05) in Th helper cells (CD4T) between Ostrava and CB. Due to the low number of
samples from CB, we decided not to correct this discrepancy.

Before comparing DNA methylation profiles between the three localities (Ostrava,
Prague and CB), we verified the effect of season (regardless of locality, N = 125 for each
season) on the differences in DNA methylation. We did not observe any season-specific
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clustering of DNA methylation profiles, nor did we detect any differentially methylated
CpG loci (DML) (Figure 1).

Table 2. (A) Concentrations of selected air pollutants in study cities during the three-month period
before sampling. (B) A comparison of annual mean concentrations of PM2.5, B[a]P and NO2 in all
study cities in 2016–2019.

(A)

Ostrava Prague CB

Winter Summer Winter Summer Winter Summer

PM2.5 Mean; SD 24.4; 19.1 11.3; 5.3 15.0; 13.4 9.1; 4.2 15.4; 11.9 9.7; 4.2

µg/m3 Median
(min–max)

19.8
(2.6–101.8)

10.3
(3.6–40.5)

10.4
(1.5–57.4)

8.3
(2.0–22.2)

12.3
(1.5–47.6)

9.1
(3.3–22.2)

B[a]P Mean; SD 4.1; 3.3 0.3; 0.3 3.6; 3.0 0.1; 0.1 2.00; 1.01 0.1; 0.1

ng/m3 Median
(min–max)

2.6
(0.3–13.5)

0.1
(0.0–1.3)

1.6
(0.0–16.7)

0.0
(0.0–0.5)

1.7
(0.60–5.10)

0.0
(0.0–0.9)

NO2 Mean; SD 19.9; 9.4 10.9; 3.70 19.5; 8.9 17.9; 5.5 17.6; 8.2 9.8; 2.6

µg/m3 Median
(min–max)

19.0
(4.5–51.5)

10.3
(4.4–23.2)

16.9
(4.7–47.9)

18.3
(8.3–32.9)

14.1
(4.8–44.4)

9.8
(3.4–18.3)

(B)

PM2.5 (µg/m3) 2016 2017 2018 2019

Ostrava
Mean; SD

22.2; 18.3 21.7; 15.9 22.9; 18.2 17.4; 14.4
Prague 16.5; 13.8 16.7; 12.2. 18.0; 15.2 12.3; 9.9

CB 18.5; 14.8 14.6; 10.4 16.0; 13.6 12.8; 10.4

B[a]P (ng/m3) 2016 2017 2018 2019

Ostrava
Mean; SD

2.2; 0.9 2.5; 0.7 2.9; 0.9 2.0; 0.6
Prague * 0.8; 0.3 0.9; 0.3 0.8; 0.2 0.7; 0.2

CB 1.5; 0.5 1.3; 0.5 1.1; 0.3 1.2; 0.4

NO2 (µg/m3) 2016 2017 2018 2019

Ostrava
Mean; SD

16.4; 15.0 16.2; 13.6 17.2; 15.4 15.2; 13.5
Prague # 25.6; 24.0 31.0; 29.1 33.0; 31.8 28.6; 27.5

CB 15.7; 14.2 15.4; 13.7 14.9; 13.8 12.9; 6.9

*# Due to incomplete data from the Prague 5 station, we used information from other stations in other districts:
Prague 4 (B[a]P)—a 50 m distance from a main road; Prague 1 (NO2)—the main square in the city center.

Figure 1. PCA shows no differences between the spring and autumn sampling periods.
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We used all 250 samples from both seasons for the comparison of DNA methylation
profiles between localities. Based on the results of air pollution monitoring, Ostrava was
considered as a polluted locality, while Prague and CB were used as control regions,
although the localities have specific air quality profiles given by various sources of air
pollution (Table 2A,B). The comparison was set on (a) Ostrava–Prague; (b) Ostrava–CB and
(c) Prague–CB.

The results of the DNA methylation pattern clustering, analyzed by PCA, and the
cluster heatmap applied on significant DML for all compared groups, are shown in Figure 2.

Figure 2. General DNA methylation profiling represented by PCA and heatmaps for comparison:
(a) Ostrava–Prague; (b) Ostrava–CB; (c) Prague–CB. In the heatmap, hierarchical clustering for
all samples (represented by columns) for the most significant DML are shown (n = 10, n = 10,
n = 3, respectively).

A total of 13,643 CpG loci (FDR, p < 0.01) were significantly differentially methylated
(8859 hypermethylated and 4784 hypomethylated) when samples of (a) Ostrava–Prague
were compared. A total of 31 CpG loci (FDR, p < 0.01) differed in samples of (b) Ostrava–CB
(22 hypermethylated and 9 hypomethylated), while only 3 DML (FDR, p < 0.01) were found
in samples of (c) Prague–CB (1 hypermethylated and 2 hypomethylated).

The CpG loci shown in Figure 2 were summarized in a basic overview, consisting of
their relation to CpG islands (open sea, island, N/S shore and N/S shelf), a localization of
the chromosome, a reference gene, and a level of significance (presented in Table 3). From
these loci, two (cg12088417 and cg27210166) for group (a) were hypomethylated, potentially
affecting RPTOR, a gene encoding the regulatory-associated protein of MTOR complex 1.
Strongly hypermethylated CpG locus (cg18843803, log2FC = 1.95), which can affect the
protein-coding gene TSHZ3 (teashirt zinc finger homeobox 3), was identified in group (b).
Only three differentially methylated loci were found in group (c). Strong hypomethylation
of cg17265515 (log2FC = −1.59) can regulate the gene ERICH1 (glutamate-rich 1). All DML
are listed in Table S1.

We mostly found a different proportion of DML in CpG islands in group (b) compared
to all evaluated CpG. In group (a), there were more Open Sea loci than in all evaluated CpG.

In group (a), in which we could annotate methylation regions, the location of DML
was characterized in relation to putative promoter regions, 3′UTR, exons, introns, etc. We
detected a three-times-higher frequency of DNA methylation in the promoter regions than
in all annotated genomic regions (Figure 3C). All proportions are shown in Figure 3A–C.
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Table 3. Description of the 10 (or 3) most DML in samples from (a) Ostrava–Prague, (b) Ostrava–CB
and (c) Prague–CB.

CpG Locus Chromosome Relation to Island * Gene log2FC Adj p-Value

(a)
Ostrava–Prague

cg10123377 3 Open Sea – −1.92 8.30 × 10−4

cg24851651 11 S Shelf CCS −1.21 8.53 × 10−3

cg11173636 10 Open Sea RP11-170M17.1 −1.19 4.04 × 10−3

cg27210166 17 Open Sea RPTOR −0.90 2.55 × 10−3

cg08584759 10 Island C10orf47 −0.87 8.30 × 10−4

cg12088417 17 Open Sea RPTOR −0.86 7.05 × 10−4

cg02783661 12 S Shelf CCDC77 −0.78 2.91 × 10−3

cg11478607 22 Island GSTT1 0.76 8.62 × 10−3

cg26946806 22 S Shore GSTT1 0.81 8.37 × 10−3

cg12797548 1 Open Sea NME7 0.83 6.69 × 10−4

(b)
Ostrava–CB

cg13092766 2 Island BCL2L11 −0.91 7.49 × 10−3

cg13369607 19 Island SAFB2 −0.63 5.44 × 10−3

cg03275306 15 Open Sea BCL2A1 −0.53 3.63 × 10−3

cg00344443 11 Island AP000797.3 0.53 7.49 × 10−3

cg25358315 2 Island CAPG 0.57 3.63 × 10−3

cg14807682 8 Island – 0.57 7.49 × 10−3

cg17734803 1 Island FOXD3-AS1 0.62 7.49 × 10−3

cg26608883 11 Island CALCB 0.71 7.49 × 10−3

cg07019285 10 Open Sea CALML3-AS1 0.87 9.86 × 10−3

cg18843803 19 Open Sea TSHZ3 1.95 3.63 × 10−3

(c)
Prague–CB

cg17265515 8 Open Sea ERICH1 −1.59 5.05 × 10−3

cg10380095 7 Open Sea – −0.31 5.05 × 10−3

cg26953288 8 S Shore BAI1 0.55 1.48 × 10−3

Abbreviations: CCS (copper chaperone for superoxide dismutase), RP11-170M17.1 (NA), RPTOR (regulatory-
associated protein of MTOR complex 1), C10orf47 (also known as PROSER2, proline- and serine-
rich 2), CCDC77 (coiled-coil domain containing 77), GSTT1 (glutathione S-transferase theta 1), NME7
(NME/NM23 family member 7), BCL2L11 (BCL2-like 11), SAFB2 (scaffold attachment factor B2), BCL2A1 (bcl-2-
related protein A1), AP000797.3 (NA), CAPG (capping actin protein), FOXD3-AS1 (FOXD3 antisense RNA 1),
CALCB (calcitonin-related polypeptide beta), CALML3-AS1 (CALML3 antisense RNA 1), TSHZ3 (teashirt zinc
finger homeobox 3), ERICH1 (glutamate-rich 1), BAI1 (adhesion G protein-coupled receptor B1); — (out of gene).
* Gene transcription is dependent on location of the CpG loci in the genome [28]. Islands are densely covered
by CpG sites, mostly situated in promoters of housekeeping genes. Shores are tissue-specific regions with lower
density of CpG sites, 2 kb distance from CpG islands. Shelves (2–4 kb from CpG island) and Open sea (>4 kb from
CpG island) are more dynamic regions [29].

2.4. Differentially Methylated Groups of Loci and Geneset Enrichment

For the Ostrava–Prague comparison, we detected differentially methylated groups
(DMG) with numerous DML. DMG with more than seven CpG are listed in Table S2. Some
of those located in Island/Shore regions with high relevance to health impacts are shown
in Table 4A and discussed in Section 3. For further analysis, we selected groups with
more than 15 CpG sites (Table 4B). A total of 20 CpG sites were annotated to the RPTOR
gene, which is also shown in Table 3, with the most differentially hypomethylated loci
(cg12088417, cg27210166). The COL23A1 encodes a transmembrane nonfibrillar collagen. It
is potentially regulated by 17 DML, of which 15 are hypermethylated. We also found the
16 CpG loci annotated to the gene that plays a key role in cardiac action potential (KCNQ1).
PTPRN2, annotated to 16 mostly hypomethylated DML, encodes the tyrosine phosphatase,
a major islet autoantigen in type-1 diabetes.

For 13,643 CpG loci in the Ostrava–Prague comparison, 5881 genes were annotated
(based on ETREZID). These genes were used for gene ontology and gene set enrich-
ment (Figure 4A,B). We obtained significant Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways with more than 50 potentially regulated genes in pathways (Figure 4A),
among which signaling cascades prevail. The significant potentially affected pathways
(adj. p-value < 0.01) with the highest number of genes were the PIK3A-Akt signaling path-
way (hsa04151, 126 genes) and the MAPK signaling pathway (hsa04010, 110 genes). The
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most significant pathway (adj. p-value = 1.45 × 10−6) was Axon guidance (hsa04360,
86 genes). The genes usually formed an overlap of several biological pathways, creating
higher functional units—biological processes. Functional clusters (Figure 4B) based on mea-
suring distances between the genes were formed mainly for adherens junction assembly
and neuronal functions and development, which covered more than 100 regulated genes in
each individual process. Other significant pathways (adj. p-value < 0.05) are summarized
in Table S3.

Figure 3. A proportion of annotated CpG loci according to distance from CpG islands for differentially
methylated sites for the Ostrava–Prague group compared to all evaluated CpG loci (A), where the
highest representation of loci is in Open Sea. A resolution to hypomethylated and hypermethylated
sites is comparable (B). A proportion of annotated methylated genomic regions to gene position
shows a higher proportion of promoters in Ostrava–Prague annotated genomic regions than in all
genomic regions (C).

Table 4. (A) Selected DMG with high relevance to health impacts discussed in Section 3. The main
importance is adopted from the Human Gene Database (genecards.org). N = number of DLM;
chr = chromosome; Hypo = hypomethylated loci; Hyper = hypermethylated loci. All parameters for
these DMG are shown in Table S2. (B) Selected DMG with more than 15 loci in one annotated gene.

(A)

Gene CpG Probes Adj. p-Value (Min–Max) Importance

XRCC5
(N = 2: chr 2) Hypo: cg23433242, cg01633232 5.62 × 10−3,

2.79 × 10−3
DNA repair–non homologous

end joining (NHEJ)

NR4A2
(N = 9: chr 2)

Hyper: cg14617996, cg11209121, cg11358945,
cg00194126, cg03339537, cg06101180,
cg14811105, cg20570611, cg13500877

4.61 × 10−3

–
9.60 × 10−3

Autoimmune diseases,
neurodegenerative diseases

CDK2AP1
(N = 9: chr 12)

Hyper: cg10289269, cg05760918, cg01660796,
cg01247747, cg02017926, cg25326086,
cg08696931, cg25630910, cg10411075

7.40 × 10−4

–
6.28 × 10−3

Reduction in cell proliferation,
Cell cycle termination
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Table 4. Cont.

(B)

Gene CpG Probes Adj. p-Value (Min–Max) Importance

RPTOR
(N = 20: chr 17)

Hypo: cg12088417, cg17614805, cg27210166,
cg00545580

Hyper: cg12654199, cg22386583, cg13549638,
cg07856428, cg22091236, cg15230985,
cg27457201, cg02675920, cg22652378,
cg08129331, cg13159505, cg22255288,
cg15781195, cg14343513, cg07702089,

cg05098037

7.05 × 10−4

–
9.15 × 10−3

RPTOR encodes part of a
signaling pathway regulating
cell growth which responds to

nutrient and insulin levels.

COL23A1
(N = 17: chr 5)

Hypo: cg06485308, cg02119888
Hyper: cg08862479, cg17649857, cg24705158,

cg06882830, cg04686319, cg18816996,
cg21871330, cg21768539, cg25153741,
cg24830898, cg05206633, cg08684511,
cg26994283, cg24527008, cg00561180

1.16 × 10−3

–
9.08 × 10−3

COL23A1 encodes a
transmembrane nonfibrillar

collagen. This kind of collagen
has a single pass hydrophobic

transmembrane domain.

KCNQ1
(N = 16: chr 11)

Hypo: cg21752270, cg00243281, cg24492694,
cg06827779

Hyper: cg23762359, cg05472575, cg12141659,
cg11887188, cg16465939, cg08741300,
cg11700071, cg21130221, cg05438727,
cg05993525, cg07618453, cg06485603

4.62 × 10−3

–
9.5 × 10−3

This gene encodes a
voltage-gated potassium
channel required for the

repolarization phase of the
cardiac action potential.

PTPRN2
(N = 16, chr 17)

Hypo: cg04694534, cg06679384, cg13218485,
cg01726608, cg12138780, cg18395809,
cg16486501, cg06649856, cg15272173,

cg04799270
Hyper: cg09656639, cg26208815, cg17291423,

cg23634928, cg04007350, cg02704570

2.35 × 10−3

–
7.75 × 10−3

Protein tyrosine phosphatase,
receptor type N2 encodes a

major islet autoantigen in type-1
diabetes. PTPRN2 plays an

important role in the epigenetic
regulation of metabolic diseases

and cancers.

Abbreviations: XRCC5 (X-Ray Repair Cross-Complementing 5), NR4A2 (Nuclear Receptor Subfamily 4 Group A
Member 2), CDK2AP1 (Cyclin-Dependent Kinase 2-Associated Protein 1), RPTOR (regulatory-associated protein
of MTOR complex 1), COL23A1 (Collagen Type-XXIII Alpha 1 Chain), KCNQ1 (potassium voltage-gated channel
subfamily Q member 1), PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2).

Figure 4. Cont.
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Figure 4. Gene ontology characterized by KEGG-affected pathways for genes annotated to significant
CpG loci (A). The gene set enrichment map based on the distance of each gene in biological processes (B).

3. Discussion

We report the unique study of gene-specific genome-wide DNA methylation profiles
in 125 policemen working in cities in the Czech Republic with various types of air pollution.
The assessment of the effect of air pollution is not straightforward; therefore, we tried
to reduce the impact of lifestyle factors as much as possible by selecting similar cohorts
(Table 1). The study is part of a complex project, “Healthy Aging in an Industrial Envi-
ronment”, the main aim of which is to find specific biochemical, genetic and epigenetic
biomarkers of effect, mainly caused by air pollution exposure in different localities and
in various population groups. In policemen, we sampled the same cohort in two rounds
(in spring and in autumn, at the end of the winter and summer seasons, respectively).
The experimental design, based on the analysis of different seasons in Ostrava policemen,
was used in a recent study of semen quality and sperm DNA integrity [30]. The authors
showed that sperm chromatin damage and the percentage of immature sperm were highly
sensitive to air pollution. We also assessed the effect of seasons on DNA methylation
patterns, but as no effect and no differentially methylated loci were detected (Figure 1),
we included all samples of the policemen (N = 250) in the analysis. We hypothesize that
the short-term effects of different levels of air pollution in individual seasons do not in-
fluence the DNA methylation pattern. This assumption is based on the fact that there are
periods in human life when DNA methylation profiles are susceptible to change (prenatal,
early childhood and older age) [31], while DNA methylation is generally relatively stable.
On the other hand, another study described the effects of a 24-h short-term exposure to
PM2.5 on genome-wide DNA methylation, using the same platform (Illumina Infinium
Human Methylation EPIC BeadChip) that we applied in our study [4]. However, the
authors used controlled indoor exposure for a short time, and they detected only a small
number of DML.

For the characterization of localities and impact of air pollution on DNA methylation
patterns, we compared three pollutants in the three-month period before both sampling
points, as in a previous study [20]. Moreover, we used annual mean concentrations for
four consecutive years. In Ostrava, the highest levels of PM2.5 and B[a]P were detected,
while PM2.5 concentrations were comparable in Prague and CB. No differences in NO2
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concentrations in winter were observed between Ostrava and the other two localities. The
highest long term annual mean concentrations of NO2 were identified in Prague, where
the traffic intensity and NO2 levels along/near roads showed positive correlation [32]. The
authors of this study used passive samplers at 65 locations in Prague, and found that 32%
of locations exceeded the EU annual limit of 40 µg/m3.

We concluded that the localities were mostly characterized by diverse types of air
pollution, rather than by high differences in the concentration of air pollutants. The main
cause of air pollution in Prague is road traffic, where intensities exceed all other cities in the
Czech Republic. Ostrava is characterized by common winter inversions; the city is located
close to the Polish border with heavy industry and coal mines producing high levels of
air pollutants, along with local industrial emissions. However, air quality in the city has
shown an improving trend over the last decades [18].

By comparing the proportion of blood cell types, we found a significant variance
in CD4T between the Ostrava and CB samples (Appendix A). We hypothesize that the
discrepancies between the groups may be related to low sample numbers in CB. On
the other hand, the differences in cell proportion can also be an important regulatory
mechanism in response to the environment [33,34].

After merging the sampling periods and through the analysis of 250 samples, we
found 13,643 CpG loci for the Ostrava–Prague comparison. Only 31 DML were detected
for the Ostrava and CB comparison; we further observed three DML when the Prague and
CB samples were compared. We detected almost twice the hypermethylated DML than
hypomethylated ones, and a three-times-higher frequency of promoter methylation than in
all the annotated genomic regions. The loci in promoters are more biologically significant
with the potential to affect gene expression [35].

Our previous study was focused on the whole-genome gene expression response
to long-term exposure to air pollution in men from Ostrava and Prague during several
seasons [22]. Although no clear relationship between concentrations of air pollutants and
gene expression profiles was found, the reduced gene expression was observed in the
Ostrava men compared to the controls. In the Ostrava cohort, an increased expression
of XRCC5 was found [23]. XRCC5 encodes the protein Ku80, a key player of the DNA
repair mechanism NHEJ, in which it binds the DNA breaks [36]. In this study, we found
the two hypomethylated loci (cg23433242 and cg01633232; Table S1) annotated to XRCC5.
Regardless of whether we found differential DNA methylation in other NHEJ genes as
in [23], we can hypothesize that epigenetic modification of a single gene might be sufficient
to affect DNA repair functions [37].

Comparing Ostrava and Prague, the most hypomethylated DML was found to be
CpG locus cg10123377. This CpG locus was also found in the study of patients with
systematic lupus erythematosus in CD8T+ cells [38]. Two of the hypermethylated loci
(cg11478607 and cg26946806) located in Island and S Shore, respectively, are annotated to
the GSTT1-encoding xenobiotic metabolizing enzyme, which plays an important role in
human carcinogenesis [39] and impacts the markers of genotoxicity [40]. Single-nucleotide
polymorphisms (SNPs) in GSST1 were widely studied in relation to the interaction ef-
fects of long-term air pollution exposure on the risk of acute myocardial infarction and
hypertension, with high susceptibility to air pollution being a promoter of coronary vulner-
ability [41].

Comparing Ostrava and CB, we found the strongly hypermethylated CpG locus
(cg18843803), which can affect the protein-coding gene TSHZ3. This gene controls the
development of diverse components of the circuitry required for breathing. The protein
Teashirt 3 regulates the development of neurons involved in both the respiratory rhythm
and airflow control [42]. The reduced expression of this gene and the consequent caspase
upregulation may be correlated with the progression of Alzheimer’s disease [43].

In more detail, we focused on groups of differentially methylated loci annotated to
the same gene in Ostrava samples, compared to the Prague samples (above seven CpG
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in Table S2; and a selection of genes with the highest proportion of groups of DML in
Table 4A,B).

The highest number of groups of DML was annotated to the RPTOR gene (N = 20).
RPTOR is a key component in mTOR pathway, a cell-signaling pathway commonly deregu-
lated in human cancer, which plays roles in mRNA translation, autophagy, cell growth and
immune responses (it restricts proinflammatory and promotes an anti-inflammatory re-
sponse) [44,45]. RPTOR responds to nutrient and insulin levels to regulate cell growth [46].
The deregulation of this gene and pathway is associated with various human diseases,
including cancer and diabetes [47,48]. The mTOR pathway (hsa04150) was also found
among the significantly affected KEGG pathways (Table S3) that contain 59 genes which
are potentially regulated by DML.

DMG, with the second highest number of DML, regulates COL23A1. Collagen XXIII
is considered as a biomarker for the detection and recurrence of non-small-cell lung car-
cinoma and the reappearance of prostate cancer [49,50]. A total of 16 CpG loci, mostly
hypermethylated, are annotated to the KCNQ1 gene, which encodes the voltage-gated
potassium channel required for the repolarization phase of the cardiac action potential [51].
A hypermethylation of KCNQ1 is associated with poor semen parameters or male infer-
tility [52]. Another study showed, by identifying temporal differences in the imprinting
status and methylation effects, that the intronic KCNQ1 locus mediates susceptibility to
type-2 diabetes [53]. A major autoantigen associated with insulin-dependent diabetes
mellitus [54], PTPRN2 (protein tyrosine phosphatase), was identified for the 16 mostly
hypomethylated CpG loci. Methylation in PTPRN2 is associated with childhood asthma
and chronical obstruction pulmonary disease in adulthood [55], and it is also related to
residential proximity to major roadways in the placenta samples of pregnant women [56].

Nine hypermethylated CpG loci in the Shore/Island region regulate NR4A2, a mem-
ber of the nuclear receptor family of intracellular transcription factors (adopted from
GeneCards). NR4A2 plays a key role in the maintenance of the dopaminergic system of the
brain [57], and it is also highly expressed in peripheral blood leukocytes [58]. NR4A2 is
involved in autoimmune and neurodegenerative diseases, especially in Parkinson’s disease,
where the reduced expression of this gene in peripheral blood can be considered as a
potential biomarker for diagnosis, and a promising approach to therapy [59–62]. Another
nine hypermethylated CpG sites can reduce the expression of CDK2AP1, which encodes
cyclin-dependent kinase 2 (CDK2), which is important in the reducing of cell proliferation,
contributes to cell cycle termination, and is a known tumor suppressor [63].

The most significantly affected pathway, the Axon guidance (hsa04360), contains
86 potentially regulated genes. Changes in the expression or function of these proteins
might induce pathological changes in neural circuits that predispose to, or cause, neu-
rological diseases [64]. Several of the genes in this pathway, which were found close to
demethylated loci, were identified in patients with early-onset Alzheimer’s disease [65].
The largest cluster presented in Figure 4B gathered the most significant biological pro-
cesses, with considerable potential gene regulation in neuronal functions. The second
firm cluster includes the functions of cell junctions and adhesion assembly. These biologi-
cal functions are potentially affected by DNA methylation in the Ostrava sample groups
compared to Prague.

This study is first that involved a large set of policemen from different air-polluted
cities, in whom genome-wide gene-specific DNA methylation was evaluated. It is well
known that DNA methylation is a useful biomarker of prior environmental exposure and
future health outcomes. However, it can be also affected by many factors of lifestyle and
lifetime exposure. Although we could not determine all these factors and separate a specific
role of air pollution, we identified the potential biomarkers that will be further studied. For
a follow-up study, we have extensive questionnaire data of the complete exposure history
of every individual, which will be linked with DNA methylation results to obtain more
comprehensive outcomes in this molecular-epidemiological study.
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4. Materials and Methods
4.1. Study Subjects

The study subjects were 125 male city policemen working in three cities in the Czech
Republic (Prague, N = 55; Ostrava, N = 54; CB, N = 16), all involved in the project in two
rounds in 2019: spring (March/April) and autumn (September/October). The cohorts
of policemen were chosen as groups that spend most of their working time outdoors.
Different cities are characterized, among other factors, by different levels and types of air
pollution. Prague is the capital of the Czech Republic and its most densely populated area.
Road traffic most significantly contributes to the level of air pollution in Prague. Ostrava
is the third largest city, with a long history of coal mining and heavy industry. To date,
the Ostrava region is known as one of the European hot spots of air pollution due to its
geographical location close to the industrial region of Poland, frequent inversions in winter,
heavy traffic and local industrial emissions. The third city, CB, was usually selected as a
control locality in our previous studies [21,66,67], due to its close proximity to the Sumava
National Park and the large agricultural area in the district (more details given in Table 1).

4.2. Air Pollution Monitoring

Daily concentrations of selected air pollutants (PM2.5, B[a]P and NO2) during both
three-month periods before sampling (winter and summer), as well as the annual averages
from 2016 to 2019, were obtained from the Annual tabular overview, CHMI
(http://portal.chmi.cz/?l=en (accessed on 27 January 2022)). Data were acquired by auto-
matic air pollution monitoring in each city. The stations were located representatively for
patrol activities of city policemen. In the city of Ostrava, we used the main CHMI station in
Ostrava–Poruba located in a residential area close to a gas station. In Prague 5, we selected
two stations: for B[a]P and NO2 monitoring, a station in Prague–Reporyje was situated in a
school garden; for PM2.5, a station was placed in Prague–Stodulky in a housing estate. In
CB, the stations were located in urban and residential areas. The measurement frequency
was daily in the case of PM2.5 and NO2. For B[a]P, the data were obtained twice a week.

4.3. DNA Methylation Analysis

A total of 250 samples of the venous blood of 125 policemen (every policeman provided
samples in two sampling periods) were collected into vacuettes containing ethylenedi-
aminetetraacetic acid (EDTA), and frozen at −20 ◦C for later use. Genomic DNA (gDNA)
was extracted using Miller’s salting out method [68]. gDNA (1000 ng) was treated overnight
with sodium bisulfite using the EZ DNA Methylation Kit (Zymo Research, Irvine, CA,
USA) for the conversion of unmethylated cytosines to uracils, while methylated cytosines
remained unchanged. The bisulfite-converted DNA (BCD) samples were stored at −20 ◦C
until use. BCD was processed using the Infinium Methylation EPIC Kit (Illumina, San
Diego, CA, USA) according to the manufacturer’s protocol (Infinium HD Methylation As-
say Protocol) including enzymatic fragmentation, precipitation and hybridization, followed
by BeadChip washing and staining. Each BeadChip consisted of 8 samples. The chips
allowed the detection of over 850,000 methylation sites per sample across the genome at
single-nucleotide resolution. The methylation status at each CpG site, scanned by the iScan
System (Illumina, San Diego, CA, USA), was estimated by measuring the intensity of the
pair of methylated and unmethylated probes.

4.4. Statistical Analysis

The descriptive statistics of epidemiological data from questionnaires (age, BMI,
exposure history), air pollution (differences in concentrations) and cell type proportion,
were carried out using R-stats. Depending on the distribution of the data, the t-test or
the nonparametric Mann–Whitney Sum U-test was used for the comparison of individual
groups and ANOVA was used for factor analysis. All advanced statistical analyses related
to methylation were processed using scripting in an R environment.

http://portal.chmi.cz/?l=en
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Raw microarray data were downloaded as idat files, imported to the R environment
and processed with the minfi package [69]. Data were normalized using the quantile
method. A series of filtering was performed. Probes with SNPs at CpG sites and the cross-
reactive probes were also excluded to obtain the resulting number of 794,441 probes [70].
We estimated associations between principal components and slide factors, and used the
Combat function (sva package) for batch correction [71].

Beta values for the determination of the level of methylation as the ratio of the fluo-
rescent signals from the methylated vs. unmethylated sites were also calculated using the
minfi package. Preprocessing analyses were performed to study the distribution of beta
values and the variation of methylation across all samples.

PCA was performed to identify the variance using covariance matrix, and to detect the
potential effects of season and locality. We identified differentially methylated loci using
the top Table function (limma package) [72]. For multiple testing of the false discovery rate
(FDR), the p-values for the contrast of interest were adjusted to be below <0.01, which is
regarded to be the most appropriate for microarray analysis [73].

The proportions of genomic regions to gene positions were analyzed using the annotatr
package [74]. An annotation of the CpG site to ENTREZID, plots of the KEGG pathways and
an enrichment map were obtained using clusterProfiler package v4.0 [75]. The proportions
of blood cell types presented in Appendix A were calculated using the ENmix package [76].

5. Conclusions

This study focused on the comparison of DNA methylation profiles in city policemen
working and living in localities that differ in terms of major sources of air pollution. The
sampling was conducted repeatedly in two seasons (spring and autumn in the same year).
The obtained results clearly demonstrated that there was no effect of season, which corre-
sponds with relatively slow changes in DNA methylation settings in adults. On the other
hand, the effects of the different localities with various exposure profiles were clearly visible.
For genetic toxicology, the results indicating differences in xenobiotics metabolism and
repair and neurodevelopment pathways can be considered the most significant. However,
the associations of DNA methylation changes with various diseases, particularly diabetes
mellitus or neurodegenerative or respiratory diseases, are often reported. Our observations
support the hypothesis that epigenome modification is an effective process for the optimal
management of the genome function in response to various types of environments, but it is
also a risk factor for future disease development.
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3′UTR 3′ Untranslated region
B[a]P Benzo(a)pyrene
BCD Bisulfite-converted DNA
BMI Body mass index
CB Ceske Budejovice
CpG Cytosine-phosphate-Guanine dinucleotide
DML Differentially methylated loci
DMG Differentially methylated groups of loci
EDTA Ethylenediaminetetraacetic acid
gDNA Genomic DNA
EWAS Epigenome-wide association study
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PM Particulate matter
PM2.5 Particulate matter less than 2.5 µm in diameter
SNPs Single-nucleotide polymorphisms

Appendix A

Figure A1. T lymphocytes—Th helper cells; CD8 T lymphocytes—Tc cytotoxic cells; NK cells—natural
killer cells (between CB, Ostrava and Prague samples).
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