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Abstract

Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt
transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical
analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-
term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this
dataset with Fisher Information and multivariate time series modeling showed that there was a,2000 year period of
instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate
change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to
test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over
periods of multiple millennia.
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Introduction

Ecosystems can undergo regime shifts and reorganize into an

alternative state when a critical threshold is exceeded [1–3]. Most

quantitative regime shift research has focused on abrupt shifts that

have occurred during a period of human observation; this has

resulted in a better understanding of how fast variables (e.g.

nutrient loading) erode resilience, but it hasn’t addressed how slow

variables (e.g. long-term changes in climate) can alter ecosystem

state. Paleoecological records can provide insight on the frequency

and duration of transitions between alternative states in systems

that are affected by both fast and slow variables, at timescales not

accessible in the observed record.

To test for regime shifts in the paleoecological record, we used a

long-term high-resolution sedimentological record from Foy Lake

(Montana, USA) that showed abrupt changes in diatom commu-

nity structure at ,1.3 ka (thousands of years before present, with

present defined as AD 1950). Foy Lake (48.1648uN, 1143589uW,

1005 m elevation) is a deep freshwater lake situated in the

drought-sensitive Flathead River Basin in the Northern Rocky

Mountains [4,5]. Diatom assemblages in this system are sensitive

to changes in lake depth driven by changes in effective moisture

[6] and represent one metric of ecological resilience. The percent

abundances of 109 diatom species were collected from a lake

sediment core that was sampled continuously at an interval of

every ,5–20 years, yielding a ,7 kyr record of 800 time-steps.

To determine if regimes shifts could be anticipated in this

paleoecological data set we (i) plotted several indicators proposed

to be early-warning signals of approaching critical thresholds

(increasing variance, skewed responses, kurtosis, and the autocor-

relation at lag-1) [7] against time, (ii) collapsed the 109 species

variables into the system’s mean Fisher information (FI) [8], and

(iii) used multivariate time series modeling based on canonical

ordination [9]. Many of these statistical early-warning signals have

been developed based on bifurcation theory, and they have

successfully anticipated regime shifts in many [10–13], but not all

[14] systems tested. Increasing variance, skewed responses, and

kurtosis in time-series data may be indicative of flickering, the

rapid alternating between two different states prior to a regime

shift [15]. Along with autocorrelation at lag-1, increasing variance

in time-series data can be caused by critical slowing down, where a

system is slow to recover from minor disturbances as it approaches

a critical transition [7]. These univariate metrics can be limited in

their utility, because appreciable signals often occur at the onset of

the regime shift, which is generally too late to implement effective

management actions [16]. Hence, we sought methods (FI and

multivariate time series modeling) that more effectively investigate

the dynamics of complex multivariate systems. FI, an integrated

index based on information theory, declines as it approaches a
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regime shift, indicating loss of order and increasing variability, and

the regime shift is typically identified as a minimum FI value.

Afterward, FI will often increase before settling into a new regime

[8]. FI has been used to evaluate stability, regime shifts, and

resilience in real complex systems, including ecosystems, climate

data, urban systems, and nation states [8,17–25]. Multivariate

time series modeling, which models the fluctuation of the

frequencies of species or groups of species at distinct temporal

scales [9], complements the FI approach. Multivariate time series

modeling is sensitive to changes in the abundance and occurrence

structure of species in the community. It is capable of identifying

scale-specific temporal patterns (fluctuations at scales of decades,

centuries, and millennia) in the data and therefore permits

assessing how transitional and regime dynamics manifest across

the modeled time scales. A key advantage of using these two

methods with paleoecological data is that neither requires a priori
knowledge of system structure or dynamics [8–9].

Results and Discussion

Of the indicators used, we found that univariate species-level

indicators were weak predictors of regime shifts. Skewness,

kurtosis, and critical slowing down showed minor changes in the

frequency patterns of some variables. Several species showed

increased variance prior to the abrupt change in species

composition at ,1.3 ka. However, most of the species provided

no warning signal; hence, conclusions about the dynamics of the

overall system were unclear (Fig. 1). Since indicators must be

computed for each variable (i.e., diatom species) individually,

characterization of the overall system is difficult [8]. For example,

the variance of two diatom species, Cymbella cymbiformis and

Amphora veneta, showed very different patterns in variance

(Fig. 2). The former would be a good candidate for anticipating

the transition in community structure in Foy Lake, while variance

in the latter species was random in relation to large scale

community shifts. While some particular species might serve as a

leading indicator of a regime shift in this system, it is impossible, a
priori, to identify which species might be appropriate to monitor.

In addition, an early-warning indicator species that is effective in

Foy Lake may not be useful in other systems, because of

differences in physical, chemical, or biological variables that affect

community interactions. In summary, it was difficult to detect a

community-level regime shift from any of the traditional indicators

of early-warning signals, because of the multivariate nature of the

study system and the univariate capacity of indicators.

Fisher information identified a substantial regime shift in the

system prior to the abrupt community change. The mean FI

results indicated that the system was in a steady state (regime one)

from ,7.0 to ,4.5 ka. This was followed by a ,2 kyr period of

instability, before it returned to a steady state (regime two) at

,1.3 ka (Fig. 3). The long period of instability was followed by an

abrupt increase in mean FI at ,2 ka denoting a regime shift [23],

which preceded the system regaining stability at ,1.3 ka, and,

thus, returning to a steady state. Regimes one and two are

considered stable states, because there is no overall directional

trend in mean FI values during those periods [23]. During the

,2 kyr period of instability, the mean FI decreased steadily,

indicating the system was losing dynamic order, and therefore

resilience [8]; this slow period of change is a warning of the

impending regime shift at ,2.0 ka.

Multivariate time series modeling revealed eight different

temporal patterns in the diatom data set that were associated

with eight significant canonical axes in the redundancy analysis

(RDA) model. Each of these canonical axes reflects a modeled

frequency pattern of individual species or groups of species in the

diatom data set. The first three canonical axes capture 55% of the

variance used to summarize the transitional dynamics and regime

shifts (Fig. 4). The first axis explained the most important pattern

in the data set (29% of adjusted variance explained); it separated

regime two at ,1.7 ka from all prior time points (Fig. 4). Axes two

and three, which explain 18% and 8% of the variability,

respectively, separated the time series into three periods: the first

regime from the beginning of the record to ,4.8 ka, the period of

instability that lasts ,2 kyr, and a second regime that begins at

,1.7 ka. The frequency patterns in the three axes generated with

RDA showed temporal patterns of change that are not exactly the

same as those detected in the FI results, but that are complemen-

tary. The areas that differ most are the ages of both the onset of

instability and of the regime shift; these differences likely occur

because FI is a composite of all species, whereas the multivariate

analysis partitions species into groups. RDA axis one is a long time

interval that includes both regime one and the subsequent

transition period between regimes one and two. The major axis

break at the onset of regime two suggests that regime two is the

stronger of the two stable-states in the system’s history. This

interpretation is supported by the higher mean FI and lower

standard deviation in FI of the second regime (Fig. 4). This pattern

was driven by a sudden shift in the relative abundance of diatoms,

marked by the onset in numerical dominance of one species

(Cyclotella bodanica var. lemanica) during the second regime

(Fig. 1). The transitional period, delineated by mean FI, is not

present in the first axis of the time series analysis (Fig. 4). However,

it is evident in subsequent axes and reflects gradual changes in

species composition and dominance patterns (Fig. 1, 4).

The regimes, transitional period, and regime shift detected by

FI and time series modeling are consistent with ecological and

regional climate patterns. Foy Lake was a moderately deep lake

with a diverse planktic and benthic flora during regime one.

Throughout the period of instability, the lake was much shallower

and dominated by a benthic flora, and during the more recent

regime two, Foy Lake was a deep lake dominated by Cyclotella
bodanica var. lemanica, a planktic species [26]. It is possible that

either intrinsic (e.g. nutrients) or extrinsic (e.g. climate change)

drivers, or a combination of both are responsible for the abrupt

ecological change [27]. However, synchronous change in multiple

climate records from the region suggests that extrinsic drivers are

likely the cause of the changes to the diatom community structure

at Foy Lake. A pattern of recurrent multi-decadal drought in the

Foy Lake region ended abruptly ,4.5 ka [26]; this is at the

approximate time that regime one ends and the ,2 kyr period of

instability begins. A shift in the dynamics of the climate system is

also evident in multiple other mid-continental paleoclimatic

records at ,4.2 ka [28]. At ,1.3 ka multiple regional lake

records show a synchronous shift in diatom community structure

[29], and regular patterns of reoccurring drought returned to the

Foy Lake region [30]. Thus, the intervals of recurrent drought on

multi-decadal scales coincide with the identified stable regimes in

Foy Lake, whereas the onset of the period of instability occurs

during a time of persistent severe drought in the mid-continent.

There is a lag between the FI identified regime shift and the abrupt

change in diatom community structure (from ,2 ka to 1.3 ka).

This lag period is coincident with regional synchronous shifts in

diatom communities at multiple lakes at ,2.2 ka, ,1.7 ka, and

,1.35 ka. This suggests that emerging from a period of instability

may involve several smaller short-lived transitions in ecosystem

state before long term stability is achieved.

Paleoenvironmental and paleoecological data provide a vital

and fundamental perspective on the long-term functioning of
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Figure 1. Early warning signals of regime shifts applied to 109 diatom species from Foy Lake. Several populations of species experienced
increased variability in the Foy Lake record; this increased variability peaks prior to ,1.3 ka (A). Skewness (B), kurtosis (C), and critical slowing down
(D) show no clear trends, although, slight frequency changes can be detected at approximately ,4.5 ka and ,2.0 ka.
doi:10.1371/journal.pone.0108936.g001
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complex ecological systems. Here we reveal that climate-driven

regime shifts may be infrequent over time in systems not impacted

by anthropogenic change, and that transitional periods leading to

a regime shift can last a relatively long time (,2.0 kyr). Delayed

responses and time lags have been found in other ecosystems [31–

33], and these may provide a false sense that the ecosystems are

stable, leading to their mismanagement [34]. It is likely that some

ecosystems are currently in prolonged periods of instability,

whereby they are losing resilience and are exposed to compounding

stresses driven by anthropogenic change. Moreover, when

disturbance is large-scale and long-term, some early-warning

signals may occur long before the system settles into an

alternate stable regime, and the lag between signal and stability

may be difficult to predict. Here we suggest effective tools (FI

and multivariate time series modeling) to detect and understand

changes in those ecosystems that are susceptible to periods of

prolonged instability prior to regime shifts.

Figure 2. The variance of two diatom species. While Cymbella cymbiformis displayed a pattern of increasing variance prior to ,1.3 ka, Amphora
veneta did not. Conflicting patterns make it difficult to use univariate statistics to characterize the behavior of a complex multivariate system.
doi:10.1371/journal.pone.0108936.g002

Figure 3. Normalized diatom species abundance for all species (A) and mean Fisher Information (B) for Foy Lake. Prior to ,4.5 ka the
system had episodic fluctuations in species composition and mean FI, but the overall mean of the FI is unchanging; this suggests that this period was
a stable regime characterized by high variability. At ,4.5 ka species evenness decreases, and the system begins a ,2 kyr gradual decrease in mean
FI. Decreases in FI suggest the system is becoming unstable; as instability increases resilience decreases, warning of a possible regime shift. The
system was in this unstable transitional period until ,2 ka, but it did not attain a new stable-state until ,1.3 ka.
doi:10.1371/journal.pone.0108936.g003
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Methods

Calculating Early Warning Signals
Rising variance, skewness, kurtosis, and critical slowing down

are statistical measures that have been proposed and employed as

indicators of impending regime shifts [11,16,35–37]. Most of the

indicators (i.e., variance, skewness, and kurtosis) are straightfor-

ward and can be computed using readily available functions in

standard statistical packages (e.g., the Matlab function for

computing variance is var). Critical slowing down is estimated

by using the lag-1 autocorrelation coefficient [11]. Hence, the

autocorrelation function is used to calculate this indicator. For the

sake of consistency, all statistical indicators were computed from

the percent abundance of each diatom species given the same

window size (10 time steps) over the 7 kyr record using Matlab

(Release 2012a, Mathworks, Inc.).

Fisher Information
Fisher information (FI) can be used to evaluate the dynamic

order of ecosystems, including regimes and regime shifts [23–24].

Unlike early warning signals, FI characterizes changes in complex

system dynamics as a function of patterns in underlying variables

(e.g., species abundances of diatoms) by collapsing their behavior

of into an index that can be tracked over time [23]. The form of

Fisher information (I) used in this work was adapted by Fath et al.

[18] and Mayer et al. [38].

I~

ð
1

p(s)

dp(s)

ds

� �2

ds ð1Þ

Here, p(s) is the probability of observing the system in a

particular condition (state, s) of the system. This equation was

adapted [17–18], such that FI could be computed analytically or

estimated numerically [23]. The numerical approach of FI was

applied in this work and calculated from the following expression

(derived in detail by Karunanithi et al. [23]:

FI~4
Xn

i~1
qi{qiz1½ �2 ð2Þ

where, the probability density p(s) is replaced by its amplitude

(q2(s);p(s)) in order to minimize calculation errors from very small

p(s). From Equation 1, note that FI is proportional to the change in

the probability of a system being in a particular state (p(s)) versus

the change in state ds, i.e., FI/dp/ds [18].

Figure 4. The first three significant axes of the multivariate time-series modeling. The proportion of variance explained by each axis is
29%, 18%, and 8% respectively. The amplitude of the frequency is low in axis one (A) with a major shift in score at ,1.7 ka, indicating a regime shift
to an alternate state. This regime shift occurred when the lake changed from a shallow lake dominated by benthic taxa to a deep lake dominated by
planktic taxa. Frequency pattern changes are present in axes two (B) and three (C) at ,4.8–5 ka and ,2–1.3 ka, at the beginning and the end of the
period of instability.
doi:10.1371/journal.pone.0108936.g004
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Calculating FI
Assessing the dynamic changes in system behavior requires

gathering information on its condition (state) through time; hence,

measurable variables (xi) are selected such that a time varying

system has a trajectory in a phase space defined by the n-

dimensions of its system variables and time. Each point in the

trajectory is defined by specific values for each of the n variables

(i.e., a point at time i is defined as [x1(ti), x2(ti) x3(ti)…xn (ti)]). Since

uncertainty is inherent in any measurement and system variables

may fluctuate within a stable state, a state is defined as a region

bounded by a level of uncertainty (or size of states for each

dimension (i): sosti), such that if |xi(ti) - xi (tj)| # sosti is true for all

variables then the two points at times i and j are indistinguishable

and are identified as being in the same state of the system. There

are a number of methods for defining the sizes of states parameter,

but the general idea is to assign a level of uncertainty for each

variable based on either knowledge of the system (empirically or

theoretically) or estimation [24]. Given this conceptual description

of systems and states, the probability p(s) of a system being in a

particular state (s) can be estimated by counting the number of

observational data points that meet the size of states criteria. Using

this approach, it is possible to designate all possible states of the

system over time.

The basic steps employed to compute FI for the Foy Lake system

were as follows: (1) the diatom time series data (consisting of the

relative abundances of all 109 species) were divided into a sequence

of overlapping time windows with each window containing 10 time

steps. Since the goal is to capture changing patterns, there is no

particular window size that must be used to compute FI. The

window size is set based on available data and from empirical studies,

it is typically at least eight time steps [39]. (2) The level of uncertainty

was estimated by searching for the window (i.e., 10 time steps) within

the diatom time series with the least amount of variability. The

standard deviation for each species was then calculated to establish

the size of states criteria and bin points into states. (3) The binned

points were then used to generate probability densities, p(s), for each

state. (4) Equation 2 was used to compute a unique FI for each

window resulting in a sequence of FI values over time. The algorithm

for computing FI was coded in Matlab (Release 2012a, Mathworks,

Inc). Additional details of the FI derivation, calculation methodol-

ogy, and computer code can be found in [23,39].

Interpreting FI
Assessing system behavior using FI is based on the fundamental

idea that different regimes (set of system conditions) exhibit

different degrees of dynamic order [23]. In practical terms, a

regime fluctuates within a range of variation, such that the overall

condition does not change from one observation to another.

Hence, the resulting FI is non-zero and remains relatively stable

through time. Steadily decreasing FI signifies loss of dynamic order

and resilience of a regime and provides warning of an impending

regime shift. A decrease in FI between two stable dynamic regimes

denotes a regime shift [8,23]. This shift point is typically identified

as a minimum FI value after which FI will often increase. While

steadily rising FI is indicative of increasing dynamic order, it

denotes a shift to a new regime, only if the increase is followed by a

new stable regime (i.e., period in which dÆFIæ/dt<0). Note that

there is no guarantee that the latter regime is more desirable than

the former, i.e., while the condition of the system may be stable,

the system could have organized into a less desirable regime (e.g.,

eutrophic lake). Hence, FI affords the ability to assess the stability

of a system, not the quality of its condition [25]. Further evaluation

of the underlying variables is required to determine whether the

system state is desirable.

Multivariate time series modeling
To assess patterns and scales of diatom fluctuations, we

constructed time series models based on redundancy analysis

(RDA) [9], and used temporal variables extracted by PCNM

(Principal Coordinates of Neighbor Matrices) analysis [40–41].

Briefly, the PCNM analysis converts the linear time vector that

comprises the sampling frequency and length of the study period

into a set of orthogonal temporal variables. In our study, the time

vector consisted of 800 time steps during the 7 kyr study period.

The PCNM analysis yielded 517 variables with sine-wave

properties from the conversion of the linear time vector. Each

PCNM variable corresponds to a specific temporal frequency in

the diatom dynamics. That is, the first PCNM variable models the

longest temporal frequency while the subsequent variables capture

temporal variability from longer to increasingly shorter fluctuation

frequencies in the community data over the study period. We

constructed a parsimonious RDA model for diatom community

dynamics by running a forward selection on the 517 PCNM

variables.

The RDA retains significant PCNM variables, and these are

linearly combined to extract temporal patterns from the Hellinger-

transformed species matrices [42]; that is, the RDA identifies

species with similar temporal patterns in the species6 time matrix

and uses their temporal patterns to calculate a modeled species

group trend for these species based on linearly combined PCNMs.

The significance of the temporal patterns of all modeled

fluctuation patterns of species groups revealed by the RDA is

tested by means of permutation tests. The RDA relates each

modeled temporal fluctuation pattern with a significant canonical

axis. The R software generates linear combination (lc) score plots,

which visually present the modeled fit of temporal patterns of

species groups that are associated with each canonical axis.

Because the canonical axes are orthogonal (independent from each

other), one can assess the number of temporal scales at which

community dynamics unfold. All relevant steps in the time series

analysis are carried out using the ‘‘quickPCNM’’ function in R

2.15.0 (R Development Core Team).

Supporting Information

Dataset S1 Percent abundances of diatom species from
Foy Lake calculated relative to the total number of
diatom valves counted in each sample. Time steps with no

diatom data, due to poor preservation, were removed from the

dataset. Time steps 301–312 were averaged for these analyses,

because they were assigned the same age, as per the age model.
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