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A B S T R A C T

Background: Major depressive disorder (MDD) is known to be characterized by altered brain functional con-
nectivity (FC) patterns. However, whether and how the features of dynamic FC would change in patients with
MDD are unclear. In this study, we aimed to characterize dynamic FC in MDD using a large multi-site sample and
a novel dynamic network-based approach.
Methods: Resting-state functional magnetic resonance imaging (fMRI) data were acquired from a total of 460
MDD patients and 473 healthy controls, as a part of the REST-meta-MDD consortium. Resting-state dynamic
functional brain networks were constructed for each subject by a sliding-window approach. Multiple spatio-
temporal features of dynamic brain networks, including temporal variability, temporal clustering and temporal
efficiency, were then compared between patients and healthy subjects at both global and local levels.
Results: The group of MDD patients showed significantly higher temporal variability, lower temporal correlation
coefficient (indicating decreased temporal clustering) and shorter characteristic temporal path length (indicating
increased temporal efficiency) compared with healthy controls (corrected p< 3.14×10−3). Corresponding local
changes in MDD were mainly found in the default-mode, sensorimotor and subcortical areas. Measures of
temporal variability and characteristic temporal path length were significantly correlated with depression se-
verity in patients (corrected p< 0.05). Moreover, the observed between-group differences were robustly present
in both first-episode, drug-naïve (FEDN) and non-FEDN patients.
Conclusions: Our findings suggest that excessive temporal variations of brain FC, reflecting abnormal commu-
nications between large-scale bran networks over time, may underlie the neuropathology of MDD.

1. Introduction

Major depressive disorder (MDD) is a common psychiatric disorder
characterized by deficits in regulating one's own emotions (Aldao et al.,
2010; Anticevic et al., 2015). In MDD patients, one of the most notable
changes revealed by functional magnetic resonance imaging (fMRI) is
abnormalities in brain functional connectivity (FC) (Guo et al., 2014;
Kaiser et al., 2015; Tao et al., 2013; Zhang et al., 2011a), which have
been suggested as a potential mechanism underlying their emotional
and cognitive symptoms (Marchetti et al., 2012; Whitfield-Gabrieli and
Ford, 2012).

Traditional fMRI studies were performed under the assumption that
pattern of brain FC remains stationary during the whole scanning
period. Recently, however, it has been shown that brain FC fluctuates
over time at sub-minute scales, which cannot be assessed by conven-
tional static FC analysis methods (Chang and Glover, 2010;
Hutchison et al., 2013). Therefore, “dynamic FC” has become a new
topic in neuroimaging studies to track fluctuations in brain FC patterns
(Preti et al., 2017). Notably, such fluctuations have been demonstrated
to be involved in a wide range of cognitive and affective processes such
as attention (Shine et al., 2016), learning (Bassett et al., 2011), ex-
ecutive functions (Braun et al., 2015), internally-oriented cognition
(Zabelina and Andrews-Hanna, 2016) and mood (Betzel et al., 2017), as
well as a number of common psychiatric disorders such as autism
(Zhang et al., 2016), bipolar disorder (Nguyen et al., 2017) and schi-
zophrenia (Dong et al., 2019; Guo et al., 2018). These findings highlight
the importance of dynamic FC in understanding brain functions in both
healthy and psychiatric populations.

Despite accumulating knowledge on dynamic features of brain FC,
their relationships with MDD still remain unclear. Although a few
studies (Demirtaş et al., 2016; Hou et al., 2018; Kaiser et al., 2016;
Wei et al., 2017; Wise et al., 2017; Yao et al., 2019; Zheng et al., 2017)
have started to investigate dynamic FC in MDD, these studies had
several limitations. Firstly, the results reported from these studies are
inconsistent. For example, while an earlier study (Demirtaş et al., 2016)
found that MDD was related to decreased temporal variability of FC
within the default-mode network (DMN), the opposite results were re-
ported by two other studies (Kaiser et al., 2016; Wise et al., 2017). Such

inconsistency may be partly due to relatively small sample sizes in these
previous studies (see Supplemental Table S1 for a review), which could
result in a relatively low reliability in neuroimaging studies
(Button et al., 2013; Cao et al., 2019). Secondly, most previous studies
were only focused on either fluctuations of FC within predefined re-
gions of interests (ROIs) such as the medial prefrontal cortex (mPFC)
(Kaiser et al., 2016; Wise et al., 2017), or changes in whole-brain
connectivity states (Yao et al., 2019). However, characterizations of
dynamic FC in MDD from both local and global perspectives remain
poorly examined. Therefore, it is necessary to investigate global and
local dynamics of FC in MDD with a larger well-powered sample to
improve our understanding of this common mental disorder.

In this study, we aimed to characterize alterations of dynamic FC in
MDD using a large, multi-site sample drawn from the REST-meta-MDD
Project in China (Yan et al., 2019). To reach this goal, we used a novel
dynamic network-based approach that allows us to identify altered
dynamic FC patterns at both regional and global levels (Sizemore and
Bassett, 2018). Specially, the brain is modeled as a multi-layer dynamic
network, in which the layers represent brain FC patterns at different
time points. Based on this model, metrics of several key spatio-temporal
features of dynamic networks, including the temporal variability,
temporal clustering and temporal efficiency, were estimated and com-
pared between the MDD patients and healthy subjects. According to
previous findings of the existence of altered dynamic FC in MDD
(Kaiser et al., 2016; Wise et al., 2017), we hypothesize that MDD would
disrupt the spatio-temporal organization of dynamic brain networks,
leading to alterations in these metrics (e.g., increased temporal varia-
bility) in patients.

2. Methods and materials

2.1. Subjects

The analyzed sample consisted of 460 MDD patients and 473
healthy controls (HCs) recruited from 9 study sites across China, as a
part of the REST-meta-MDD consortium (Yan et al., 2019). All subjects
included were 18–65 years of age, with at least 5 years of education,
and with an fMRI scan repetition time of 2 s and scan time ≥ 8 min. All
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patients met the Diagnostic and Statistical Manual of Mental Disorders-
IV criteria for MDD (First et al., 1997), and had a total score ≥ 8 on the
17-item Hamilton Depression Rating Scale (HAMD) (Williams, 1988) at
the time of scanning. Episodicity and medication information were
available for a total of 372 patients from 6 sites, among which 155 were
in their first episode of illness and had never taken antidepressants.
Data on duration of illness were available for 382 patients from 7 sites.
All study sites obtained approval from their local institutional review
boards and ethics committees, and all participants provided written
consent at their local institutions. See Tables 1 and 2 for sample details,
and more details about the inclusion and exclusion criteria can be found
in Supplemental Materials.

2.2. Data acquisition, preprocessing and quality control

Resting-state fMRI and structural T1-weighted MRI brain scans were
acquired at each site (see Table 1 for key data acquisition parameters)
and were preprocessed using the DPARSF software (Yan, 2010) with a
standardized protocol (Yan et al., 2019, 2016). To control for head
motion and physiological noises, the Friston-24 head motion para-
meters, liner trends, as well as signals from the white matter, cere-
brospinal fluid and whole brain were regressed out from the images
(Friston et al., 1996; Laumann et al., 2017; Lydon-Staley et al., 2019).
Subjects with poor image quality or excessive head motion (mean fra-
mewise-displacement (FD) (Jenkinson et al., 2002) > 0.2 mm) were
excluded from analysis. See Supplemental Materials for further details.

2.3. Construction of dynamic brain network

As summarized in Fig. 1, multi-layer dynamic brain networks were
constructed using a widely-used sliding-window approach
(Laumann et al., 2017; Reinen et al., 2018; Sun et al., 2019b) with
nodes defined by the 160 ROIs in the Dosenbach functional atlas, which
were derived from previous meta-analyses (Dosenbach et al., 2010) (see
Supplemental Table S2 for list of ROIs). The mean time series of each of
the 160 nodes were firstly extracted and divided into a number of
continuous time windows (Fig. 1A). According to the previous re-
commendations (Leonardi and Van De Ville, 2015; Sun et al., 2019b;
Zalesky and Breakspear, 2015), a window length of 100 s and a step
length of 6 s were used in the primary analyses. This produced a total of
61 windows, and the whole-brain connectivity matrices were then
calculated within each window using pairwise Pearson correlations. As
a result, a multi-layer dynamic network G = (Gt)t =1,2,3,…,61, where Gt

is the layer representing brain FC within the tth time window, was
obtained for each subject (Fig. 1B). See Supplemental Materials for

more details.

2.4. Dynamic brain network metrics

After constructing dynamic networks, we estimated several key
spatio-temporal features of dynamic brain networks, including the
temporal variability, temporal clustering and temporal efficiency, de-
scribed as following:

Temporal variability: The variability of a dynamic brain network over
time was measured by the average dissimilarity of its network struc-
tures between different time windows (Dong et al., 2019; Hou et al.,
2018; Zhang et al., 2016). This was computed at both the global
(temporal variability) and regional (nodal temporal variability) levels.
Both of the measures range from 0 to 2, and a higher value indicates a
higher variability.

Temporal clustering: Temporal clustering measures the consistency of
each node's connected neighbors between consecutive time points,
named the temporal correlation coefficient and nodal temporal correlation
coefficient at global and regional levels, respectively (Sizemore and
Bassett, 2018; Tang et al., 2010). They both range from 0 to 1, and a
higher value indicates a higher consistency (higher temporal clus-
tering).

Temporal efficiency: Temporal efficiency quantifies how quickly in-
formation can transmit between nodes in a dynamic network, named
the characteristic temporal path length for the whole-brain and nodal
temporal path length for each node (Sizemore and Bassett, 2018). These
two measures range from 1 to infinite, with a lower value representing
a shorter average temporal distance between nodes and a shorter time
for information to be transferred between nodes on average (higher
temporal efficiency) (Sizemore and Bassett, 2018; Thompson et al.,
2017).

Since temporal clustering and temporal efficiency are only defined
for binary networks (Sizemore and Bassett, 2018), we obtained binary
dynamic networks by preserving only a particular proportion (“spar-
sity”) of the strongest connections between nodes on the FC matrices of
each window (Fig. 1C). The metrics of temporal clustering and tem-
poral efficiency were computed across a wide range of sparsities from
10% to 50% with an increment interval of 1%, to ensure that results
were biased by a single sparsity level (Sreenivasan et al., 2017;
Zhang et al., 2019; Zhang et al., 2011b). More details about these
metrics and methods can be found in Supplemental Materials and
Supplemental Fig. S1-S2, as well as a previous publication
(Sizemore and Bassett, 2018).

Table 1
The contributing sample size, clinical information of patients, and key data acquisition parameters of each site included in the current study. The nine sites were
respectively located in: 1) the First Affiliated Hospital of Chongqing Medical University, Chongqing; 2) Affiliated Zhongda Hospital of the Southeast University,
Nanjing; 3) the First Affiliated Hospital of Chongqing Medical University, Chongqing; 4) Anhui Medical University, Hefei; 5) Southwest University, Chongqing; 6)
Beijing Anding Hospital of the Capital Medical University, Beijing; 7) the Second Xiangya Hospital of the Central South University, Changsha; 8) the West China
Hospital of Sichuan University, Chengdu; 9) Affiliated Zhongda Hospital of the Southeast University, Nanjing.

Site Samples Clinical information of patients MR Scanner TR (ms) TE (ms) Time points
MDD patients HCs HAMD score (mean± SD) Duration of illness/month (mean±SD)a FEDN/non-FEDN/

unknown)

1 19 5 24.632 ± 5.315 30.737 ± 56.854 13/6/0 GE 3T 2000 30 240
2 35 38 31.057 ± 5.401 36.571 ± 55.143 35/0/0 Siemens 3T 2000 25 240
3 41 41 20.659 ± 5.695 unavailable 0/0/41 GE 3T 2000 40 240
4 21 34 21.619 ± 7.110 99.095 ± 103.342 0/21/0 GE 3T 2000 22.5 240
5 221 226 21.448 ± 5.057 49.986 ± 64.932 96/117/8 Siemens 3T 2000 30 242
6 60 64 17.683 ± 6.485 90.344 ± 100.525 1/59/0 Siemens 3T 2000 30 240
7 21 20 23.762 ± 5.576 27.658 ± 25.833 0/0/21 Philips 3T 2000 30 250
8 24 29 21.583 ± 5.356 25.208 ± 29.123 10/14/0 Philips 3T 2000 30 240
9 18 16 10.111 ± 2.541 unavailable 0/0/18 Siemens 3T 2000 25 240

a Data on the duration of illness was available for only part of the patients. Abbreviations: MDD = major depressive disorder; HC= healthy control; FEDN = first-
episode and drug-naïve; MR = magnetic resonance; TR = repetition time; TE = echo time.
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2.5. Statistics

Temporal variability of the dynamic brain network was compared
between the MDD and HCs groups by analysis of covariance (ANCOVA),
where group was included as dependent variable, covarying for age,
sex, education, mean FD and site. Similarly, the temporal correlation
coefficient and characteristic temporal path length were compared
using repeated-measures ANCOVA models, in which sparsity level (10%
to 50%) was included as within-subject factor and group as a between-
subject factor, with the same above covariates. We further investigated
their associations with HAMD scores and duration of illness (when
available) in patients using partial Spearman rank correlations, ad-
justing for age, sex and site. The temporal correlation coefficient and
characteristic temporal path length were averaged across all sparsities
before the correlation analyses. Significance was set at p < 0.05 after
Benjamini-Hochberg false discovery rate (FDR) corrections across the
three measures.

When significant between-group differences were detected on any
of the examined dynamic network metrics, we further investigated
which regional changes might particularly drive those effects. For that
we compared the corresponding nodal metrics between groups for each
of the 160 ROIs, using the same above ANCOVA or repeated-measures
ANCOVA models. Similarly, their associations with the HAMD scores
and duration of illness were examined using the partial Spearman rank
correlations adjusting for age, sex and site. Significance was set at p <
0.05 after FDR corrections across the 160 ROIs. Results were visualized
using the BrainNet Viewer (Xia et al., 2013).

2.6. Subgroup analyses

Subgroup analyses were performed to explore the possible influ-
ences of illness episodes and medication. Here, the MDD patients were
divided into subgroups of first-episode, drug-naïve (FEDN) (N = 155)
and non-FEDN (N = 217) patients, whose demographic and clinical

Table 2
The demographic, clinical and image (head motion) characteristics of each group.

Major depressive disorder (n = 460) Health controls (n = 473) Group comparisons
(Mean± SD) (Mean± SD)

Age, years 36.785 ± 13.215 36.911 ± 15.252 t = −0.135, p = 0.892
Sex, male/female 155/305 177/296 χ2 = 1.412, p = 0.235
Education level, years 11.427 ± 3.235 12.980 ± 3.479 t = −7.061, p < 0.001
Mean FD 0.068 ± 0.033 0.070 ± 0.035 t = −0.866, p = 0.387
17-item HAMD scores 21.525 ± 6.642 / /
Duration of illness, monthsa 54.311 ± 73.120 / /

a Data on the duration of illness was available for 382 patients. Abbreviations: SD = standard deviation; FD = framewise-displacement; HAMD = Hamilton
Depression Rating Scale.

Fig. 1. The procedures for constructing dynamic brain net-
works and computing dynamic network metrics. (A) The time
series for all nodes were divided into a number of continuous
time windows. (B) The whole-brain connectivity matrices
were calculated within each window to compose a dynamic
network, whose temporal variability was then estimated by
average dissimilarities between different windows. (C) The
dynamic brain networks were further thresholded and binar-
ized with a range of sparsities from 10% to 50%, at which
temporal clustering and temporal efficiency were estimated.
TR = repetition time.
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information can be found in Supplemental Table S3. The metrics
showing significant between-group differences were further compared
between each pair of subgroups (FEDN vs non-FEDN, FEDN vs HCs, and
non-FEDN vs HCs) using the same above ANCOVA or repeated-mea-
sures ANCOVA models; partial correlations were performed in each
subgroup of patients separately, too. All analyses were FDR-corrected
for number of tests (e.g., 3 metrics multiplied by 3 subgroup compar-
isons).

2.7. Validation analyses

To validate our findings, we additionally performed several aux-
iliary analyses as follows (see details in Supplemental Materials):

Impact of parcellation schemes: The entire analysis was rerun with a
different parcellation scheme based on the automated anatomical la-
beling (AAL) atlas (Tzourio-Mazoyer et al., 2002) with 90 ROIs.

Sliding-window lengths: A set of different window and step lengths
(window/step = [40, 60, 80, 100]/[4, 6, 8] seconds) were utilized in
constructing dynamic networks to estimate the reproducibility of re-
sults across different analysis parameters.

Subset analyses: To evaluate whether the results were affected by
sample population or unmatched education levels, group differences on
each metric were tested within each of the following subsets: 1) the
subsets of each individual site; 2) two split-half subsets randomly split
from the whole sample; and 3) a subset extracted from the whole
sample where education levels were matched between groups, by ex-
cluding all healthy subjects with years of education ≥ 16 or age ≥ 60.
See Supplemental Table S4 for demographic and clinical information of
each subset.

2.8. Data and code availability statement

Data of the REST-meta-MDD project are available at: http://rfmri.
org/REST-meta-MDD. The dynamic network metrics were computed by
a publicly-available MATLAB toolbox (https://github.com/asizemore/
Dynamic-Graph-Metrics).

3. Results

3.1. Group comparisons and correlations

As shown in Fig. 2A-C, the MDD group showed a significantly
higher temporal variability (F = 10.218, FDR-corrected
p = 2.16×10−3), a significantly lower temporal correlation coefficient
(F = 15.071, FDR-corrected p = 3.33×10−4), and a significantly
shorter characteristic temporal path length (F = 8.768, FDR-corrected
p = 3.14×10−3) compared with HCs. The differences in temporal
correlation coefficient and characteristic temporal path length were
significant at all sparsity levels (p < 0.05, Supplemental Table S5).
Moreover, the temporal variability and characteristic temporal path
length were found to be significantly correlated with the HAMD scores
in patients (Spearman's rho = 0.111 and −0.101, FDR-corrected
p = 0.045 and 0.045 for temporal variability and characteristic tem-
poral path length, respectively, Fig. 2D), while no significant correla-
tions were found between any metrics and duration of illness (FDR-
corrected p > 0.05).

At regional level, significantly increased nodal temporal variability,
decreased nodal temporal correlation coefficient and decreased nodal
temporal path length were found in a total of 14, 9, and 22 ROIs, re-
spectively (FDR-corrected p < 0.05). These ROIs highly overlapped
among the three metrics and were chiefly located in the DMN (mPFC,

Fig. 2. (A) Group comparison on temporal variability. (B-C) Group comparisons on the temporal correlation coefficient and characteristic temporal path length, with
values at each sparsity level and average values across all sparsities (10% to 50%) both presented. (D) Partial correlations between each metric and the HAMD score,
adjusted for age, sex and site effects. The error bars and shadows in (A)–(C) represent 95% confidence intervals, and all reported p values were corrected for multiple
tests using the FDR method.
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precuneus, anterior/posterior cingulate gyrus, angular gyrus, and in-
ferior temporal cortex), the sensori-motor cortex (frontal and parietal
areas), and the subcortex (thalamus and basal ganglia) (Fig. 3 and
Supplemental Table S6). No correlations at the ROI level survived FDR
correction (corrected p > 0.05).

3.2. Subgroup analyses

As shown in Fig. 4, both the subgroups of FEDN and non-FEDN
patients showed significantly higher temporal variability, lower tem-
poral correlation coefficient and shorter characteristic temporal path
length compared with HCs (FDR-corrected p < 0.05), while no sig-
nificant differences were found for any metrics between the FEDN and
non-FEDN patients (FDR-corrected p > 0.05). Although no correlations
in any subgroup survived FDR correction (corrected p > 0.05), trend-
level effects with the same directionalities as observed in the overall
patient sample were still present in both the FEDN and non-FEDN

patients, suggesting that these correlations are not driven by illness
duration or medication (Supplemental Fig. S3). However, the effect
sizes in subgroups were relatively small and thus larger samples may be
required in order to detect such effects.

3.3. Validation analyses

Using the AAL atlas, similar results were obtained at both global and
regional levels (Supplemental Fig. S4). Similar results were also con-
sistently found when repeating the analyses using different window/
step lengths in constructing dynamic networks (Supplemental Table
S7).

Significantly (or trend-level) higher temporal variability, lower
temporal correlation coefficient and shorter characteristic temporal
path length in MDD patients than HCs were consistently observed in 7
of the 9 sites (Supplemental Fig. S5). Such results were also consistently
observed in two split-half subsets, and in the education-matched subset

Fig. 3. The nodes showing (A) a higher nodal temporal variability, (B) a lower nodal temporal correlation coefficient, and (C) a shorter nodal temporal path length in
MDD patients than HCs (with FDR-corrected p < 0.05). Sizes of plots are weighted by F values. ACC = anterior cingulate cortex; dFC = dorsal frontal cortex;
IPS = intraparietal sulcus; L = left hemisphere; R = right hemisphere; vmPFC = ventromedial prefrontal cortex.

Y. Long, et al. NeuroImage: Clinical 26 (2020) 102163

6



extracted from the whole sample (Supplemental Table S8).

4. Discussion

In the present study, using one of the largest MDD fMRI samples to
date, we investigated resting-state dynamic FC in MDD using a novel
dynamic network-based approach. The results revealed that MDD was
associated with altered spatio-temporal organizations of dynamic brain
networks, including increased temporal variability, decreased temporal
clustering and increased temporal efficiency at both global and local
levels. These results highlight the potential importance of dynamic
brain network reconfiguration in neural mechanisms underlying MDD.

We found that MDD patients had a significantly higher temporal
variability in organizations of their resting-sate functional brain net-
works compared with healthy subjects (Fig. 2A). This finding is in line
with most previous studies (Hou et al., 2018; Kaiser et al., 2016;
Wise et al., 2017) suggesting excessive fluctuations of brain FC in MDD
patients during rest, yet in conflict with one study (Demirtaş et al.,
2016). Recent work has shown that pooling data across different sites is
an effective way to boost statistical power at only minimal cost of re-
liability loss in large-scale neuroimaging consortiums, especially when
the total sample size > 250 (Cao et al., 2019). Therefore, our findings
from the large multi-site sample with > 900 subjects may provide
greater power than any of the previous studies mentioned above
(Hou et al., 2018; Kaiser et al., 2016; Wise et al., 2017), offering more
solid evidence that the brain FC patterns in MDD patients are tempo-
rally more variable during rest than those in healthy subjects.

Besides increased temporal variability, the MDD group showed a
significantly decreased temporal correlation coefficient, which in-
dicates lower consistency of FC patterns between consecutive time
points (decreased temporal clustering) (Sizemore and Bassett, 2018).
Normal brain FC patterns have been found to maintain relatively sta-
bility over periods of time, which is known as “FC states” possibly re-
flecting different cognitive or emotional states (Allen et al., 2014;
Preti et al., 2017; Zalesky et al., 2014). The decreased temporal clus-
tering may indicate a disruption of such features in the brain due to
excessive fluctuations of FC. The MDD patients also showed increased
temporal efficiency as characterized by a significantly decreased char-
acteristic temporal path length, which suggests shortened delays for
information transfer between nodes (Sizemore and Bassett, 2018;
Thompson et al., 2017). While speculative, such alteration may be at-
tributed to increased aberrant brain connections, which play roles as
“shortcuts” beyond the common periodic transitions across relative
stable FC states (Betzel et al., 2016; Zalesky et al., 2014), and thus may

be another reflection of increased fluctuations in brain network struc-
tures.

The aberrant connections beyond normal successive FC states may
interfere with meaningful interconnectedness for cognitive and mental
processing (Betzel et al., 2016; Sun et al., 2019b; Zalesky et al., 2014).
Moreover, the excessive reconfigurations of FC patterns may carry extra
metabolic costs (Shine et al., 2018). Hence, all observed alterations in
dynamic brain networks may together suggest less optimal information
processing and a shift of economically balanced metabolic cost in the
brains of MDD patients. Notably, these alterations were found in both
FEDN and non-FEDN patients, and all of them showed significant (or
trend-level) correlations with HAMD scores in the overall patient
sample (Fig. 2D), suggesting that they are likely to be associated with
the severity of depression symptoms rather than an epiphenomenon of
illness duration and pharmacological effects.

In MDD patients, brain regions showing significant alterations at the
nodal level were mostly distributed in the DMN, including the mPFC,
anterior/posterior cingulate cortex, angular gyrus and precuneus
(Fig. 3). These results are consistent with some previous studies, which
have reported that MDD is related to excessive fluctuations of FC in
DMN-related regions (Kaiser et al., 2016; Wise et al., 2017). It has been
postulated that increased temporal variability of FC within the DMN
may be associated with higher frequencies of spontaneous, internally-
oriented cognition such as mind-wandering and creative thinking
(Christoff et al., 2016; Kucyi and Davis, 2014; Sun et al., 2019a;
Zabelina and Andrews-Hanna, 2016). In line with this interpretation,
excessive fluctuations of FC in the DMN regions may reflect a failure to
effectively control exaggerated internally-focused thoughts. These al-
terations, therefore, may be related to rumination, which is one of the
core features of MDD defined as repetitive and passive focus on one's
distress (Nolen-Hoeksema et al., 2008), although we are uncertain if
they are the cause or the consequence of depression-related rumination.
Prolonged self-referential emotional processing may further interfere
with normal cognitive functions in MDD patients (Korgaonkar et al.,
2014). Our hypotheses are supported by recent findings that temporal
variabilities of FC within the DMN (Wise et al., 2017), and between the
mPFC and insula (Kaiser et al., 2016), are all positively correlated with
rumination scores in MDD; and that MDD patients generally spend
longer time in the FC state associated with self-focused thinking during
rest, which is related to their depressive severities and cognitive per-
formances (Zhi et al., 2018).

MDD-related regional alterations were also found in several sub-
cortical structures including basal-ganglia and thalamus, as well as
sensorimotor cortical regions including the frontal and parietal areas
(Fig. 3). A recent study in MDD reported increased temporal variability
in basal-ganglia structures such as the pallidum, and suggested that it
may be associated with impaired reward processing which could lead to
anhedonia, one of the core clinical symptoms of MDD (Hou et al.,
2018). Thus, our results further support this hypothesis. The thalamus
and sensorimotor cortex are also known to be critical for relaying and
processing sensory information in the brain (Brown et al., 2017;
Cao et al., 2018). Therefore, excessive fluctuations of FC in these re-
gions may reflect impairments in integrating information that underlies
the emotional and sensory disturbances in MDD (Brown et al., 2017).

Our study has several limitations. First, some clinical information
(e.g., dosage and duration of antidepressant treatment, treatment re-
sponse, and use of mood stabilizers/antipsychotics) was not available in
the current dataset, which has limited our abilities to further examine
their possible effects. Second, the education levels were not matched
between groups in the current sample. Although we have performed all
the comparisons covarying for years of education and verified results in
an education-matched subset, the results may partly be influenced by
its effects. Third, the lengths of fMRI scans in this study were relatively
short, which may to certain degree constrain the stability of the ac-
quired signals. Lastly, while we proposed several clinical interpreta-
tions for all the observed changes in MDD patients, such as possible

Fig. 4. Results of subgroup comparisons among the first-episode, drug-naïve
(FEDN) patients, non-FEDN patients and healthy controls (HCs). The error bars
represent 95% confidence intervals, and all reported p values were corrected for
multiple tests using the FDR method.
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relationships with ruminations, they remain speculative and need to be
tested in further studies.

5. Conclusions

In summary, we found that MDD is associated with increased tem-
poral variability, decreased temporal clustering and increased temporal
efficiency in dynamic functional brain networks during rest. These al-
terations mainly involved the default-mode, subcortical and sensor-
imotor regions, and were associated with depressive severity in pa-
tients, suggesting their important roles in the neuropathology of
depression. Further studies are encouraged to replicate these findings
and to examine their clinical associations with dysfunction in MDD
patients in multiple domains.
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