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Abstract Improved observational understanding of urban CO2 emissions, a large and dynamic global
source of fossil CO2, can provide essential insights for both carbon cycle science and mitigation decision
making. Here we compare three distinct global CO2 emissions inventory representations of urban CO2

emissions for five Middle Eastern cities (Riyadh, Mecca, Tabuk, Jeddah, and Baghdad) and use independent
satellite observations from the Orbiting Carbon Observatory‐2 (OCO‐2) satellite to evaluate the inventory
representations of afternoon emissions. We use the column version of the Stochastic Time‐Inverted
Lagrangian Transport (X‐STILT) model to account for atmospheric transport and link emissions to
observations. We compare XCO2 simulations with observations to determine optimum inventory scaling
factors. Applying these factors, we find that the average summed emissions for all five cities are
100 MtC year−1 (50–151, 90% CI), which is 2.0 (1.0, 3.0) times the average prior inventory magnitudes. The
total adjustment of the emissions of these cities comes out to ~7% (0%, 14%) of total Middle Eastern emissions
(~700 MtC year−1). We find our results to be insensitive to the prior spatial distributions in inventories of
the cities' emissions, facilitating robust quantitative assessments of urban emission magnitudes without
accurate high‐resolution gridded inventories.

Plain Language Summary Carbon dioxide (CO2) emitted from burning fossil fuels is the most
important contributor to climate change and is changing the Earth's carbon cycle. Most of these emissions
can be linked to cities. Since cities around the world are quickly changing and growing, especially in
developing countries, it is important to better understand the extent of urban CO2 emissions to understand
how the climate and carbon cycle will change. In this study, we evaluate three global emissions inventories
—modeled estimates of CO2 emissions on a grid spanning the globe—and their ability to capture the
afternoon emissions of five Middle Eastern cities (Riyadh, Mecca, Tabuk, Jeddah, and Baghdad). This
assessment relies on comparing simulations using the inventories with observations from the Orbiting
Carbon Observatory‐2 (OCO‐2) satellite. Based on these comparisons, we see that the inventory
representations have underestimated afternoon emissions of the five studied cities and that the level of
underestimation is a substantial portion of total Middle Eastern emissions. Our results are unaffected by the
differing spatial patterns of emissions from different inventories. This work demonstrates the ability to use
satellites to evaluate subnational emissions, a valuable advance for both science and policy issues relating
to climate change and the carbon cycle.

1. Introduction

Anthropogenic carbon dioxide (CO2) emissions are greatly changing the global carbon cycle and are a
main driver of climate change. Before the industrial revolution, the CO2 mixing ratio was 280 ppm
(IPCC, 2014); since then, it has surpassed 400 ppm and continues to rise (Betts et al., 2016), mainly
due to emissions from burning fossil fuels (Stocker et al., 2013). To predict future climatic trends, it is
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important for us to know how each part of the carbon cycle is responding to this significant perturbation
to CO2 concentrations. However, rising uncertainties in fossil fuel CO2 (FFCO2) emissions due to overall
increases in absolute emissions and increases in the proportion of emissions from developing regions
with fewer constraints are limiting our understanding of the extent and implications of this large and
growing perturbation.

A first step to constraining such uncertainties is to focus on cities, as the majority of FFCO2 emissions derive
from urban areas (International Energy Agency, 2008). These in‐city emissions are mostly linked to automo-
bile tailpipe emissions, industrial emissions, and home heating; emissions also come from electricity genera-
tion from power plants that use fossil fuels, though such emissions may take place outside of the city itself
(Lin et al., 2018). Presently, more than half of the global population resides in cities (United Nations,
Department of Economic and Social Affairs, Population Division, 2015). Quantifying urban emissions is also
becoming more important as cities pledge to take greenhouse gas mitigation actions (Bodansky, 2016;
Gurney et al., 2015; Rosenzweig et al., 2010) and require a means of assessing those actions. As the develop-
ing world rapidly urbanizes, it is becoming critical to quantify and constrain the FFCO2 emissions in cities,
to inform such urbanmitigation policy issues, and to understand the carbon cycle science implications of the
FFCO2 perturbation.

Global FFCO2 gridded emissions inventories are valuable tools for carbon cycle science and mitigation poli-
cies but have room for improvement with respect to local‐ and urban‐scale representations of emissions.
These emissions inventories use proxies to disaggregate national‐level emissions statistics onto a fine‐scale
grid (Oda et al., 2019; Oda & Maksyutov, 2011)—but at finer spatial scales, the proxy approach becomes
insufficient to characterize the spatial distribution of emissions sources (Oda et al., 2019). For example,
Gurney et al. (2019) found city‐level differences between inventories for four U.S. cities of up to about
20%. Meanwhile, in their study on different inventories for the northeastern United States, Gately and
Hutyra (2017) found that more than one fourth of the grid cells in urban areas at 0.1 × 0.1° resolution had
relative differences of 100–300%. In that study, the researchers determined that existing global‐scale
FFCO2 inventories are unsuitable for urban emissions monitoring, as they are unable to describe the under-
lying spatiotemporal patterns of the activities from which urban emissions are sourced (Gately &
Hutyra, 2017). Lacking in the spatiotemporal resolution needed to capture the variability in local‐level emis-
sions and exhibiting large uncertainties, global FFCO2 emissions inventories need improvement not just for
local‐scale issues but also global‐scale ones. For example, such large uncertainties are a problem for the accu-
racy of global carbon budgets that are determined by considering fossil fuel CO2 emissions to be a known
quantity (Hutyra et al., 2014). Additionally, errors in the spatiotemporal distribution or magnitude of
FFCO2 fluxes have been shown to propagate to remaining flux components of carbon inversion studies
(Gurney et al., 2005; see also Hutyra et al., 2014). Uncertainties in FFCO2 emissions in global inventory
representations have also been shown to be a dominating factor in global CO2 atmospheric inversion model
spread and to limit the assessment of regional scale terrestrial fluxes and ocean‐land partitioning (Gaubert
et al., 2019). For the sake of fine‐resolution emissions inventories to be useful at many scales, it is thus a cri-
tical task to evaluate and improve the inventory models, and to optimize model representations of smaller
scale emissions.

Top‐down, space‐based observations of CO2 concentrations are a strong contender for evaluating emissions
inventories at a local scale, especially in regions with few or no on‐ground observations. In recent years,
space‐based technological advancements have been evolving the study of urban‐ and local‐scale emissions.
Satellites have opened the doors to global, high‐resolution measurements of XCO2, the column‐averaged
dry‐air mole fraction of CO2. A number of satellites observing XCO2 have already been launched, such as
the Japanese Greenhouse Gases Observing SATellite (GOSAT) and its successor GOSAT‐2, the American
Orbiting Carbon Observatory‐2 (OCO‐2) and its successor (OCO‐3), and the Chinese TanSat. A number of
studies have already been conducted that have utilized the observations of some of these satellites to better
understand local sources of CO2 such as large cities and power plants (Hakkarainen et al., 2016; Hedelius
et al., 2018; Kort et al., 2012; Nassar et al., 2017; Wu et al., 2018). That body of work—and in particular that
of Wu et al. (2018), which presents a method of extracting urban XCO2 signals from OCO‐2 and evaluates
this method with a case study of Riyadh, Saudi Arabia—serves as the foundation for the work of this
present study.
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In this study, we evaluate global FFCO2 emissions inventory representations of urban CO2 emissions in the
Middle East and assess the ability of satellite observations to inform this evaluation. Middle Eastern cities
serve as optimal target study domains. Limited cloud cover increases data density, and reduced biospheric
signals simplifies the analysis. Additionally, these cities provide a good example of locations with few
ground‐based measurements making space‐based approaches the only observation‐based method that could
be applied. To complete our assessment, we focus on three global FFCO2 emissions inventories: the Fossil
Fuel Data Assimilation System (FFDAS), the Open‐source Data Inventory for Anthropogenic CO2

(ODIAC), and the Emission Database for Global Atmospheric Research (EDGAR). We examine the differ-
ences in the spatial distribution and magnitudes of these inventories at the urban scale for cities in the
Middle East, focusing on Riyadh, Saudi Arabia, but also analyzing Saudi Arabian cities Mecca, Tabuk,
and Jeddah, as well as the city of Baghdad, Iraq. We next quantify the relationship between observations
of XCO2 from the OCO‐2 satellite and simulations of XCO2 using the column version of the Stochastic
Time‐Inverted Lagrangian Transport (X‐STILT) model coupled with Global Data Assimilation System
(GDAS) reanalysis products and the three inventories. Using this comparison between top‐down observa-
tions and bottom‐up simulations of XCO2, we calculate scaling factors to adjust the flux magnitudes of the
inventory estimates of city emissions. We then discuss the implications of our estimates on a regional scale,
and on the ability of space‐based observations to quantify urban emissions.

2. Data and Methods
2.1. Emissions Data and Methods
2.1.1. Global FFCO2 Emissions Inventories
In this study, we evaluate three of the most widely used global FFCO2 emissions inventories: FFDAS,
ODIAC, and EDGAR. Figure 1 shows the three inventories' representations of theMiddle East. Each of these
inventories is formed using an approach that combines top‐down elements—distribution of emissions in
space by using spatial proxies like population or nighttime lights—with bottom‐up elements—summing
up individual fuel consumption or emissions sources to estimate total emissions at a larger scale
(Hutchins et al., 2017). However, the inventories are all gridded using different mechanisms, with variations
in energy statistics used, sectors included, and methods of downscaling emissions. These differences contri-
bute to notable discrepancies between the inventories' aggregated emissions totals and spatial distributions.
Table 1 summarizes the key information about the inventories.

FFDAS is a global product with a spatial resolution of 0.1 × 0.1°. This inventory downscales national emis-
sions statistics reported by the International Energy Agency (IEA), distributing emissions by constraining
the Kaya identity, which uses population, GDP, energy intensity, and carbon intensity as multiplicative fac-
tors to determine emissions (Asefi‐Najafabady et al., 2014; Gately & Hutyra, 2017; Hutchins et al., 2017;
Rayner et al., 2010). Constraints are placed on the Kaya identity using satellite nightlights, population den-
sity information, and power plant data (publicly disclosed or from the World Electric Power Plants [WEPP]
database). Sectors that are included in FFDAS are based on sectors from which IEA produces emissions sta-
tistics, including energy generation, industrial, and transportation (land transport native to FFDAS, avia-
tion, and shipping added in from EDGAR), as well as other sectors such as residential, commercial,
agriculture, and fishing (Asefi‐Najafabady et al., 2014; Hutchins et al., 2017; Rayner et al., 2010).
Emissions due to cement production and gas flaring are excluded from this product (Asefi‐Najafabady
et al., 2014). In this study, we use the 2014b (beta) data set, an early version of the FFDAS v2.0 data set.
This data set is at both hourly and yearly temporal resolutions and provides emissions data for the year
2014. For 2014, total global emissions in this set come out to 8.9 PgC.

ODIAC is a monthly global product that distributes FFCO2 emissions with a spatial resolution of approxi-
mately 1 × 1 km (0.008333 × 0.008333°) (Oda et al., 2018). In the ODIAC2017 version, the inventory begins
with national emissions estimates separated by fuel type (liquid, gas, solid, cement production, gas flaring,
and international aviation and marine bunkers) as opposed to emissions sectors, from the Carbon Dioxide
Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory (ORNL). These emissions data
are then re‐categorized into the following categories: point source, nonpoint source, cement production, gas
flare, and international aviation and marine bunkers. For the more recent years that are not included in the
CDIAC estimates (2015–2016), the 2014 CDIAC emissions estimates are extrapolated using more recent BP
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global fuel statistical data (BP, 2017; Oda et al., 2018). These emissions statistics are then spatially distributed
with multiple spatial proxies such as the Carbon Monitoring for Action (CARMA) database for point
sources, nighttime light data collected by Defense Meteorological Satellite Program (DMSP) satellites for
nonpoint sources, and ship and aircraft fleet tracks. The emissions are also distributed temporally using

Table 1
Key Information About the Global Gridded FFCO2 Emissions Inventories Used in This Study

FFDAS ODIAC EDGAR
Version 2014b (beta) ODIAC2017 4.3.2

Year(s) used 2014 2014–2016 2012
Resolution 0.1× 0.1° hourly/annually 1 × 1 km monthly 0.1 × 0.1° annually
Global total 8.9 PgC year−1 9.9 PgC year−1 9.5 PgC year−1

Middle Eastern total 697 MtC year−1 789 MtC year−1 722 MtC year−1

Sectors or categories included IEA sectors: energy generation,
manufacturing, industrial,
transportation, and others
including residential,
commercial, agriculture,
and fishing

CDIAC fuel types (liquid, gas, solid,
cement production, gas flaring, and
international aviation and marine
bunkers); re‐categorized as point
source, nonpoint source, cement
production, gas flare, and
international aviation and marine
bunkers

IPCC sectors: energy, fugitive, industrial
processes, solvents and products use,
agriculture, waste, and other (emissions
due to fossil fuel fires)

Figure 1. Global fossil fuel CO2 emissions inventory representations of the Middle East: FFDAS, ODIAC, and EDGAR,
shown with a square‐root scale. The three representations differ in both spatial distribution and magnitude of emissions.
Note that all inventories are shown at their native resolutions, with ODIAC having land emissions at a resolution of
1 × 1 km and international aviation and marine bunker emissions at 1 × 1°.
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seasonality derived from the CDIAC monthly gridded emissions, resulting in a monthly gridded product
(Oda et al., 2018). We note that ODIAC makes available at a resolution of 1 × 1° international aviation
and marine bunkers emissions information, which is recorded by CDIAC/ORNL but not included in
CDIAC's gridded emissions data products. In this study, we use the ODIAC2017 version for the years
2014–2016 (Oda & Maksyutov, 2015), summing the 1 × 1 km land emissions data set with the 1 × 1°
international aviation and marine bunkers data. For the year 2014, total global emissions in this data set
are 9.9 PgC.

EDGAR is an annual global emissions inventory with a resolution of 0.1 × 0.1°, and it relies on international
activity data provided by sources like the IEA and emissions factors to determine country‐specific CO2 emis-
sions (Crippa et al., 2018; European Commission Joint Research Centre, 2017; Janssens‐Maenhout
et al., 2019; Olivier & Janssens‐Maenhout, 2015). National sector totals for emissions are then distributed
using a number of different proxies, including location of energy and manufacturing facilities, road net-
works, shipping routes, population density, and agricultural land use (European Commission Joint
Research Centre, 2017; Janssens‐Maenhout et al., 2013). EDGAR includes emissions sectors as defined by
the Intergovernmental Panel on Climate Change (IPCC): energy (including international aviation and ship-
ping emissions), fugitive, industrial processes (including cement production), solvents and products use,
agriculture, waste, and other (emissions due to fossil fuel fires) (Janssens‐Maenhout et al., 2019). Gridded
FFCO2 emissions for version 4.3.2 are available for years 1970–2012 (Janssens‐Maenhout et al., 2019); we
use only the most recent year (2012) in this study. For 2012, the total global emissions magnitude for this
data set is 9.5 PgC.
2.1.2. Inventory Resolutions, Years, and Domains
Direct comparisons between the three inventories necessitate the inventories to share common spatiotem-
poral dimensions. For such direct comparisons, we sum the 2014 ODIACmonthly emissions to form a single
annual gridded product and aggregate it from its native spatial resolution to 0.1 × 0.1°. We also use the
annual 2014 FFDAS data set and the 2012 EDGAR data set. For comparisons with observations, we use
ODIAC both in its native resolution and in the aggregated resolution. While the years do not match per-
fectly, we choose 2014 for ODIAC and FFDAS due to the availability of both inventory and OCO‐2 data.
We choose to match FFDAS and ODIAC and use the most recent year (2012) for EDGAR, under the assump-
tion that EDGAR's emissions representations would not change in distribution much between the 2 years,
with mostly changes in magnitude. Regarding the change in magnitude from 2012 to 2014, there is some
uncertainty; while Friedlingstein et al. (2014) find that global CO2 emissions grow 2.5% per year on average,
the developing world may experience a different rate of emissions growth. However, the growth rate in
population for the cities of interest are approximately 2–4% per year (for 2004 to 2010 for Saudi Arabian cities
and 2009 to 2018 for Baghdad) (Brinkhoff, 2018), suggesting small emissions growth as well. These changes
are expected to have minimal effects on the results of this study.

We choose separate domains of interest for each studied city: square domains that range from 0.4 × 0.4° in
size to 0.7 × 0.7° to encompass the cities of interest (Figure 2). For each city, a first‐pass domain is chosen by
examining Google Earth to approximate the spatial boundaries of the cities. After an approximate square
domain is chosen, a sensitivity analysis is done using the emissions inventories, either by reducing or
expanding the domain by increments of 0.1° on each side of the domain to determine at which size the total
emissions within the chosen domain changes the least.

Note that the chosen domains do not correspond exactly to the administrative boundaries of the cities them-
selves. Emissions sources such as nearby suburbs that would not necessarily be part of the cities themselves
could be included. However, given that it would be quite difficult to distinguish OCO‐2 XCO2 enhancements
as having come from either a city or its neighboring suburb, we choose to set the boundaries of the domains
as squares that hold the greatest emissions relative to the rest of the neighboring area.
2.1.3. Analytical Methods for Direct Comparisons Between Inventories
To evaluate the differing urban representations of the emissions as modeled by the inventories, we conduct
direct comparisons between them using methods to discriminate between the magnitudes and the spatial
distributions of the inventories. Some of thesemethods were also conducted by Hutchins et al. (2017) in their
study focusing on the continental United States and Gately and Hutyra (2017) in their study of the northeast
United States. We sum up the emissions over the domains of interest and compare their magnitudes. The
emissions of the three inventories are plotted over each domain of interest on a linear scale and compared
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Figure 2. Emissions representations of each city of interest for each inventory at a spatial resolution of 0.1 × 0.1° (colors)
and roads in that domain (black). At the urban scale, these representations show more clear differences in the
spatial distribution and magnitudes of the emissions than at the regional scale. Note that the ODIAC representation for
Jeddah has an error due to a mismatch between two gas flare nightlight data sources at that particular location
(see Text S2); we proceed in this paper by treating it as though there is no error to understand how our methods handle
the mismatch.
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visually. The correlation between maps is also determined by finding the Kendall rank correlation coeffi-
cients between pairs of inventory representations of each city. We also generate cumulative emissions curves
by arranging emissions for each inventory in ascending order, taking the cumulative sums of the emissions,
and plotting these cumulative sums against each other.

2.2. Atmospheric Data and Methods
2.2.1. OCO‐2 XCO2 Data and Preprocessing
We use bias‐corrected OCO‐2 Lite, version 8, data from September 2014 to April 2017 (O'Dell et al., 2018).
Overpasses are initially chosen by proximity to the cities of interest; the original net cast for overpasses is
quite wide for exploratory purposes, such that any observations within an 8 × 8° box surrounding the loca-
tion coordinates of the city of interest are selected. These are further filtered by location of observations, to
ensure that there are observations present near the city center (at least within 50–75 km away) as well as
further out for the purposes of background calculation (within 200–350 km away). Then, overpasses are
screened visually for sufficient number, distribution (no or few gaps), and density of observations. The data
are then preprocessed by finding the medians of the up to eight cross‐track footprints at each measurement
time step, so as to remove outliers. Then a block average of the medians is taken in bins of 0.1° by latitude.
Most of the overpasses are observed in Nadir Mode, though seven are in Glint Mode. For Riyadh, Mecca,
Tabuk, Baghdad, and Jeddah, we use 11, 6, 3, 3, and 3 overpasses, respectively. The OCO‐2 data are not fil-
tered by warn level (see supporting information Text S1 for details). Table S1 details the 26 overpasses used
in this study, and Figure S1 maps the overpasses in relation to the cities.
2.2.2. Simulations of XCO2

We simulate XCO2 with the inventories such that the simulated XCO2 is directly comparable to the values
observed by OCO‐2; in this way we can quantify the relationship between the observations and the models.
Most of the steps used to simulate XCO2 follow the methodology of the “X‐STILT” approach described by
Wu et al. (2018), which utilizes the STILT model to simulate urban XCO2 values. Here we summarize our
process to simulate XCO2, noting any deviations in the methodology from the X‐STILT formulation.
2.2.2.1. Summary of Approach
We simulate XCO2 values along the OCO‐2 tracks of interest at a resolution of 0.1° by latitude. The basic pro-
cess of these simulations at each along‐track location involves using GDAS reanalysis products at 0.5 × 0.5°
resolution to drive the STILT model, which releases air parcels from each of n prescribed column receptor
locations backward in time and calculates a “footprint.” Footprints are a measure of the sensitivity of the
mixing ratio to surface fluxes and are an indicator of the upstream influences of the chosen receptor loca-
tions; they are in units of ppm/(μmol m−2 s−1). The footprints are then convolved with fluxes given by the
three emissions inventories to determine an enhancement at that column receptor location. Combining
these enhancements with a background value and a biospheric enhancement gives a full, simulated concen-
tration CO2.sim,n at the nth level in the column (section 2.2.2.2). These concentrations are then weighted with
the satellite's averaging kernel profiles to determine a single column value of XCO2 (XCO2.sim.ak) that is
directly comparable to an OCO‐2 XCO2 value (section 2.2.2.3).
2.2.2.2. Simulating CO2 Concentrations at Each nth Level
To reduce computational time, we differentiate between simulating CO2 concentrations at each nth level
either above a height designated asMAXAGL, or below or at this height. We defineMAXAGL to be the max-
imum release height of air parcels with STILT. For this study, we use a MAXAGL of 6 km for wintertime
overpasses, following Wu et al. (2018), and 10 km for non‐wintertime overpasses.

At each level at or below MAXAGL, we simulate a value of CO2.sim,n by following the basic approach
described in section 2.2.2.1. Using STILT, we release 100 air parcels at each column receptor 48 hr backward
in time, with our column receptors located at every 100 m up from the surface to 3 km for wintertime over-
passes (5 km for non‐winter), then every 500 m up to the 6 km. Non‐wintertime overpasses additionally have
receptors located every 1 km up to the 10 kmMAXAGL. This results in a footprint for each column receptor
to be convolved with the emissions inventories to produce enhancements.

To capture the temporal variations of emissions, we use the Temporal Improvements for Modeling
Emissions by Scaling (TIMES) scaling factors in combination with the inventory fluxes (Nassar et al., 2013).
The TIMES scaling factors can be combined with monthly FFCO2 emissions inventories to account for both
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diurnal and within‐week variability, with 24 hourly grids capturing the diurnal variations and seven daily
grids capturing the weekly variations.

The STILT model simulations span several years to match observations from late 2014 to mid‐2017, whereas
the emissions inventories do not have the same availability. Since FFDAS has an hourly temporal resolution
for just the year 2014, we aggregate the data up to monthly emissions by day of week and hour, such that we
have 24 grids per day of week in each month to maintain both the diurnal and weekly cycles internal to the
2014 data set. (Note that these internal diurnal and weekly cycles are derived through application of the
TIMES scaling factors.) For ODIAC, we use years 2014–2016 to correspond with the appropriate years' simu-
lations and use the 2016 grids for the 2017 simulations. As these are monthly grids, we use both the diurnal
and weekly TIMES scaling factors along with the ODIAC data sets, which we keep in their native spatial
resolutions of 1 × 1 km and also aggregate up to 0.1 × 0.1°. For EDGAR, the most recent year available is
2012; we use this annual file along with both the diurnal and weekly TIMES scaling factors. Each of these
adjusted emissions inventories are then convolved with footprints to find the fossil fuel contribution to
CO2.sim,n, or the enhancements.

We also simulate the natural contribution to CO2.sim,n by using biospheric flux data from CarbonTracker
Near‐Real Time (CT‐NRT) v2016 and v2017. These biospheric fluxes are convolved with footprints in a
similar fashion to the inventory FFCO2 fluxes. Fluxes from oceanic and fire‐related sources are deemed
negligible in comparison to the anthropogenic and biospheric fluxes for this domain and not included.

The boundary conditions to add to the natural and fossil fuel enhancements are determined using the trajec-
tory endpoint technique. CO2 concentrations sourced from CT‐NRT 3‐D mole fractions of CO2 that corre-
spond with the endpoints of the STILT trajectories serve as the boundary conditions. These are then
combined with the enhancements to find the full CO2.sim,n value at each level. This technique differs from
that suggested byWu et al. (2018). AboveMAXAGL, each simulated level n is defined by the OCO‐2 retrieval
levels. CO2.sim,n is found by finding the CT‐NRT 3‐D mole fractions of CO2 corresponding to the
OCO‐2 levels.
2.2.2.3. Simulating XCO2 to be Directly Comparable to OCO‐2 Observations
The OCO‐2 sensor has sensitivities to CO2 that are different at varying heights of the atmosphere, which are
characterized by the satellite's averaging kernel profiles. OCO‐2 thus retrieves XCO2 values by using these
averaging kernel profiles, which are the product of the satellite's normalized averaging kernel profiles
(AKnorm) and pressure weighting function (PW), to find the relative weight between the observed “true” pro-
file and the a priori profile (CO2,ap) (Wu et al., 2018). To make a direct, 1:1 comparison between a simulated
profile and the OCO‐2 retrieved profile, we thus use the same OCO‐2 weighting functions, with the simu-
lated, unweighted column serving as the “true” profile. Our simulated profile weighted with the averaging
kernel, XCO2.sim.ak, is thus determined as follows, adapted from O'Dell et al. (2012) and reproduced from
Wu et al. (2018):

XCO2:sim:ak ¼ ∑nlevel
n¼1 AKnorm;n × PWn × CO2:sim;n þ I − AKnorm;n

� �
× PWn × CO2:ap;n

� �
; (1)

where I is the identity vector and n is the X‐STILT release level. Since the X‐STILT levels do not match
the 20 levels prescribed by OCO‐2, we linearly interpolate AKnorm, PW, and CO2.ap values from the
OCO‐2 levels to the X‐STILT levels. Note that these values undergo the preprocessing described in
section 2.2.1.
2.2.3. Further Data Filtering
After the overpasses are simulated with our X‐STILT model, they are filtered by leveraging the STILT output
to calculate footprint (influence) values from the city of interest; they pass through the filter if any modeled
point at 100 m AGL in the simulated overpass pass a threshold for footprint values, an average of 0.01 ppm/
(μmol m−2 s−1). In this way, overpasses only pass the filter and are analyzed if they indicate influence from
within the city of interest.

Footprint‐filtered overpasses are then further filtered by returning to the observations. These remaining
overpasses are filtered by their viability for differentiating enhancements from what we refer to as the
tail values, which are XCO2 values that are not enhanced and help define the background specific to
each overpass when averaged. In part, this differentiation is done through visual inspection, as well
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as by selecting overpasses whose enhanced values on average exceeded the tail values by at
least 0.2 ppm.
2.2.4. Determining Directly Comparable OCO‐2 and Simulated Enhancements
Our interest in both the simulations and the observations of OCO‐2 are the enhancements due to fossil fuel
combustion within the cities of interest. Thus, our main points of comparison are between the simulated fos-
sil enhancements and observed enhancements, which are determined by subtracting the simulated bound-
ary conditions and natural contributions of XCO2 from both the OCO‐2 observations (XCO2.obs) and the fully
simulated XCO2.sim from section 2.2.2.3. (Note that subtracting the boundary conditions and natural contri-
butions from XCO2.sim is not exactly the same as solely convolving the footprints with the emissions inven-
tory fluxes; such a convolution ignores the contribution to XCO2.sim from the averaging kernel and a priori
profiles as described in section 2.2.2.3.)

An additional constant value that corrects the bias between the CarbonTracker‐derived background and the
observed background is also either added to or subtracted from the full XCO2 values to determine final
enhancements. This bias correction term is determined as follows. For Riyadh, a swath of 3° of latitudinal
points for each observed overpass of interest is examined, differentiating between the enhanced points
and the other points, the tails of the overpass, by means of expert judgment and comparison with the simu-
lated enhancements from the city of interest. The other cities undergo a similar process, except not all over-
passes use 3° of data. The other cities have enhancements from other nearby cities, artifacts to be avoided, or
their own large‐scale variability, so the length of the tails may be shorter for non‐Riyadh overpasses to only
capture the local background. Next, for all cities, the tails are averaged to a single constant. This constant
serves as a bias correction term between the CarbonTracker‐derived background and the OCO‐2
observed background.

This methodology for determining the background differs from that described in Wu et al. (2018).
However, we choose to use this methodology for two reasons: computation time savings and the ability
to capture upwind variability using CarbonTracker. Regarding the former reason, Wu et al. (2018) opts
for a method that requires a plume defined through forward‐modeling with STILT that is computation-
ally expensive, especially given the number of overpasses analyzed in this study. Regarding the latter
reason, we use CarbonTracker to define our boundary conditions in this study to fully capture variabil-
ity upwind of the urban plume. Any biases between the OCO‐2 observations and the
CarbonTracker‐derived background are then corrected for using observations with little local influence.
In this way, we account for large‐scale variation in XCO2, while also correcting biases using
the observations.
2.2.5. Quantifying the Relationship Between the Modeled and Observed Enhancements
We evaluate the relationship between the simulated and observed enhancements for each overpass of inter-
est by generating cumulative enhancement curves, which is a modified area‐under‐the‐curve technique. In
this technique, the data points that are enhanced for each day or in aggregate are placed in ascending order,
and their cumulative sums are plotted against each other, in a similar fashion as to the cumulative emissions
curves described in section 2.1.3. This method allows for the examination of the spatial distribution of
enhancements while simultaneously latitudinally integrating the areas under the curves generated by the
enhancements. Each modeled curve is also scaled such that the total summed enhancements for that parti-
cular overpass was equivalent to that of the corresponding OCO‐2 sum, to make scaled cumulative
enhancement plots.

The scaling factors used to scale the cumulative enhancement plots are combined using a bootstrap method
to determine a single, mean scaling factor that relates themodeled enhancements to the observed ones—one
scaling factor for each inventory per city. The bootstrap method is as follows. For each overpass analyzed,
there is a set of scaling factors (with one scaling factor per inventory representation) and a single associated
uncertainty. Each scaling factor and its corresponding uncertainty are assumed to have a Gaussian distribu-
tion, with the scaling factor as the mean and the uncertainty as the standard deviation. It is resampled based
on this distribution, outputting a single resampled scaling factor. All of the resampled scaling factors for an
inventory per city further undergo a bootstrap resampling, using the mean statistic. This dual set of resam-
plings is repeated 1million times for each inventory per city. Themean of the vector of 1 million resamplings
is the mean scaling factor for each inventory per city. Meanwhile, the 5th and 95th percentiles serve as the
bounds of the 90% confidence interval.
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The mean scaling factors are then multiplied by the corresponding prior emissions magnitude, in order to
scale the prior inventory estimates by the OCO‐2 observations.
2.2.6. Evaluation of Uncertainties
We determine uncertainties for both the modeled and OCO‐2 integrated enhancements. Combining these
two sources of uncertainty also results in an uncertainty for the scaling factors and for our estimates of
FFCO2 emissions for each city.

For the model integrated enhancements, we leverage the 33% fractional uncertainty over five overpasses
due to horizontal and vertical transport evaluated by Wu et al. (2018), which was estimated by quanti-
fying the effect of the inclusion in the STILT model of a wind error component derived from radiosonde
observations (horizontal) and calculating the root‐mean‐squared errors between enhancements found
with different rescaled planetary boundary layer heights (vertical). To find an average fractional uncer-
tainty per overpass, we multiply this value by the square root of 5, resulting in a ~74% fractional uncer-
tainty to describe the transport uncertainty for a single overpass's latitudinally integrated modeled
enhancements. While their study focused on Riyadh, we apply this uncertainty to all of the Middle
Eastern cities in the study. This transport uncertainty is the only one we use for the modeled integrated
enhancements. Since the emissions inventories do not have their own uncertainties and this study
attempts to constrain those very emissions, we do not include a measure of the inventory uncertainties
for the modeled integrated enhancements.

For the OCO‐2 integrated enhancements, we first evaluate the uncertainties for each binned XCO2 value at
each 0.1° of latitude. We approximate this by considering the standard deviation of the medians in each bin.

The uncertainties related to the background also are included, since the OCO‐2 enhancements are deter-
mined by subtracting the background from the total XCO2. Contributions to the background uncertainty
come from both the OCO‐2 tails and from CarbonTracker. The tails' uncertainty contribution is determined
by first only using the bin‐level standard deviations that correspond only to the tails. Those values are added
in quadrature and divided by the number of values used to find the average tail values. Meanwhile, the
CarbonTracker contribution to the uncertainty is calculated by finding the standard deviation of the
CarbonTracker‐derived values (both boundary condition and biospheric influence) within the enhanced
region of each overpass.

The contributions to the OCO‐2 uncertainties (OCO‐2 spread, tail spread, and CarbonTracker spread)
are then added in quadrature, resulting in uncertainty values corresponding to each binned XCO2

enhancement at each 0.1° of latitude. The combined binned uncertainties are then also added in quad-
rature, resulting in an uncertainty corresponding to the OCO‐2 enhancements for a single overpass. A
fractional OCO‐2 uncertainty is found by dividing this single uncertainty by the integrated enhance-
ments for each overpass.

To determine the uncertainties for each scaling factor corresponding to a single overpass, the 74% transport
uncertainty and the fractional OCO‐2 uncertainties (generally substantially smaller than the transport
uncertainties) are combined by taking the square root of the sum of the two squared fractional uncertainties.

The overpass‐level uncertainties are then used as inputs into the bootstrap method described in section 2.2.5
to determine 90% confidence intervals for the mean scaling factors.

3. Results
3.1. Inventory Representations of the Middle East in Emissions‐Space

On a regional scale, we determine that the three studied emissions inventories represent the Middle East
quite differently, from the perspective of both spatial distributions of emissions and magnitudes of emis-
sions. In Figure 1, we show inventory representations of a domain that approximates the Middle East. A
visual appraisal of these representations suggests that the way cities, roads, and transport are distributed
throughout the Middle East vary from inventory to inventory. The total emissions magnitudes for this
domain varies between inventories as well. For FFDAS, ODIAC, and EDGAR, respectively, the emissions
represented in this domain come out to 697, 789, and 722 MtC year−1.
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3.2. Inventory Representations of Urban Centers in the
Middle East

Emissions representations of each city of interest for each inventory at
0.1 × 0.1° resolution are displayed in Figure 2, with emissions scaling lin-
early. Note that the displayed scales are the same for each representation
for a city, though the maximum values vary for each city.

Figure 2 illustrates that the emissions within the chosen domains are dis-
tributed quite differently, to the point that it is not immediately apparent
that different inventories are even representing the same city, apart from
overlapping of the highest‐valued grid cells in each representation.
Same‐city patterns across the inventories are not apparent in this form.
A sense of these distributions can be gained by determining the Kendall

rank correlations between pairs of inventories for each city, as shown in Table 2. Apart from those correla-
tion coefficients associated with Jeddah's representation by ODIAC, which has an error with its representa-
tion (see Text S2), the remaining correlation coefficients suggest that the same‐city inventory representations
are correlated with each other to varying degrees without being identical.

The magnitudes of the emissions within each representation, that is, the sums of the emissions in each dis-
played domain, are listed in Table 3. Other than in the case of Jeddah, the FFDAS and ODIAC summedmag-
nitudes for all other cities are more similar to each other than with EDGAR.

The maximum values in each domain are also listed in Table 3. For each city, the maximum valued grid cell
among the three inventories is almost always represented by FFDAS. Those maximum values are often sig-
nificantly higher than those of the other inventories, sometimes multiple times higher. This suggests that for
FFDAS, large point sources carry more weight than they do for the other two inventories, whether that is due
to the method of distribution of emissions by proxy, or due to large point source data containing much
higher values for FFDAS than those used by the other inventories.

In Figure 3, we show cumulative emissions curves for each inventory and city. These curves reaffirm that the
total magnitudes of emissions for FFDAS and ODIAC tend to be more similar than they are for EDGAR.
These figures also give us a further understanding of the distribution of the emissions for each inventory
representation of a city. For each city (other than Jeddah), the FFDAS and ODIAC curves are more rounded
out than the EDGAR curves, suggesting that more of the total emissions in the domain of interest are due to
fewer and higher‐emission grid cells. This also means that EDGAR's urban representations distribute emis-
sions more evenly than the other two inventories. This could be attributed to EDGAR distributing on‐road
emissions more homogeneously than the other inventories, which was discussed by Gately and
Hutyra (2017) for an earlier version of EDGAR. Regarding the greater similarity in distribution between
the FFDAS and ODIAC curves, this could be due to their shared use of nighttime lights as a proxy for dis-
tributing emissions. In any case, all curves show EDGAR as having the most evenly spread emissions, sug-
gesting that all studied cities follow similar patterns of emissions distributions for the same inventories, in
spite of relative differences in emissions magnitudes.

Table 3
City Populations, Total Sums (Magnitudes) of CO2 Emissions, and Maximum Values of CO2 Emissions Within Each City's Domain

Population (million people)
Emissions sums (MtC year−1) Maximum values (MtC year−1)

FFDAS ODIAC EDGAR FFDAS ODIAC EDGAR

Riyadh 5.2 29.0 28.4 18.2 17.6 6.36 7.26
Mecca 1.5 5.81 6.54 7.89 3.10 1.88 0.616
Tabuk 0.4 2.48 2.37 0.548 1.65 0.837 0.137
Baghdad 6.7 4.74 3.60 7.00 1.91 1.26 1.38
Jeddah 3.4 13.4 4.08* 19.4 5.74 2.73* 8.97

Note. Population data include April 2010 census data for Saudi Arabian cities and October 2009 estimates for Baghdad (Brinkhoff, 2018). Jeddah values marked
with * indicate the error in their representation by ODIAC (see Text S2).

Table 2
Kendall Rank Correlation Coefficients Between Pairs of Inventories for Each
Studied City

FFDAS‐ODIAC ODIAC‐EDGAR EDGAR‐FFDAS

Riyadh 0.81 0.81 0.78
Mecca 0.70 0.82 0.69
Tabuk 0.77 0.85 0.78
Baghdad 0.64 0.67 0.51
Jeddah −0.010* −0.15* 0.71

Note. For all paired inventory domains other than those including the
ODIAC representation of Jeddah (labeled with *), the inventory represen-
tations are correlated with each other.
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3.3. Simulated Atmospheric Concentrations of Urban Centers in the Middle East

The magnitude and spatial distribution differences between the different inventories across the cities of
interest are found not only in their emissions but also in their respective simulations of concentrations. As
an example to show the manifestations of these differences into concentration‐space, Figure 4 shows the
enhancements for six different observed and modeled overpasses, for all five cities (two overpasses for
Riyadh) and all on different dates. Note that we have included ODIAC in its native resolution (“ODIAC”
in green) and at the resolution aggregated to match the other inventories (“Agg ODIAC” in pink). In these
sample overpasses, all of the modeled overpasses capture the urban plumes, though the distribution and the
magnitudes of the captured enhancements vary by inventory used in the model. While these modeled over-
passes' attributes are not representative of all modeled overpasses for their respective cities, they do show
how the differences in emissions magnitudes and distributions have manifested themselves into
concentration‐space on these particular days due to atmospheric transport. A similar figure to Figure 4
but with observational uncertainties included is in the supporting information as Figure S2.
Corresponding observed and simulated total XCO2 plots are found in Figure S3.

3.4. Comparison Between Observed and Simulated Enhancements

When comparing the simulated enhancements by latitude to the observed ones, such as in Figure 4, we con-
tinue to see that the magnitude and distribution of enhancements in the models differ from what OCO‐2 has
observed. In this figure, we show enhancements versus latitude, where the black squares are the binned
observed enhancements and the other colored points show the different modeled enhancements. In certain
cases, the magnitudes of the enhancements seem fairly consistent between the observations and models
(e.g., Riyadh on 16 February 2016); in others, they are quite different (e.g., Mecca on 22 March 2016), which
we attribute to daily variations in emissions that are not captured by the temporal resolution of the models.
However, the models capture the urban plumes that the satellite has observed, suggesting that there is a fide-
lity to the models. There are also cases in which the observed and the modeled plumes are latitudinally
shifted from each other, as in the overpass of Riyadh on 27 December 2014. This latitudinal shift, which is

Figure 3. Cumulative emissions curves for each inventory and city. These figures simultaneously represent magnitudes
and spatial distributions of emissions for each city and inventory. The total emissions magnitudes are represented by
the rightmost point, whereas the distributions are represented by the shape of the curves, with straighter curves being
more evenly spread than those that are more rounded out. Based on these curves, the EDGAR representations of the
cities of interest differ most from the other inventories, with more variant magnitudes and more evenly spread emissions.

10.1029/2019JD031922Journal of Geophysical Research: Atmospheres

YANG ET AL. 12 of 20



likely due to transport errors, demonstrates the model's ability to capture the urban plume, even when trans-
port errors offset the plume's location from the satellite‐observed plume.

The differing distributions of enhancements and latitudinal shifts in the plumes between the simulations
and the observations lend themselves to an integral method of comparing enhancements. This process is
captured in the cumulative enhancement curves shown in the four unscaled examples (left) in Figure 5,
which correspond to four of the overpasses shown in Figure 4. The cumulative sum or magnitude of the
enhancements for each overpass is captured by the rightmost points on each curve, visually representing
the differences in magnitude between the different models and the observation for each respective overpass.

In the scaled cumulative enhancement curves of Figure 5 (right), the summed modeled enhancements are
all scaled to match those of the observed enhancements for each overpass. These curves make the

Figure 4. Enhancements of sample observed (black) and modeled (other colors) overpasses for different cities and days.
Note that we have included ODIAC in its native resolution (“ODIAC” in green) and at the resolution aggregated to match
the other inventories (“Agg ODIAC” in pink). All modeled overpasses capture the urban plume depicted in the
observations. Differences in magnitudes and spatial distributions of the emissions manifest themselves in the differing
representations of the enhancements. The sample overpasses for Jeddah on 13 March 2015 and Riyadh on 27
December 2014 depict latitudinal shifts in the urban plume as a result of transport errors that offset the location of the
plumes. Our integral method of comparison between the observed and modeled enhancements is not inhibited by these
latitudinal shifts.
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differences in distribution of enhancements within the urban plume clearer. Despite the distributions of the
enhancements still differing, this method normalizes the magnitudes of the modeled enhancements to those
of the OCO‐2 observations, resulting in overpass‐specific scaling factors for each inventory, for each studied
day. For the overpasses in Figure 5, we have scaling factors ranging from 0.50 (aggregated ODIAC simulation
of overpass for Riyadh on 27 December 2014) to 2.77 (aggregated ODIAC simulation of overpass for Baghdad
on 1 March 2015). Scaling factors vary from day to day for a specific city.

Figure 5. Cumulative enhancement curves, unscaled (left) and scaled (right), corresponding to four of the overpasses
shown in Figure 4. The unscaled curves illustrate magnitude differences between the models and observations, while
the scaled illustrate the spatial differences in the enhancements. The unscaled modeled curves on the left are scaled on
the right to match the integral of the OCO‐2 enhancements. We use those scaling factors to quantify the relationship
between the modeled and observed enhancements.
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All overpass‐level scaling factors are combined into a singular scaling fac-
tor for each inventory and city with the bootstrap method discussed in
section 2.2.5. These mean scaling factors are listed in Table 4 with their
90% confidence intervals. These scaling factors are determined by compar-
ison with midday satellite observations, meaning we correct the whole
inventory based on midday comparisons, an approach that relies on the
diurnal model representation being accurate.

3.5. Estimates of Urban Emissions in the Middle East

The mean scaling factors multiplied with their respective inventories
result in new, scaled estimates of urban emissions in the Middle East.
These estimates are shown in the first five panels of Figure 6. In these

panels, for each city, the colored bars represent the inventory magnitudes, while the gray bars represent
the corresponding scaled emissions estimates, with 90% confidence intervals. Though some of the confi-
dence intervals are quite large, we find that many of the scaled inventory estimates and their corresponding
confidence intervals are either higher than the prior inventory emissions magnitudes or overlap only
slightly. This suggests that, as compared to the OCO‐2 observations, the global emissions inventories are
underestimating several of the urban representations of afternoon emissions. This is the case for the
EDGAR representation of Riyadh, and all prior inventory representations of Tabuk, Baghdad, and Jeddah.
The mean scaled estimates all exceed the prior inventory estimates for all cities.

As discussed in section 3.2, all of the prior inventory representations of each city demonstrate varying spatial
distributions and magnitudes of emissions, with no specific measure of uncertainty. However, our work has
determined emissions estimates for each city that converge across inventories and are indistinguishable
within the confines of the confidence intervals. Based on a limited number of observations, we have thus
found emissions magnitude estimates for each city that are insensitive to the distributions of the prior

Table 4
Model‐Observation Mean Scaling Factors

FFDAS ODIAC EDGAR Agg. ODIAC

Riyadh 1.1 (0.5, 1.8) 1.2 (0.5, 1.9) 1.8 (1.0, 2.6) 1.1 (0.4, 1.8)
Mecca 1.7 (0.7, 2.7) 1.7 (0.6, 2.8) 1.4 (0.5, 2.4) 1.6 (0.6, 2.6)
Tabuk 3.4 (0.9, 5.8) 3.1 (0.7, 5.4) 8.7 (4.6, 12.7) 3.1 (0.7, 5.4)
Baghdad 3.0 (1.3, 4.9) 3.0 (1.6, 4.4) 2.2 (0.8, 3.7) 4.0 (1.8, 6.4)
Jeddah 3.3 (2.1, 4.4) 6.7 (5.5, 7.9) 1.9 (0.9, 2.9) 6.6 (4.9, 8.5)

Note. These mean scaling factors represent the relationship between the
inventory modeled enhancements for each city and the satellite observa-
tions. Their respective 90% confidence intervals are in parentheses.

Figure 6. Prior (colored) and scaled (gray) emissions magnitude estimates for our five cities of interest: Riyadh, Mecca, Tabuk, Baghdad, and Jeddah, as well as
the sums of the emissions of all five cities. The black lines on the gray bars represent the 90% confidence intervals. When taken in aggregate, the prior emissions
magnitudes underestimate emissions as compared to those scaled by our emissions scaling factors.
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inventory emissions and that adjust the magnitudes of the emissions, in spite of the differences between the
priors. This is a surprisingly powerful result, especially given the significance placed on the accuracy of
high‐resolution inventories for previous ground‐based inversion studies, (e.g., Lauvaux et al., 2016; Oda
et al., 2017). While the space‐based columnmeasurements of CO2 concentrations have not given us informa-
tion to quantify the spatial distribution of emissions, it has allowed us to bypass the differences in spatial dis-
tributions by providing an integral constraint to quantify urban magnitudes of CO2 emissions.

Sums of the different emissions estimates for each inventory (prior and scaled with confidence intervals)
across the five cities are shown at the bottom right in Figure 6. As shown in this figure, our scaled estimates,
with minimal or no overlap between our 90% confidence intervals and the prior emissions, demonstrate lar-
ger emissions than those estimated by the unscaled inventories. In other words, the five cities are, when
summed, underestimated by their prior inventory representations as compared to their
observation‐scaled counterparts.

4. Discussion
4.1. Implications for Middle Eastern Emissions and Their Representations

Our scaled emissions and their respective 90% confidence intervals constrain emissions of five Middle
Eastern cities. We find that for Riyadh, EDGAR representations underestimate afternoon emissions as com-
pared to what our observations suggest. Moreover, for Tabuk, Baghdad, and Jeddah, almost all prior inven-
tory representations underestimate afternoon emissions. After summing emissions for all five cities, prior
estimates for all inventories overlap minimally or not at all with lower bounds of the scaled emissions con-
fidence intervals. Thus, we can highlight that, in sum, inventory representations across all five cities under-
estimate afternoon emissions. If prior and scaled summed emissions are averaged across three inventories,
the average scaled summed emissions of all cities are 100 MtC year−1 (50, 151), which is 2.0 (1.0, 3.0) times
greater than the average prior summed emissions.

Our scaled estimates have regional significance. The entire Middle East as a whole emits approximately
700 MtC year−1 (Boden et al., 2016). The difference between the average scaled and prior summed emissions
for our five cities is 49 (−1, 100) MtC year−1, which is equivalent to ~7% (0%, 14%) of total Middle Eastern
emissions. Meanwhile, the emissions of Saudi Arabia and Iraq are approximately 200 MtC year−1 (Boden
et al., 2016). Prior and scaled summed emissions come out to ~26% and 50% (25%, 76%) of the Saudi
Arabian and Iraqi total, respectively. The difference between the average scaled and prior summed emis-
sions for the five studied cities comes out to ~25% (−1%, 50%) of the sum of the two countries' total emissions.
However, further work at a national or regional scale is needed to determine whether the underestimation in
these urban emissions representations suggests either underestimation in the national totals or if our esti-
mated discrepancy is more a result of misallocation of the emissions throughout the studied countries.

This work demonstrates the ability to use satellite observations to constrain urban emissions of cities of a
variety of sizes. Given the much smaller magnitude of emissions of Tabuk as compared to Riyadh, for exam-
ple, it is a surprising result that we can observe XCO2 enhancements from a city like Tabuk from space (as in
Figure S4). It does appear that with appropriate isolation from strong XCO2 signals, and with sufficient con-
centration of emissions and favorable atmospheric dynamics, even relatively small cities (with populations
of hundreds of thousands) can be identified and have emissions quantified.

This study provides an objective evaluation of the emission downscale approaches used by the gridded emis-
sions inventories. For the five studied cities, EDGAR's prior estimates overlap substantially with the confi-
dence intervals of our scaled emissions estimates only for Mecca. For every other city, the EDGAR
representations have emissions lower than orminimally overlapping with the lower bound of the confidence
intervals we estimate. As such, EDGAR does not seem to accurately capture urban emissions of these studied
cities. Why is this? EDGAR tends to distribute emissions across the urban domain more than the other two
inventories. Of the studied cities, Riyadh is the largest, and EDGAR's emissions estimate is significantly
lower than those of other inventories. It is possible that the distributed nature of how EDGAR grids emis-
sions is less able to capture the high emissions intensity of such a large city than alternate gridding methods
that rely on proxies such as nightlights.
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FFDAS and ODIAC (and its aggregated version) both also appear to underestimate emissions in comparison
with the OCO‐2 data, though their emission magnitudes are within the large confidence intervals of three of
our optimized estimates of individual cities. These two inventories share the use of nighttime lights as a
proxy for emissions distribution, and this work is somewhat suggestive this may be a useful proxy for global
representation of urban domains, but further work is required to further parse out their similarities, differ-
ences, and reasons for their underestimation of the studied urban emissions.

Our work also has the potential to identify larger errors in inventory representations of cities. For example,
the ODIAC representation of Jeddah has an error in it due to a mismatch between two nightlight data
sources (one for distributed emissions and the other for gas flare emissions, see Oda et al., 2018) at that par-
ticular location. This error was identified with our methods. We have not corrected for the spatial distribu-
tion error in this manuscript, but we have estimated the magnitude of emissions for Jeddah that can be used
to take into account when correcting ODIAC for future versions of the inventory.

4.2. The Spatial Resolution of the Prior Emissions

When making direct comparisons between the emissions inventories themselves, we scale ODIAC to match
the spatial resolution of the other inventories. However, in its native spatial resolution, ODIAC has 12 times
higher resolution in each spatial dimension. In order to assess the effect of using the two different spatial
resolutions, all modeled results include both native resolution results (“ODIAC”) and results in which the
resolution is aggregated up to 0.1 × 0.1° (“Agg ODIAC”). We can see in plots such as Figure 4 that the differ-
ences in spatial resolution do affect the individual modeled enhancement values, as the points for the two
ODIAC resolutions do not perfectly overlap with each other. However, within the scope of our study, the dif-
ferences in spatial resolution do not greatly affect the outcome of our scaled emissions estimates. For each
studied city, the scaled estimates across the different ODIAC resolutions provide convergent estimates.
Thus, our estimates are insensitive to both the differences in the studied resolutions as well as the spatial dis-
tributions in the priors.

4.3. Limitations and Their Implications

The OCO‐2 satellite follows a sun‐synchronous orbit, meaning that all the observations used in this study are
temporally limited to local afternoon. Consequently, we cannot assess the diurnal cycle of our results, and
our results are dependent on the accuracy of the diurnal model representation by the TIMES scaling factors.
Our results thus suggest an emissions underestimation by the modeled inventory representations and their
corresponding parts—namely, the convolution of the inventories themselves and the diurnal model repre-
sentations. (Note that the FFDAS product has its own internal diurnal cycle embedded into the product
based on the TIMES factors.) We cannot disentangle the TIMES factors from the inventory representations,
which suggests that this underestimation could be a result of the inventories having too‐low emissions, the
TIMES diurnal cycle not fully capturing afternoon emissions, or a combination of these two factors.

Given the widespread usage of the TIMES factors for capturing diurnal cycles, it is possible that there is a
systematic bias across many model representations of diurnality of emissions. The TIMES factors are poten-
tially unable to fully correct for the lack of diurnality in the emissions inventories, particularly at the urban
scale, a scale for which these factors were not designed. While this potential bias cannot be tested using
OCO‐2 data alone, as is done in this study, observations frommultiple times of day from other satellites such
as the recently launched OCO‐3 could allow for assessments of the diurnal cycle represented by the TIMES
factors. Moreover, there is great potential for carbon‐observing satellites in geostationary orbit to assess the
diurnal cycle of CO2 emissions, as they would be able to make multiple observations of the same locations
throughout the day. For example, the upcoming Geostationary Carbon Cycle Observatory (GeoCARB) mis-
sion, which will continuously monitor column concentrations of CO2, CH4, and CO in the Americas
throughout the day from geostationary orbit, is an important step forward in this respect (Moore et al., 2018).

Assessments of the emissions magnitudes of inventory representations are also limited by the signal‐to‐noise
ratio (SNR) of the OCO‐2 observations. The methods used in this paper to analyze observed overpasses rely
on high SNR and optimal conditions; it is possible that overpasses with higher SNR simultaneously also have
stronger signals, suggesting that our results may be biased toward higher scaling factors and thus suggesting
greater underestimation by the modeled representations of afternoon emissions. This potential bias high-
lights the limitations of not just this study but for other studies involving space‐based observations for the
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use of urban emissions assessments. The use of space‐based observations of XCO2 can be hindered by a num-
ber of factors, such as clouds, high albedo, topography, and wind conditions; for regions at urban scales,
these factors in turn limit the types of studies for which the observations can be used. Given these limita-
tions, our study does not seek to quantify absolute emissions in the studied cities but rather assess the inven-
tory representations' ability to capture the variations in urban emissions that are suggested by the
observations used in this study. The underestimation by these inventory representations that we have eval-
uated thus suggest that the inventories can be improved to better capture such variations. The larger
observed swaths available at urban scales in both the target and snapshot area mapping (SAM) modes of
OCO‐3 will provide for much more data at urban scales and could lessen some of the limitations associated
with OCO‐2 data (Eldering et al., 2019).

5. Summary and Conclusions

Global FFCO2 emissions inventories need to be evaluated and improved at the urban scale for the sake of
carbon cycle science and urbanmitigation policies. In this study, we evaluate global FFCO2 emissions inven-
tory representations of afternoon urban CO2 emissions in the Middle East and assess the ability of satellite
observations to inform this evaluation.We find the relationship between top‐down satellite observations and
bottom‐up simulations of XCO2 to calculate scaling factors to adjust the prior inventory estimates of five
Middle Eastern cities' emissions. Based on our findings, we estimate that the sum of the studied cities' scaled
emissions are on average 2.0 (1.0, 3.0) times the prior inventory magnitudes. The underestimation of these
five cities' emissions by the inventories comes out to ~7% (0%, 14%) of total Middle Eastern emissions. Our
results are insensitive to the spatial differences in the inventory representations of the cities' emissions, facil-
itating robust quantitative assessments of urban emissions inventory representations. This is in contrast with
atmospheric inverse analyses carried out with ground‐based observations, which would be heavily depen-
dent on the spatial distribution of the prior inventories. Using space‐based XCO2 observations allows us to
constrain urban emissions in a fashion not previously available to us, enabling evaluation of inventories
and downscaling methods at subnational scales. These results are based only on a few overpasses for each
city; with additional observations, urban emissions could be even further constrained, and more cities could
be included in a future study. In particular, the recent launch of the OCO‐3 is especially exciting: It opens up
new potential pathways for urban CO2 emissions studies to move forward, with observations during differ-
ent times of the day (instead of only the afternoon as with OCO‐2), and the new SAM mode that could cap-
ture the entire urban plume (Eldering et al., 2019). The upcoming launch of the geostationary GeoCARB
mission will also help to fill in some of the observational gaps of the sun‐synchronous OCO‐2 and OCO‐3
satellites by mapping column concentrations of CO2 in the Americas with multiple measurements of the
same locations every day. Constraining urban emissions is critically important, and satellites are paving
the way for such work to be done.
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