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Abstract As part of the Reproducibility Project: Cancer Biology we published a Registered

Report (Fiering et al., 2015) that described how we intended to replicate selected experiments

from the paper ‘Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors

tumor invasion and metastasis’ (Goetz et al., 2011). Here we report the results. Primary mouse

embryonic fibroblasts (pMEFs) expressing caveolin 1 (Cav1WT) demonstrated increased

extracellular matrix remodeling in vitro compared to Cav1 deficient (Cav1KO) pMEFs, similar to the

original study (Goetz et al., 2011). In vivo, we found higher levels of intratumoral stroma

remodeling, determined by fibronectin fiber orientation, in tumors from cancer cells co-injected

with Cav1WT pMEFs compared to cancer cells only or cancer cells plus Cav1KO pMEFs, which

were in the same direction as the original study (Supplemental Figure S7C; Goetz et al., 2011), but

not statistically significant. Primary tumor growth was similar between conditions, like the original

study (Supplemental Figure S7Ca; Goetz et al., 2011). We found metastatic burden was similar

between Cav1WT and Cav1KO pMEFs, while the original study found increased metastases with

Cav1WT (Figure 7C; Goetz et al., 2011); however, the duration of our in vivo experiments (45 days)

were much shorter than in the study by Goetz et al. (2011) (75 days). This makes it difficult to

interpret the difference between the studies as it is possible that the cells required more time to

manifest the difference between treatments observed by Goetz et al. We also found a statistically

significant negative correlation of intratumoral remodeling with metastatic burden, while the

original study found a statistically significant positive correlation (Figure 7Cd; Goetz et al., 2011),

but again there were differences between the studies in terms of the duration of the metastasis

studies and the imaging approaches that could have impacted the outcomes. Finally, we report

meta-analyses for each result.

Introduction
The Reproducibility Project: Cancer Biology (RP:CB) is a collaboration between the Center for Open

Science and Science Exchange that seeks to address concerns about reproducibility in scientific

research by conducting replications of selected experiments from a number of high-profile papers in

the field of cancer biology (Errington et al., 2014). For each of these papers a Registered Report

detailing the proposed experimental designs and protocols for the replications was peer reviewed

and published prior to data collection. The present paper is a Replication Study that reports the

results of the replication experiments detailed in the Registered Report (Fiering et al., 2015) for a
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2011 paper by Goetz et al., and uses a number of approaches to compare the outcomes of the origi-

nal experiments and the replications.

In 2011, Goetz et al. reported that Caveolin-1 (Cav1), an activator of Rho/ROCK signaling

(Joshi et al., 2008), remodels the intratumoral microenvironment facilitating tumor invasion and cor-

relating with increased metastatic burden. By regulating the Rho inhibitor p190RhoGAP, Cav1

expression results in cancer-associated fibroblasts (CAFs) that promote extracellular matrix (ECM)

alignment and stiffening (Goetz et al., 2011). As the ECM is stiffened, it may direct cancer cell inva-

sion into the surrounding stroma for eventual metastasis (Wang et al., 2016). To specifically address

the role of Cav1 in the tumor stroma, primary mouse embryonic fibroblasts (pMEFs) derived from

either wild-type (Cav1WT) or Cav1 knockout (Cav1KO) mice were co-injected with LM-4175 tumor

cells, a cell line of a lung metastasis derived MDA-MB-231 breast cancer cells (Minn et al., 2005).

The number of metastases was increased when Cav1 was present compared to the Cav1KO condi-

tion (Goetz et al., 2011). Additionally, there was increased ECM remodeling (e.g. fibronectin fiber

alignment) of the primary tumors when Cav1WT pMEFs were present compared to Cav1KO pMEFs

(Goetz et al., 2011). Intratumoral fibronectin alignment was correlated with increased metastatic

burden suggesting Cav1 positive stroma are permissive for tumor progression (Goetz et al., 2011).

The Registered Report for the paper by Goetz et al. described the experiments to be replicated

(Figure 7C and Supplemental Figures S2A and S7C), and summarized the current evidence for these

findings (Fiering et al., 2015). Since that publication additional studies have reported that fibronec-

tin assembly by CAFs stimulate cancer cell invasion (Attieh et al., 2017). Several studies have also

reported the correlation of stromal Cav1 expression and clinical outcome, with some associating

high expression of Cav1 with unfavorable outcome (Chatterjee et al., 2015; Sun et al., 2017) and

some associating Cav1 expression with favorable clinical outcome (Eliyatkin et al., 2018;

Neofytou et al., 2017). The reported tumor-promoting and tumor-suppressive functions of Cav1

are likely due to cell-specific effects, physiological context, and cancer stage (Celus et al., 2017).

The outcome measures reported in this Replication Study will be aggregated with those from the

other Replication Studies to create a dataset that will be examined to provide evidence about repro-

ducibility of cancer biology research, and to identify factors that influence reproducibility more

generally.

Results and discussion

Isolation and characterization of Cav1 wild-type and Cav1 knockout
primary MEFs
To test the effect of Cav1 in the tumor stroma, we isolated Cav1WT and Cav1KO pMEFs. The exper-

imental approach to isolate and characterize the pMEFs was described in Protocol 1 and 2 of the

Registered Report (Fiering et al., 2015). Isolated pMEFs were assessed for Smooth Muscle Actin

(SMA) expression to determine if Cav1WT pMEFs had increased expression compared to Cav1KO

pMEFs. This was suggested during peer review of the Registered Report as a marker of increased

fibroblast activation and ECM remodeling capabilities of the pMEFs (Fiering et al., 2015). We

observed similar SMA expression between Cav1WT and Cav1KO pMEFs (Figure 1A,B). The pMEFs

were used within a few passages after isolation, however, growth on a stiff substrate (i.e. plastic) can

lead to increased SMA expression (Jones and Ehrlich, 2011; Shi et al., 2013), which could have

masked any subtle differences in expression between Cav1WT and Cav1KO pMEFs. Indeed, the

original study observed that three-dimensional (3D) growth preferentially raised SMA expression in

Cav1WT immortalized MEFs close to levels of SMA in pMEFs grown under two-dimensional (2D)

conditions (Goetz et al., 2011). Instead, we performed a collagen contraction assay to test if

Cav1WT pMEFs have increased ECM remodeling capabilities compared to Cav1KO pMEFs. This was

reported for immortalized MEFs in the original study; however, for pMEFs the data were ‘not shown’

in the published paper because of the journal policy at Cell restricting the number of supplemental

figures allowed (del Pozo, personal communication). Although the data were not reported, the origi-

nal study stated that the ECM remodeling capabilities of Cav1KO pMEFs were reduced compared

to Cav1WT pMEFs, similar to the results reported with immortalized MEFs (Goetz et al., 2011). In
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Figure 1. Characterization of Cav1 wild-type and Cav1 knockout pMEFs. Primary MEFs (pMEFs) from wild-type (WT) or knockout (KO) embryos were

examined for increased fibroblast activation and extracellular matrix (ECM) remodeling capabilities in vitro. (A) Western blots of the indicated pMEFs

probed with antibodies against caveolin-1 (CAV1), alpha-smooth muscle actin (SMA), and gamma-Tubulin. Numbers indicate individual pMEF clones.

(B) Western blot bands were quantified, SMA levels were normalized to Tubulin, and protein expression are presented relative to Cav1WT. Dot plot

Figure 1 continued on next page
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this study, we also found Cav1KO pMEFs had decreased contraction compared to Cav1WT pMEFs

(Figure 1C–E). This result is consistent with Cav1 contributing to fibroblast contractility. To summa-

rize, we were unable to observe differences in SMA expression between Cav1WT and Cav1KO

pMEFs in 2D conditions on a rigid substrate, but did observe contraction in Cav1WT pMEFs, that

was reduced in Cav1KO pMEFs, a result that was in the same direction as the original study.

Subcutaneous tumorigenicity assay of tumor cells co-injected with
Cav1WT or Cav1KO primary MEFs
We next used the pMEFs to replicate an experiment to test whether stromal Cav1 remodels the

intratumoral microenvironment and facilitates tumor cell metastasis. This experiment is similar to

what was reported in Figure 7C and Supplemental Figure 7C of Goetz et al. (2011) and described

in Protocols 3 and 4 in the Registered Report (Fiering et al., 2015). Tumor cells engineered to

express luciferase (LM-4175) were mixed with Cav1WT or Cav1KO pMEFs, or not mixed with pMEFs

(control group), and injected subcutaneously into female nude mice. While the original study also

tested the role of p190RhoGAP by injecting LM-4175 cells mixed with p190RhoGAP-silenced

Cav1KO pMEFs, this replication attempted did not attempt to include this condition. To determine

the experimental endpoint, we first performed a pilot experiment and established that mice should

be euthanized 45 days after cell injection to maximize the length of time for tumor growth while min-

imizing animal suffering. Importantly, while the original study did not report tumor sizes, in this pilot

experiment tumor burden was determined to be excessive (1.5 cm3) at an experimental endpoint

that was 25 days shorter than the original study, which maintained mice for 70 days after injection.

Thus, it is possible that tumors grew more rapidly in this replication attempt than the original study.

Following the same time course as the pilot experiment we injected female nude mice with LM-4175

cells with or without Cav1WT or Cav1KO pMEFs. Similar to the pilot study we observed criteria war-

ranting euthanasia in some mice (e.g. ulceration at the tumor site) confirming that 45 days after

injection was the appropriate endpoint. Before euthanasia, each mouse was injected with luciferin to

monitor primary tumor growth and metastasis formation. We found there was not a statistically sig-

nificant difference in primary tumor growth between the three groups (Kruskal-Wallis: H(2) = 0.0439,

p=0.978), with a median (Mdn) bioluminescence of 1.92 � 109 photons/sec [n = 10] for LM-4175,

1.92 � 109 photons/sec [n = 26] for LM-4175 plus Cav1WT pMEFS, and 1.64 � 109 photons/sec

[n = 25] for LM-4175 plus Cav1KO pMEFs (Figure 2A,B). This compares to a Mdn bioluminescence

of 2.16 � 1010 photons/sec [n = 6] for LM-4175, 1.54 � 1010 photons/sec [n = 13] for LM-4175 plus

Cav1WT pMEFS, and 2.08 � 1010 photons/sec [n = 15] for LM-4175 plus Cav1KO pMEFs reported in

the original study (Goetz et al., 2011).

To assess metastatic burden, we excised the same organs examined in the original study and

reimaged them ex vivo. Similar to the original study, we observed that the incidence of a metastatic

foci, when considering all the mice examined, was highest in the lymph node (RP:CB: 41% (25 out of

61 mice); Goetz et al., 2011: 77% (27 out of 35)). In this replication attempt we observed the lowest

incidence of metastatic foci in the kidney and liver (13% (8 out of 61)) while the original study

observed the lowest incidence in the spleen (37% (13 out of 35)). When considering the total number

of metastatic foci detected among all the examined organs, we found mice injected with LM-4175

cells formed a median of 0 metastatic foci (range: 0–115; incidence: 40% (4 out of 10 mice)), mice

injected with LM-4175 cells plus Cav1WT pMEFS formed a median of 3 metastatic foci (range: 0–25;

incidence: 62% (16 out of 26)), and mice injected with LM-4175 cells plus Cav1KO pMEFs formed a

median of 5 metastatic foci (range: 0–33; incidence: 84% (21 out of 25)) (Figure 2A,C). The original

Figure 1 continued

with means reported as crossbars and error bars represent SD. Number of individual clones per group: Cav1WT = 5, Cav1KO = 4. Exploratory analysis:

Student’s two-tailed t-test; t(7) = 1.791, p=0.116; Cohen’s d = 1.20, 95% CI [�0.52, 2.92]. (C) Representative images from collagen contraction assay of

the indicated conditions at 24 or 48 hr after plating. (D) Line graph of contraction index, measured as the change in percent of gel area at time of

plating, of Cav1WT and Cav1KO pMEFs at the indicated times after plating. Means reported and error bars represent SD. Number of individual clones

per group: Cav1WT = 4, Cav1KO = 4. (E) The contraction index was used to calculate the area under the curve (AUC) for each clone. Bar plots for each

individual clone tested (numbers indicate same clone number as in A). Dashed lines indicate means of each group. Exploratory analysis: Student’s two-

tailed t-test; t(6) = 10.80, p=3.72�10�5; Cohen’s d = 7.64, 95% CI [2.66, 12.62]. Additional details for this experiment can be found at https://osf.io/

na5h2/.
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Figure 2. Primary tumor growth and metastatic burden from subcutaneous tumorigenicity assay. Female nude mice were subcutaneously injected with

1 � 106 LM-4175 cells mixed with or without 1 � 106 Cav1WT or Cav1KO pMEFs and monitored for 45 days. (A) At the end of the experiment primary

tumors were imaged in vivo. Box and whisker plot of primary tumor photon flux with median represented as the line through the box and whiskers

representing values within 1.5 IQR of the first and third quartile. Number of primary mice per group: LM-4175 only (control group)=10, LM-4175 plus

Figure 2 continued on next page
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study reported a median of 3.5 (range: 0–4; incidence: 67% (4 out of 6 mice)) for LM-4175, 26

(range: 1–67; incidence: 100% (12 out of 12)) for LM-4175 plus Cav1WT pMEFs, and 8 (range: 0–34;

incidence: 93% (14 out of 15)) for LM-4175 plus Cav1KO pMEFs (Goetz et al., 2011). There are mul-

tiple approaches that could be taken to explore these data; however, to provide a direct comparison

to the original data, we conducted the analysis specified a priori in the Registered Report

(Fiering et al., 2015). To test if the number of metastatic foci differed between the three groups we

performed three planned comparisons, which were not statistically significant (see Figure 2 figure

legend). Interpretation of the metastatic burden should take into consideration the shorter time

from cell injection until euthanasia conducted in this replication attempt, which was 25 days (36%)

shorter than the original study. To summarize, for assessment of metastasis formation we found

results that were not in the same direction as the original study and not statistically significant.

There are a number of factors that can affect the evaluation of tumor growth and metastasis for-

mation using bioluminescence imaging. For in vivo imaging, the depth and location of the tumor, as

well as the thickness or color of the animal’s skin can alter the bioluminescent signal (Baba et al.,

2007). The type of anesthetics used can impact the luciferase reaction (Keyaerts et al., 2012) as

well as the route of injection of D-luciferin. So while both studies used an intraperitoneal injection

there can be variation in the signal due to changes in the rate of absorption across the peritoneum

(Close et al., 2010). Thus, intravenous and subcutaneous administration of D-luciferin have been

suggested alternatives (Keyaerts et al., 2008; Khalil et al., 2013). The imaging time postinjection

can also affect the sensitivity of the bioluminescent signal as well as differences in instrumentation

settings (Burgos et al., 2003; Rettig et al., 2006). Additionally, the animal diet can also affect the

background gut phosphorescence with standard mouse chow with plant material displaying greater

phosphorescence compared to a diet without plant material (Zinn et al., 2008). Finally, an immune

response against luciferase has also been reported to restrict tumor growth and metastatic potential

of luciferase expressing tumor cells (Baklaushev et al., 2017).

As noted above, the difference in experimental timing could have had important effects on both

the extent and patterns of metastases observed. There are numerous cellular processes that tumor

cells must accomplish to form metastases, including evasion of immune responses and programmed

cell death, invasion of the host stroma, escape through vasculature and/or lymphatics, and survival

and growth in distant sites (Chambers et al., 2002). Thus, there are multiple steps during malignant

progression that are influenced by a number of factors, particularly time. Most experimental systems,

however, do not model all of the steps necessary for metastasis formation (Saxena and Christofori,

2013). Subcutaneous approaches, such as the model used in the original study and this replication,

can robustly model in vivo tumor growth, as well as local invasion toward skin mesenchyme, but do

not reliably recapitulate metastatic behavior, likely because of ectopic anatomical context

(Antonello and Nucera, 2014; Pearson and Pouliot, 2013). Experimental timing of primary tumor

growth and spontaneous metastasis are important to maintain to minimize confounding variables

especially since growth is nonlinear (Tyuryumina and Neznanov, 2018). This can be complicated

when primary tumor growth necessitates the sacrifice of animals before sufficient time for metastatic

development. Monitoring and reporting tumor growth, such as tumor volumes for each animal at

Figure 2 continued

Cav1WT pMEFs = 26, LM-4175 plus Cav1KO pMEFs = 25. Kruskal-Wallis test on all three groups: H(2) = 0.0439, p=0.978. (B) Representative images of

primary tumors in vivo and extracted organs ex vivo. (C) The indicated organs were dissected, imaged ex vivo, and individual metastatic foci were

blindly quantified. Box and whisker plots of metastatic foci counts for each organ and total metastatic counts with median represented as the line

through the box and whiskers representing values within 1.5 IQR of the first and third quartile (dots represent outliers). Note: the y-axes have been

truncated for visualization purposes and excludes two outliers from Total (LM-4175 only), one from Lymph Nodes (LM-4175 plus Cav1WT), seven from

Lung (two from LM-4175 only; five from LM-4175 plus Cav1KO), and one from Intestines (LM-4175 only). The excluded outliers were included in the

statistical analysis below. Number of mice per group: LM-4175 only = 10, LM-4175 plus Cav1WT pMEFs = 26, LM-4175 plus Cav1KO pMEFs = 25.

Planned Wilcoxon-Mann-Whitney comparison on total metastatic counts between LM-4175 only and LM-4175 plus Cav1WT pMEFs: U = 103,

uncorrected p=0.318 with a priori alpha level of 0.0167, Bonferroni corrected p=0.954, Cliff’s delta = 0.21, 95% CI [�0.08, 0.46]. Planned Wilcoxon-

Mann-Whitney comparison on total metastatic counts between LM-4175 only and LM-4175 plus Cav1KO pMEFs: U = 175.5, uncorrected p=0.062,

Bonferroni corrected p=0.185, Cliff’s delta = 0.40, 95% CI [0.10, 0.64]. Planned Wilcoxon-Mann-Whitney comparison on total metastatic counts between

LM-4175 plus Cav1WT pMEFs and LM-4175 plus Cav1KO pMEFs: U = 389.5, uncorrected p=0.219, Bonferroni corrected p=0.657, Cliff’s delta = �0.20,

95% CI [�0.47, 0.11]. Additional details for this experiment can be found at https://osf.io/bq54u/.
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the experimental endpoint, can allow for mitigation strategies if there are variations in the growth of

tumors between studies. For example, the primary tumor could be resected at a specific time, or

tumor size, to allow for a longer follow-up of metastasis development. Additionally, other growth

monitoring criteria, such as using biomarkers to visualize metastatic burden in vivo without sacrificing

animals, should be considered in the experimental design of future studies.

Intratumoral stroma remodeling
In addition to monitoring metastasis formation we blindly examined intratumoral stroma remodeling

in a random subset of the primary tumors. Tumors sections were stained for fibronectin and SMA

using the same antibodies and protocol as the original study. Fibronectin staining gave specific stain-

ing with little background in control conditions (Figure 3—figure supplement 1A); however, there

was high non-specific staining observed with SMA (Figure 3—figure supplement 1B). In an attempt

to reduce the non-specific staining we included a mouse-on-mouse blocking step since a mouse

anti-SMA antibody was being used on mouse tissue. While this reduced background staining, we

observed heterogeneity in the patterns (e.g. fibrillar structures, bright dots) and intensities within

the tumors (Figure 3—figure supplement 1C). This introduced an unanticipated difficulty in needing

to separate out the bright dots, which appeared specific based on the controls, from the fibrous

SMA. As such, we did not conduct the SMA analysis that was outlined in the Registered Report.

We next quantified intratumoral orientation of fibronectin fibers from 10 random images per

tumor. As specified in the Registered Report (Fiering et al., 2015), we attempted to determine

fibronectin orientation using MetaMorph software as described in the original study, but found that

the Integrated Morphometry Analysis (IMA) function to reveal objects of interest was unable to be

executed as there were too many objects to process (see detailed approach in Materials and meth-

ods). Instead, we created a workflow using the KNIME analytics platform (Berthold et al., 2007) that

allows the integration of ImageJ commands into a single workflow to ensure all images of the data-

set are processed in an identical manner. We were unable to perform the exact methodology since

there were thousands of objects remaining in control conditions after performing the 35% threshold

at the maximum internal intensity as prespecified in the Registered Report. The number of objects

detected at this step was higher than the number MetaMorph IMA function could handle. A large

portion of these objects were very small, therefore we included an additional parameter that

selected objects that were above a certain size (Figure 3—figure supplement 2A). The fibronectin

fiber orientation among the various images was determined by arbitrarily setting the mode angle,

that represents the angle with the most fibers observed, to 0˚ for each image and then calculating

the average percentage of fibers oriented within 20˚ of the mode angle (i.e. �20˚ to 20˚)

(Amatangelo et al., 2005). We found the percentage of fibers within 20˚ of the mode was highest in

tumors from LM-4175 plus Cav1WT pMEFs [Mdn = 44.1%, interquartile range (IQR) = 41.3–45.2%,

n = 8] or LM-4175 cells [Mdn = 44.6%, IQR = 38.0–46.0%, n = 5] compared to tumors from LM-4175

plus Cav1KO pMEFs [Mdn = 41.2%, IQR = 40.0–41.8%, n = 7] (Figure 3A,B, Figure 3—figure sup-

plement 3A,B). To test if the orientation of fibronectin fibers differed we performed the two

planned comparisons outlined in the Registered Report (LM-4175 vs LM-4175 plus Cav1WT pMEFs;

LM-4175 plus Cav1WT pMEFs vs LM-4175 plus Cav1KO pMEFs), which were not statistically signifi-

cant (see Figure 3 figure legend). This compares to the original study that reported a statistically sig-

nificant increase in fibronectin fiber alignment when LM-4175 cells were co-injected with Cav1WT

pMEFs [Mdn = 52.5%, IQR = 43.6–55.4%, n = 8] compared to LM-4175 cells [Mdn = 36.9%,

IQR = 36.8–37.7%, n = 5] or LM-4175 plus Cav1KO pMEFs [Mdn = 42.2%, IQR = 40.8–43.2%,

n = 10], suggesting stromal Cav1 remodels the intratumoral microenvironment (Goetz et al., 2011).

To summarize, we found results that were in the same direction as the original study and not statisti-

cally significant where predicted. Interpretation of these results should take into consideration the

changes in analysis workflow between the original and replication studies. It is unknown what the

impact of the change in methods are since the workflow used for the original study could not be

implemented on the replication data and vice versa. Although, despite these differences, the median

value of percent of fibronectin fibers oriented within 20% across all tumors was similar between this

replication attempt [Mdn = 42.1%, IQR = 39.1–44.7%, n = 20] and the original study [Mdn = 42.5%,

IQR = 37.9–45.1%, n = 23]. Nonetheless, the fibrillar nature of fibronectin staining might not be fully

captured due to variations in staining and imaging (e.g. image noise), a common challenge that

affects the quality of fluorescence-based images because of the low-light nature of the signal. It was
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Figure 3. Intratumoral fibronectin fiber orientation and correlation to metastasis. A random subset of the primary tumors from the subcutaneous

tumorigenicity assay (20 of 61 mice) were stained for fibronectin and analyzed to determine the average percentage of fibers oriented within 20˚ of the

modal angle. (A) Bar graphs of the frequency of fibronectin fiber angle plotted relative to the modal angle (set at 0˚). Means reported and error bars

represent s.e.m. Number of mice, and thus tumors, per group: LM-4175 only = 5, LM-4175 plus Cav1WT pMEFs = 8, LM-4175 plus Cav1KO pMEFs = 7.

Values reported above bar graphs indicate the median and interquartile range (IQR) of percent of fibers oriented within 20˚ of the modal angle (�20˚ to

20˚, represented as purple bars) for each tumor. Planned Wilcoxon-Mann-Whitney comparison on percent of fibers oriented within 20˚ of the modal

angle between LM-4175 only and LM-4175 plus Cav1WT pMEFs: U = 19, uncorrected p=0.884 with a priori alpha level of 0.025, Bonferroni corrected

p>0.99. Planned Wilcoxon-Mann-Whitney comparison on percent of fibers oriented within 20˚ of the modal angle between LM-4175 plus Cav1WT

pMEFs and LM-4175 plus Cav1KO pMEFs: U = 13, uncorrected p=0.0826, Bonferroni corrected p=0.165. (B) Different fields of views (fov) of the

immunostained primary tumors for fibronectin and Hoechst. Three independent tumors derived from LM4175 only (first column, top to bottom: tumor 2

fov5, tumor 4 fov9, tumor 34 fov3), LM-4175 plus Cav1WT pMEFs (second column, top to bottom: tumor 16 fov7, tumor 51 fov 7, tumor 61 fov2), and

LM-4175 plus Cav1KO pMEFs (third column, top to bottom: tumor 20 fov4, tumor 30 fov1, tumor 47 fov6). Scale bar: 50 mm. Fibronectin signal is

pseudo-colored in red (microscope emission peak wavelength: 614 nm) and Hoechst signal is pseudo-colored in blue (microscope peak emission

wavelength: 454 nm). Images are maximum intensity projections of the Z-stacks, corrected for background (as described in Materials and methods -

Fibronectin fiber analysis) and displayed in the same range of grey levels. (C) Scatter plot of percentage of fibers within 20˚ of the modal angle and total

number of metastatic counts for 20 tumors analyzed for fibronectin orientation. Line represents spearman rank correlation and light gray region

represents 95% CI. Spearman rank-order correlation analysis: rs(18) = �0.50, p=0.025. Additional details for this experiment can be found at https://osf.

io/bq54u/.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Immunostaining of primary tumors.

Figure 3 continued on next page
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unclear if this occurred in the original study, and if so, what was performed to manage this. Others

have suggested methods to evaluate noise (Heintzmann et al., 2018; Murray, 2007), with manage-

ment steps implemented in either the equipment or in the image process and analysis protocol.

Additionally, data analysis should be done blinded to conditions and batch processed, with specific

details of what will occur stated prior to data collection, such as in a pre-registered analysis plan, to

minimize confirmation bias (Wagenmakers et al., 2012).

We also explored additional methods to examine fiber orientation. Anisotropy, a measure of

orderly structure, was measured with FibrilTool (Boudaoud et al., 2014; proposed by the original

authors during preparation of the Registered Report), coherency, the degree to which the local fea-

tures are oriented, was measured with OrientationJ (Rezakhaniha et al., 2012), and a blinded man-

ual scoring was performed to assess the frequency of parallel fibers. These additional measures were

found to be well correlated with the percentage of fibers oriented within 20˚ of the mode angle (Fig-

ure 3—figure supplement 2B). The same statistical comparisons between the three groups that

were performed above were also explored, which gave similar results (Figure 3—figure supplement

2C). Although the full range of possible methods were not explored, these concordant results indi-

cate the robustness of the findings (Silberzahn et al., 2018; Steegen et al., 2016).

Finally, intratumoral fibronectin fiber alignment was examined to determine if there was a correla-

tion with metastasis formation. Results of the Spearman’s rank-order correlation indicated that there

was a statistically significant negative relationship between the number of metastatic foci and per-

centage of fibers within 20˚ of the mode (rs(18) = �0.50, p=0.025) (Figure 3C). The same type of

analysis was reported in the original study, which indicated a statistically significant positive relation-

ship (Goetz et al., 2011). Interpretation of this analysis should take into consideration the results

above, especially since the shorter experimental timing could have impacted the number of metasta-

ses observed. Additionally, the primary tumors and metastatic foci counts used for the correlation

analysis were a random subset of all the mice evaluated in this study. To summarize, we found results

that were statistically significant in the opposite direction as the original study.

Interpretation of the above results should take into account experimental differences between

the original and replication studies. The decreased experimental endpoint (45 days instead of 70

days) could have had important effects on both the extent and patterns of metastases as well as

affect the fibronectin pattern associated with intratumoral remodeling. That is, the shorter in vivo

experimental timing might not have allowed for the same level of metastatic progression to occur in

this replication compared to the original study. Additionally, the in vivo ECM remodeling capabilities

of the primary fibroblasts used in this study are unknown due to cross reaction during SMA staining

despite using the same protocol as the original study. Thus, while the in vitro contractility assay

observed a difference between the pMEFs, a larger difference might be required to observe an

effect on intratumoral orientation with this experimental design. An examination of the involvement

of p190RhoGAP should also be considered in the experimental design of future studies. Importantly,

observing different outcomes with similar experimental designs are informative to establish the

range of conditions under which a given effect can be observed (Bailoo et al., 2014).

Meta-analyses of original and replication effects
We performed a meta-analysis using a random-effects model, where possible, to combine each of

the effects described above as pre-specified in the confirmatory analysis plan (Fiering et al., 2015).

To provide a standardized measure of the effect, a common effect size was calculated for each effect

from the original and replication studies. Cliff’s delta (d) is a non-parametric estimate of effect size

that measures how often a value in one group is larger than the values from another group, while

the effect size r is a standardized measure of the correlation (strength and direction) of the associa-

tion between two variables. The estimate of the effect size of one study, as well as the associated

uncertainty (i.e. confidence interval), compared to the effect size of the other study provides one

Figure 3 continued

Figure supplement 2. Additional measures of fibronectin fiber analysis.

Figure supplement 3. Fields of view from fibronectin fiber analysis.

Figure supplement 4. KNIME workflow.
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approach to compare the original and replication results (Errington et al., 2014; Valentine et al.,

2011). Importantly, the width of the confidence interval (CI) for each study is a reflection of not only

the confidence level (e.g. 95%), but also variability of the sample (e.g. SD) and sample size.

The comparisons of the primary tumor growth between the three groups of mice, LM-4175 cells

injected with or without Cav1WT or Cav1KO pMEFs, which were reported in Figure 2A of this study

and Supplemental Figure 7Ca of Goetz et al. (2011), were in the same directions between the two

studies and the effect size point estimate of each study was within the CI of the other study

(Figure 4A). Furthermore, the meta-analysis was not statistically significant (p=0.467), suggesting

primary tumor growth does not change when Cav1 is absent in the tumor stroma.

There were three comparisons of total metastasis formation between the three groups, which

was reported in Figure 2C of this study and Figure 7Cb of Goetz et al. (2011). The meta-analyses

were not statistically significant for the LM-4175 vs LM-4175 plus Cav1WT pMEFs comparison

(p=0.107) and the LM-4175 plus Cav1WT pMEFs vs LM-4175 plus Cav1KO pMEFs comparison

(p=0.680), but was for the LM-4175 vs LM-4175 plus Cav1KO pMEFs comparison (p=0.0027)

(Figure 4B). The direction of the LM-4175 vs LM-4175 plus Cav1KO pMEFs comparison was the
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Figure 4. Meta-analyses of each effect. Effect size and 95% confidence interval are presented for Goetz et al. (2011), this replication attempt (RP:CB),

and a random effects meta-analysis to combine the two effects. The effect size r is a standardized measure of the correlation (strength and direction) of

the association between two variables and Cliff’s delta is a standardized measure of how often a value in one group is larger than the values from

another group. Sample sizes used in Goetz et al. (2011) and this replication attempt are reported under the study name. (A) Primary tumor growth

between mice injected with LM-4175 cells with or without Cav1WT or Cav1KO pMEFs (meta-analysis p=0.467). (B) Total metastasis counts between

mice injected with LM-4175 cells and LM-4175 plus Cav1WT pMEFs (meta-analysis p=0.107), mice injected with LM-4175 cells and LM-4175 plus

Cav1KO pMEFs (meta-analysis p=0.0027), and mice injected with LM-4175 plus Cav1WT pMEFs and LM-4175 plus Cav1KO pMEFs (meta-analysis

p=0.680). (C) Fibronectin fiber orientation (average percentage of fibers oriented within 20˚ of the mode angle) between tumors from mice injected with

injected with LM-4175 cells and LM-4175 plus Cav1WT pMEFs (meta-analysis p=0.269) and mice injected with LM-4175 plus Cav1WT pMEFs and LM-

4175 plus Cav1KO pMEFs (meta-analysis p=1.11�10�4). (D) Rank-order correlation between fibronectin fiber orientation and total metastasis counts

(meta-analysis p=0.837). Additional details for these meta-analyses can be found at https://osf.io/rvf57/.
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same in both the original study and this replication attempt with the CI of each study encompassing

the effect size point estimate of the other study. The effect size point estimates of the LM-4175 vs

LM-4175 plus Cav1WT pMEFs and LM-4175 plus Cav1WT pMEFs vs LM-4175 plus Cav1KO pMEFs

comparisons for each study, however, were not within the CI of the other study. Additionally, for

these two effects, the large CI of the meta-analyses along with statistically significant Cochran’s Q

tests (LM-4175 vs LM-4175 plus Cav1WT pMEFs, p=1.54�10�4; LM-4175 plus Cav1WT pMEFs vs

LM-4175 plus Cav1KO pMEFs, p=0.0077) suggests heterogeneity between the studies.

There were two comparisons of fibronectin fiber orientation, which was reported in Figure 3A of

this study and Supplemental Figure 7Cc of Goetz et al. (2011). Both comparisons were consistent

when considering the direction of the effect; however, results varied as to whether the effect size

point estimate of one study fell within the CI of the other study (Figure 4C). The meta-analysis for

the LM-4175 plus Cav1WT pMEFs vs LM-4175 plus Cav1KO pMEFs comparison was statistically sig-

nificant (p=1.11�10�4), which suggests Cav1 expression is necessary for intratumoral fibronectin

remodeling; however, the meta-analysis for the LM-4175 vs LM-4175 plus Cav1WT pMEFs compari-

son was not statistically significant (p=0.269), which along with a statistically significant Cochran’s Q

test (p=0.023) suggests heterogeneity between the studies.

Finally, the rank-order correlation that was determined in both studies to determine the associa-

tion of fibronectin fiber orientation and total metastasis for all three groups, LM-4175 cells injected

with or without Cav1WT or Cav1KO pMEFs, reported in Figure 3C of this study and Figure 7Cd of

Goetz et al. (2011), were not consistent when considering direction of the effect (Figure 4D). Fur-

thermore, the meta-analysis was not statistically significant (p=0.837) with a large CI and a statisti-

cally significant Cochran’s Q test (p=2.13�10�5) that suggests heterogeneity between the original

study and this replication attempt.

This direct replication provides an opportunity to understand the present evidence of these

effects. Any known differences, including reagents and protocol differences, were identified prior to

conducting the experimental work and described in the Registered Report (Fiering et al., 2015).

However, this is limited to what was obtainable from the original paper and through communication

with the original authors, which means there might be particular features of the original experimental

protocol that could be critical, but unidentified. So while some aspects, such as cell line, mouse

strain, antibodies, and the method to measure metastatic counts were maintained, others were

changed during the execution of the replication that could affect results, such as the time from cell

injection until euthanasia, which was shorter in this replication attempt than what was conducted in

the original study. Additionally, other aspects were unknown or not easily controlled for. These

include variables such as cell line genetic drift (Ben-David et al., 2018; Hughes et al., 2007;

Kleensang et al., 2016), including subclonal drift in heterogeneous stable cells (Shearer and Saun-

ders, 2015), genetic heterogeneity of mouse inbred strains (Casellas, 2011), the microbiome of

recipient mice (Macpherson and McCoy, 2015), and housing temperature in mouse facilities

(Kokolus et al., 2013). Mutations could have also accumulated during cell passage in vitro and drive

cell lines towards a different phenotype that is observed in vivo (Gregoire et al., 2001; Hurlin et al.,

1991). Environmental differences such as husbandry staff, bedding type and source, light levels, and

other intangibles, all of which, by necessity, differed between the studies, which along with bias dur-

ing welfare assessment and measurement imprecision can also affect experimental outcomes with

mice (Howard, 2002; Jensen and Ritskes-Hoitinga, 2007; Nevalainen, 2014; Sorge et al., 2014).

Differences in imaging instruments is another source of variability that could affect the outcomes

between studies. The implementation of standardization procedures for equipment performance

(e.g. International Organization for Standardization/Draft International Standard for confocal micro-

scopes currently under development [ISO/DIS 21073]) could provide metrics to compare one instru-

ment to another, facilitating reproducibility. Furthermore, differences in image analysis and batch

processing could be another source of variability between studies, illustrating the benefit of docu-

menting all analysis configuration parameters and keeping results connected to the input data

(Nanes, 2015). Also, there is the possibility that human cancer cells, such as the LM-4175 cells used

in the original study and this replication attempt, may behave differently in mouse models compared

to other studies where mouse cancer cells were injected in mice (Capozza et al., 2012). Whether

these or other factors influence the outcomes of this study is open to hypothesizing and further

investigation, which is facilitated by direct replications and transparent reporting.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line
(Mus musculus)

Cav1WT pMEFs This paper isolated from embryonic
day 14.5 embryos from
B6129SF2/J mice (Jackson
Laboratory, Stock No.
101045, RRID:IMSR_JAX:101045)

Cell line
(M. musculus)

Cav1KO pMEFs This paper isolated from embryonic
day 14.5 embryos from
Cav1tm1Mls/J mice
(Jackson Laboratory, Stock
No. 004585,
RRID:IMSR_JAX:004585)

Cell line
(H. sapiens, female)

LM-4175 doi: 10.1038/nature03799 Expresses HSV-tk1-GFP-
Fluc; shared by del Pozo
lab, CNIC

Strain, strain
background
(M. musculus, Athymic
Nude-Foxn1nu, female)

athymic nude Envigo MGI:5652489

Other Matrigel Corning cat# 356234

Other D-luciferin Promega cat# P1042

Antibody mouse anti-
Caveolin 1

BD Biosciences cat# 610406;
clone: 2297;
RRID:AB_397789

1:1000 dilution

Antibody mouse anti-
alpha-SMA

Sigma-Aldrich cat# A5228;
clone: 1A4;
RRID:AB_262054

1:100 or
1:1000 dilution

Antibody mouse anti-
gamma-tubulin

Sigma-Aldrich cat# T6557; clone:
GTU-88;
RRID:AB_477584

1:1000 dilution

Antibody rabbit-fibronectin Sigma-Aldrich cat# F3648,
RRID:AB_476976

1:200 dilution

Antibody HRP-conjugated
goat anti-mouse

Thermo Fisher
Scientific

cat# 32430;
RRID:AB_1185566

1:5000 to
1:10,000 dilution

Antibody Alexa Fluor
594-conjugated
donkey anti-rabbit

Jackson Immuno
Research Laboratories

cat# 711-585-152;
RRID:AB_2340621

1:300 dilution

Antibody Alexa Fluor
647-conjugated
donkey anti-mouse

Jackson Immuno
Research Laboratories

cat# 715-605-151;
RRID:AB_2340863

1:300 dilution

Antibody rabbit IgG
isotype control

Sigma-Aldrich cat# I5006;
RRID:AB_1163659

1:200 dilution

Antibody mouse IgG2a
isotype control

Sigma-Aldrich cat# M5409; clone:
UPC-10; RRID:AB_1163691

1:100 dilution

Software, algorithm Qcapture-pro Teledyne Qimaging RRID:SCR_014432 version 6.0.0.605

Software, algorithm Living Image Perkin Elmer RRID:SCR_014247 version 4.3.1

Software, algorithm Zen Black
Acquisition

ZEISS RRID:SCR_013672 version 2.0

Software, algorithm KNIME KNIME RRID:SCR_006164 version 3.5.1

Software, algorithm ImageJ doi:10.1038/nmeth.2089 RRID:SCR_003070 version 1.50a

Software, algorithm Fiji doi:10.1038/nmeth.2019 RRID:SCR_002285 version 2.0.0-rc-34

Software, algorithm FibrilTool doi:10.1038/nprot.2014.024 RRID:SCR_016773

Software, algorithm OrientationJ doi:10.1007/s10237-011-0325-z RRID:SCR_014796 version 2.0.3

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm MetaMorph Molecular Devices RRID:SCR_002368 version 7.10.1

Software, algorithm Bio-Formats
Importer plugin

doi:10.1083/jcb.201004104 RRID:SCR_000450 version 5.1.9

Software, algorithm R Project for
statistical computing

https://www.r-project.org RRID:SCR_001905 version 3.5.1

As described in the Registered Report (Fiering et al., 2015), we attempted a replication of the

experiments reported in Figure 7C and Supplemental Figures S2A and S7C of Goetz et al. (2011).

A detailed description of all protocols can be found in the Registered Report (Fiering et al., 2015)

and are described below with additional information not listed in the Registered Report, but needed

during experimentation.

Cell culture
Cav1WT and Cav1KO pMEFs were isolated from embryonic day 14.5 embryos from B6129SF2/J

mice (Jackson Laboratory, Stock No. 101045, RRID:IMSR_JAX:101045) and Cav1tm1Mls/J mice (Jack-

son Laboratory, Stock No. 004585, RRID:IMSR_JAX:004585), respectively, following the procedure

outlined in the Registered Report (Fiering et al., 2015). Multiple pMEF clones were isolated and

tested (Figure 1) and clone #6 for Cav1WT and clones #12 and #13 for Cav1KO were used for the

animal study. pMEFs were used in all experiments before passage 5. LM-4175 cells (lung metastasis

derived from MDA-MB-231 cells) retrovirally infected with a triple-fusion protein reporter construct

encoding herpes simplex virus thymidine kinase 1, green fluorescent protein (GFP), and firefly lucifer-

ase (HSV-tk1-GFP-Fluc) (Minn et al., 2005) were shared by Dr. Miguel A. del Pozo, Centro Nacional

de Investigaciones Cardiovasculares Carlos III (CNIC) at passage 20 and used at passage 23 for

experiments. Cav1WT pMEFs, Cav1KO pMEFs, and LM-4175 cells were grown in DMEM (Thermo

Fisher Scientific, cat# 11054001) supplemented with 10% fetal bovine serum (FBS), 4 mM L-gluta-

mine, 100 U/ml penicillin and 100 mg/ml streptomycin at 37˚C in a humidified atmosphere at 5%

CO2. Quality control data for the cell lines are available at https://osf.io/hkdwv/. This includes results

confirming the cell lines are free of mycoplasma contamination and common mouse pathogens, as

well as STR DNA profiling of the cell lines with LM-4175 matched to MDA-MB-231 (RRID:CVCL_

0062) when queried against an STR profile database (IDEXX BioResearch, Columbia, Missouri).

Western blots
Cav1WT and Cav1KO pMEFs (at passage 3) were prepared in RIPA lysis buffer (50 mM Tris-HCl, pH

8.0, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.5% Sodium deoxycholate, 1 mM NaF, and 1 mM

Na3VO4), supplemented with protease (Roche, cat# 04693116001) and phosphatase inhibitors

(Roche, cat# 04906845001) at manufacturer recommended concentrations. Lysed cells were scraped

from plates and centrifuged at 14,000xg for 15 min at 4˚C before protein concentration of superna-

tant was quantified using a Bradford assay following manufacturer’s instructions. Lysate samples

were separated by SDS-PAGE gel electrophoresis in 1X Tris-glycine SDS buffer run at 100V through

the stacking part of the gel and 180V after the proteins had migrated through the resolving gel

(15%) until the dye front was at the bottom of the gel, but had not migrated off. Gels were trans-

ferred to an Immobilon-P PVDF membrane (Millipore, cat# IPVH00010) and then incubated with 5%

non-fat dry milk in 1X TBS with 0.1% Tween-20 (TBST). Membranes were probed with the following

primary antibodies diluted in 5% non-fat dry milk in TBST: mouse anti-Caveolin 1 [clone 2297] (BD

Biosciences, cat# 610406, RRID:AB_397789), 1:1000 dilution; mouse anti-alpha-SMA [clone 1A4]

(Sigma-Aldrich, cat# A5228, RRID:AB_262054), 1:1000 dilution; mouse anti-gamma-tubulin [clone

GTU-88] (Sigma-Aldrich, cat# T6557, RRID:AB_477584), 1:1000 dilution. Membranes were washed

with TBST and incubated with secondary antibody diluted in 5% non-fat dry milk in TBST: HRP-conju-

gated goat anti-mouse (Thermo Fisher Scientific, cat# 32430, RRID:AB_1185566), 1:5000 to 1:10,000

dilution. Membranes were washed with TBST and incubated with ECL reagent (Santa Cruz Biotech-

nology, cat# sc-2048) to visualize signals. Scanned Western blots were quantified using ImageJ
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software (RRID:SCR_003070), version 1.50a (Schneider et al., 2012). Additional methods and data,

including full Western blot images, are available at https://osf.io/na5h2/.

Collagen gel contraction assay
1.5 � 105 Cav1WT or Cav1KO pMEFs were mixed with NaOH-titrated collagen I (Corning, cat#

354249) to a final collagen I concentration of 1 mg/ml in a total of 500 ml. The mixture was immedi-

ately transferred to a 24 well ultra low attachment plate (Corning, cat# 3473) and allowed to solidify

at room temperature for about 1 hr. After solidification, 500 ml of cell growth medium was added to

each well and gels were dissociated from the well by gently running a 200 ml pipet tip along the gel

edge without shearing or tearing the gel. Plates were swirled to ensure the gel was free from the

plate and then incubated at 37˚C in a humidified atmosphere at 5% CO2 for 48 hr. Images were

taken at 24 hr and 48 hr to document contraction. Assay was performed in triplicate for each clone

and no cell controls (cell growth medium only) were included. Gel contraction index was calculated

from the gel surface area measured on acquired images using a digital camera (Leica MZ16 stereo-

microscope and QCapture-pro software (Teledyne QImaging, RRID:SCR_014432), version 6.0.0.605)

at a fixed distance above the gels, and reported as the percentage of contraction of the initial sur-

face area. This experiment was pre-registered before experimental work began (https://osf.io/

9cgk4/). Additional detailed methods and data, including images of gels, are available at https://osf.

io/na5h2/.

Subcutaneous tumorigenicity assay
All animal procedures were approved by the Dartmouth College IACUC# 1133 and were in accor-

dance with the Dartmouth College policies on the care, welfare, and treatment of laboratory ani-

mals. Eight-ten-week old female athymic nude mice (Envigo, Strain: Hsd:Athymic Nude-Foxn1nu,

MGI:5652489) were housed (4-5 per cage) in standard ventilated filtered cages, with corn Cobb bed-

ding and a nestlet for nesting (changed evey other week), 12 hr light/dark cycles, and fed sterile

rodent chow (Teklad global 18% protein rodent diet (Envigo, cat# 2918)) and acidified

water (changed weekly) ad libitum. The mice were housed for approximately 2 weeks before being

enrolled in the study. The individual mouse was considered the experimental unit within the studies

and inclusion/exclusion criteria (e.g. mice were excluded if injection of tumor cells entered the peri-

toneum) are described in the Registered Report (Fiering et al., 2015). Housing and experimentation

(e.g. injection, IVIS imaging, etc) were conducted in the same facility, which was kept at 72˚F +/- 2˚F

with 30-70% relative humidity.

A pilot study was performed on five mice. Mice were anesthetized with 2-2.5% isoflurane (Patter-

son Veterinary, cat# 07-893-1389) mixed with 1L/min of medical grade oxygen and injected subcuta-

neously with 1 � 106 LM-4175 cells unmixed (four mice) or mixed 1:1 with Cav1WT pMEFs (one

mouse) in 100 ml PBS mixed with 100 ml of Matrigel (Corning, cat# 356234) in the flank using a 25-

gauge needle. Mice were monitored until visible tumors formed. Once tumor growth was detected

in any animal, tumors were measured using precision calipers twice a week, and mice were moni-

tored for signs of distress daily. Mice were euthanized starting at day 40 post-injection due to ascites

thru day 63 due to excessive tumor burden. After reviewing tumor measurements, it was determined

that day 45 was the target end date according to the IACUC approved protocol.

Following the pilot study, a total of 62 mice were randomized (simple randomization using a ran-

dom number generator) to receive a subcutaneous injection with 1 � 106 LM-4175 cells unmixed,

the control group, (10 mice) or mixed 1:1 with Cav1WT pMEFs (26 mice) or Cav1KO pMEFs (26

mice) as described in the pilot study. Injections occurred on two separate days, with half the mice

for each group injected on each day. Mice were euthanized at day 45 post-injection to ensure consis-

tency of collected data and minimize animal suffering per IACUC guidelines. Of note, one mouse,

LM-4175 plus Cav1KO pMEFs, was euthanized, and thus excluded, because the tumor was above

the approved IACUC protocol tumor limit before the specified endpoint of 45 days. No other mice

were excluded, although similar to the pilot study we observed adverse events (e.g. ulceration at

the tumor site) confirming that 45 days after injection was the appropriate endpoint. To measure pri-

mary tumor growth and metastasis, mice were anesthetized and injected with 100 ml of 30 mg/ml

D-luciferin (Promega, cat# P1042) intraperitoneally. Twenty minutes later, mice were placed into an

IVIS Spectrum system (Caliper, Xenogen) for imaging of ventral views for photon flux quantification.
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Following imaging mice were injected with 50 ml of 30 mg/ml D-luciferin intraperitoneally. Twenty

minutes later, mice were euthanized and the primary tumor and following organs were dissected:

lymph nodes, spleen, lungs, liver, intestines, kidneys. Organs were placed separated, into a 100 mm

dish and placed into IVIS for imaging. The primary tumors were cut in half and frozen in O.C.T. com-

pound by placing cassette with tumor into a dry ice/ethanol bath until frozen and then storing at

�80˚C until shipped on dry ice for image processing. Anesthesia, luciferin injections, imaging, sec-

ond luciferin injections, euthanasia, dissection, and imaging/freezing primary tumors were performed

during daylight (afternoon hours) with mice from different groups in parallel so variations during the

procedure were equal across groups.

IVIS imaging
Images were acquired with a Xenogen IVIS Imaging System (Perkin Elmer, 200 Series) and Living

Image software (RRID:SCR_014247), version 4.3.1 at a medium binning level and the field of view set

at ‘E’. For in vivo imaging, mice were placed into the IVIS with front limbs taped above head and

black shields used to block bioluminescence from the primary tumors to visualize metastases in vivo.

Exposure time for photon flux quantification of primary tumors, a primary outcome measure, was 0.2

s. After in vivo imaging, dissected organs were imaged ex vivo to detect metastatic foci, a primary

outcome measure. Images were taken at multiple exposures (0.2 s, 0.5 s, 1 s, 10 s, 20 s, 60 s, and

120 s) and used to manually quantify visible metastatic foci. Quantification was performed blinded

to the cells the animals were injected with. Image files are available at https://osf.io/bq54u/.

Immunofluorescence and confocal microscopy
A random subset (simple randomization from each group) of the cryopreserved primary tumors from

the subcutaneous tumorigenicity assay were sectioned (8 mm thick), fixed, permeabilized, and

stained as described in the Registered Report (Fiering et al., 2015) with the following primary anti-

bodies diluted in PBS supplemented with 2% BSA overnight at 4˚C: rabbit anti-fibronectin (Sigma-

Aldrich, cat# F3648, RRID:AB_476976), 1:200 dilution; mouse anti-alpha-SMA [clone 1A4] (Sigma-

Aldrich, cat# A5228, RRID:AB_262054), 1:100 dilution. Sections were washed in PBS and incubated

with the following secondary antibodies diluted in PBS supplemented with 2% BSA for 1 hr at 37˚C:

Alexa Fluor 594 conjugated donkey anti-rabbit (Jackson ImmunoResearch Laboratories, cat# 711-

585-152, RRID:AB_2340621), 1:300 dilution; Alexa Fluor 647 conjugated donkey anti-mouse (Jackson

ImmunoResearch Laboratories, cat# 715-605-151, RRID:AB_2340863), 1:300 dilution. Hoechst dye

(1:5000 dilution) was used to counterstain nuclei. Additional controls were included on a subset of

the primary tumor sections: rabbit IgG isotype control (Sigma-Aldrich, cat# I5006, RRID:AB_

1163659), 1:200; mouse IgG2a isotype control [clone UPC-10] (Sigma-Aldrich, cat# M5409, RRID:

AB_1163691), 1:100; secondary antibody only controls. Additionally, in an attempt to reduce the

non-specific staining observed with the mouse anti-SMA antibody, we included a mouse-on-mouse

blocking step (Vector lab, cat# MKB-2213) before incubation with the primary antibodies as a test

on subset of the samples (Figure 3—figure supplement 1C). Samples were imaged using a LSM

880 upright confocal microscope (ZEISS, Oberkochen, Germany) fitted with a 40X Plan Apochromat

NA 1.3 oil immersion objective. Ten random (simple randomization) z-stacks, with a total of 26 slices

at 0.3 mm intervals per z-stack, were acquired per sample. Image acquisition was performed with a

laser-scanning confocal laser running with Zen Black Acquisition Software (RRID:SCR_013672), ver-

sion 2.0. Detailed image acquisition settings are contained in the metadata of the raw images. Image

acquisition was performed blinded to the sample identity and the different fields of view were cho-

sen randomly. Image files are available at https://osf.io/bq54u/.

Fibronectin fiber analysis
All image analysis was performed blinded to the sample identity. Image analysis output files are

available at https://osf.io/bq54u/. Images were processed using KNIME (www.KNIME.com; RRID:

SCR_006164), version 3.5.1 (Berthold et al., 2007). A screenshot of the processing/analysis steps

are illustrated in Figure 3—figure supplement 4. Briefly, the fibronectin channel was selected and

Z-stacks were processed for maximum intensity projections. The ImageJ (RRID:SCR_003070) com-

mand ‘Subtract background’, with a rolling setting of 50 (value that was optimized for the current

dataset) was applied. Images were then thresholded for 35% intensity, outputting the binary images
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necessary for subsequent measurements (Figure 3—figure supplement 3B). The ImageJ command

‘Analyze particles’ was then applied, with options set to ‘Iterations = 1’, ‘Count = 1’ black’, ‘Set

measurements: area, mean, fit, redirect = None, decimal = 3’, ‘Analyze particles: size = 25.0 infinity,

circularity = 0.0–1.0, show=(Outlines)”. This was repeated for objects larger than 25, 50, 150, 300,

and 357 pixels and the angle measurements of each object were exported for further analysis. To

determine percent of fibers within 20˚ of the modal angle, the primary outcome measure, the rela-

tive angles were rounded to the nearest 10˚ angle using the rounding base function of R and then

determining the mode angle for each image (i.e. the angle with the most fibers observed) as

described previously (Amatangelo et al., 2005; Fiering et al., 2015). Script used to determine the

mode angle for each image is available at https://osf.io/qgjme/.

Additionally, for each image, an anisotropy factor and the average angle of the fibers was mea-

sured by implementing the FibrilTool macro (RRID:SCR_016773) (Boudaoud et al., 2014) (FibrilTool

was converted to a KNIME-node, see: https://osf.io/au4dx/), coherency was measured with the Ori-

entationJ plugin (RRID:SCR_014796), version 2.0.3 (Rezakhaniha et al., 2012), and blinded manual

scoring to assess ‘the frequency of parallel fibers’ used the following scale: (1) Not at all (in about

0%), (2) Occasionally (in about 30%), (3) Sometimes (in about 50%), (4) Usually (in about 80%), (5) All

are (in about 100%). The values from the ten images for each tumor were averaged to generate a

single score for each tumor.

An attempt to determine fibronectin orientation was made using MetaMorph (Molecular Devices,

RRID:SCR_002368), version 7.10.1. Images were processed one at a time, not batch processed. In

Fiji (RRID:SCR_002285) (Schindelin et al., 2012)/ImageJ, version 2.0.0-rc-34/1.50a (build

927ecc3c7a), the Bio-Formats Importer plugin (RRID:SCR_000450) (Linkert et al., 2010), version

5.1.9 was used to read/open the confocal microscopy raw data. The plugin was configured to split

the channels to pursue the processing only on fibronectin. The resulting fibronectin Z-stacks were

saved and then read/opened in MetaMorph, and subjected to a maximum intensity projection to

generate a single 2D image (Note: this was our interpretation of the original description ‘Overlay

Z-slices to make reconstituted views of the corresponding 3-D fibers for each region’). The Meta-

Morph Background and shading correction function was executed with a setting of 15 pixels (Note:

this was our interpretation of the original description ‘Reduce non-specific background by selectively

darkening objects with a pixel area greater than 15 using the flatten background function’). Using

the MetaMorph internal threshold function, a binary image was created at the 35% setting (i.e. 35%

of the pixels have the intensity). The resulting binary image was subjected to the MetaMorph IMA

(Integrated Morphometry Analysis) function to reveal objects of interest, which was unable to be

executed as there were too many objects to process.

Statistical analysis
Statistical analysis was performed with R software (RRID:SCR_001905), version 3.5.1

(R Development Core Team, 2018). All data, csv files, and analysis scripts are available on the OSF

(https://osf.io/7yqmp/). Confirmatory statistical analysis was pre-registered (https://osf.io/s6ndp/)

before the experimental work began as outlined in the Registered Report (Fiering et al., 2015).

Data were checked to ensure assumptions of statistical tests were met. When described in the

results, the Bonferroni correction, to account for multiple testings, was applied to the alpha error or

the p-value. The Bonferroni corrected value was determined by divided the uncorrected value (0.05)

by the number of tests performed. A meta-analysis of a common original and replication effect size

was performed with a random effects model and the metafor R package (Viechtbauer, 2010)

(https://osf.io/rvf57/). Meta-analyses were performed without weighting for Cliff’s d, since

unweighted Cliff’s d has been reported to reduce bias (Kromrey et al., 2005). The asymmetric confi-

dence intervals for the overall Cliff’s d estimate was determined using the normal deviate corre-

sponding to the (1 - alpha/2)th percentile of the normal distribution (Cliff, 1993). The raw data

pertaining to Figure 7Cb, 7 Cd, S7Ca, and S7Cc of Goetz et al. (2011) were shared by the original

authors and compared back to the published summary data and figures. The summary data was

published in the Registered Report (Fiering et al., 2015) and used in the power calculations to

determine the sample sizes for this study.
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Data availability
Additional detailed experimental notes, data, and analysis are available on OSF (RRID:SCR_003238)

(https://osf.io/7yqmp/; Sheen et al., 2018). This includes the R Markdown file (https://osf.io/rd3yf/)

that was used to compose this manuscript, which is a reproducible document linking the results in

the article directly to the data and code that produced them (Hartgerink, 2017). The image analysis

workflow generated during this study is available on Amazon Web Services (AWS) as an Amazon

Machine Image (AMI). The machine image is located in the N. Virginia (us-east-1) region with the

AMI ID: ami-09ee55780b0c19120, and AMI Name: rpcb-analysis-study20. Computation was per-

formed on an Instance Type of m5.4xlarge (16 vCPU, 64 GiB Memory), with 500 GiB of Elastic Black

Store (EBS) storage, and running Windows Server 2016. The administrator account password

required to login is ‘RPCB!Analysis’.

Deviations from registered report
Following completion of the Western blot analysis to assess SMA levels in Cav1WT and Cav1KO

pMEF clones, we consulted with the original authors regarding the lack of observable change

between the two types of pMEFs. As suggested by the original authors we conducted a collagen gel

contraction assay to assess ECM remodeling capabilities, which was pre-registered before experi-

mental work began (https://osf.io/9cgk4/). For the subcutaneous tumorigenicity assay, the planned

study design indicated the mice would be euthanized 70 days after cell injection, or an earlier time

point to not compromise the ability to obtain enough mice for analysis while ensuring no animal suf-

fering. Following a pilot study this was determined to be 45 days after injection, which was con-

firmed in the experimental study. A different anesthesia than listed in the Registered Report was

used during cell and luciferin injections (isoflurane instead of ketamine and xylazine due to availabil-

ity) as well as a different dose of luciferin (100 ml of 30 mg/ml for the first injection instead of 150 ml

of 17.5 mg/ml and 50 ml of 30 mg/ml for the second injection instead of 50 ml of 17.5 mg/ml). Also,

as described above (Figure 3—figure supplement 1), we were unable to obtain SMA staining that

was specific, based on controls, to allow for the quantification as specified in the Registered Report

to be conducted. As such, we did not conduct the analysis that was dependent on the SMA staining

outlined in the Registered Report. As described above, we attempted to determine fibronectin ori-

entation using MetaMorph software, but found the processing could not be executed as previously

described as there were too many objects to process. Instead, we created a workflow using the

KNIME analytics platform. We also explored additional methods to examine fiber orientation as

described above. Additional materials and instrumentation not listed in the Registered Report, but

needed during experimentation are also listed.
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Additional detailed experimental notes, data, and analysis are available on OSF (RRID:SCR_003238)

(https://osf.io/7yqmp/; Sheen et al., 2018). This includes the R Markdown file (https://osf.io/rd3yf/)

that was used to compose this manuscript, which is a reproducible document linking the results in

the article directly to the data and code that produced them (Hartgerink, 2017). The image analysis

workflow generated during this study is available on Amazon Web Services (AWS) as an Amazon

Machine Image (AMI). The machine image is located in the N. Virginia (us-east-1) region with the

AMI ID: ami-09ee55780b0c19120, and AMI Name: rpcb-analysis-study20. Computation was per-

formed on an Instance Type of m5.4xlarge (16 vCPU, 64 GiB Memory), with 500 GiB of Elastic Black
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Carlsson R, Cheung F, Christensen G, Clay R, Craig MA, Dalla Rosa A, Dam L, Evans MH, Flores Cervantes I,
Fong N, et al. 2018. Many analysts, one data set: making transparent how variations in analytic choices affect
results. Advances in Methods and Practices in Psychological Science 1:337–356. DOI: https://doi.org/10.1177/
2515245917747646

Sorge RE, Martin LJ, Isbester KA, Sotocinal SG, Rosen S, Tuttle AH, Wieskopf JS, Acland EL, Dokova A, Kadoura
B, Leger P, Mapplebeck JC, McPhail M, Delaney A, Wigerblad G, Schumann AP, Quinn T, Frasnelli J, Svensson
CI, Sternberg WF, et al. 2014. Olfactory exposure to males, including men, causes stress and related analgesia
in rodents. Nature Methods 11:629–632. DOI: https://doi.org/10.1038/nmeth.2935, PMID: 24776635

Steegen S, Tuerlinckx F, Gelman A, Vanpaemel W. 2016. Increasing transparency through a multiverse analysis.
Perspectives on Psychological Science 11:702–712. DOI: https://doi.org/10.1177/1745691616658637,
PMID: 27694465

Sun DS, Hong SA, Won HS, Yoo SH, Lee HH, Kim O, Ko YH. 2017. Prognostic value of metastatic tumoral
Caveolin-1 expression in patients with resected gastric Cancer. Gastroenterology Research and Practice 2017:
1–10. DOI: https://doi.org/10.1155/2017/5905173

Sheen et al. eLife 2019;8:e45120. DOI: https://doi.org/10.7554/eLife.45120 21 of 22

Replication Study Cancer Biology

https://doi.org/10.1073/pnas.1304291110
https://doi.org/10.1073/pnas.1304291110
http://www.ncbi.nlm.nih.gov/pubmed/24248371
https://doi.org/10.1083/jcb.201004104
http://www.ncbi.nlm.nih.gov/pubmed/20513764
https://doi.org/10.1038/mi.2014.113
http://www.ncbi.nlm.nih.gov/pubmed/25492472
https://doi.org/10.1038/nature03799
https://doi.org/10.1038/nature03799
http://www.ncbi.nlm.nih.gov/pubmed/16049480
https://doi.org/10.2144/000114351
http://www.ncbi.nlm.nih.gov/pubmed/26554504
https://doi.org/10.1038/s41598-017-02251-9
http://www.ncbi.nlm.nih.gov/pubmed/28515480
https://doi.org/10.1093/ilar/ilu035
https://doi.org/10.1093/ilar/ilu035
http://www.ncbi.nlm.nih.gov/pubmed/25541541
http://www.r-project.org/
https://doi.org/10.1016/j.ab.2006.04.026
http://www.ncbi.nlm.nih.gov/pubmed/16737677
https://doi.org/10.1007/s10237-011-0325-z
http://www.ncbi.nlm.nih.gov/pubmed/21744269
https://doi.org/10.1016/j.molonc.2013.02.009
http://www.ncbi.nlm.nih.gov/pubmed/23474222
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1111/gtc.12183
http://www.ncbi.nlm.nih.gov/pubmed/25307957
https://doi.org/10.17605/OSF.IO/7YQMP
https://doi.org/10.3892/mmr.2012.1213
http://www.ncbi.nlm.nih.gov/pubmed/23229284
https://doi.org/10.1177/2515245917747646
https://doi.org/10.1177/2515245917747646
https://doi.org/10.1038/nmeth.2935
http://www.ncbi.nlm.nih.gov/pubmed/24776635
https://doi.org/10.1177/1745691616658637
http://www.ncbi.nlm.nih.gov/pubmed/27694465
https://doi.org/10.1155/2017/5905173
https://doi.org/10.7554/eLife.45120


Tyuryumina EY, Neznanov AA. 2018. Consolidated mathematical growth model of the primary tumor and
secondary distant metastases of breast Cancer (CoMPaS). PLOS ONE 13:e0200148. DOI: https://doi.org/10.
1371/journal.pone.0200148, PMID: 29979733

Valentine JC, Biglan A, Boruch RF, Castro FG, Collins LM, Flay BR, Kellam S, Mościcki EK, Schinke SP. 2011.
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