
1

Vol.:(0123456789)

Scientific Reports |          (2022) 12:985  | https://doi.org/10.1038/s41598-022-04901-z

www.nature.com/scientificreports

Physically unclonable 
functions taggant for universal 
steganographic prints
Takao Fukuoka1*, Yasushige Mori2, Toshiya Yasunaga3, Kyoko Namura1, Motofumi Suzuki1 & 
Akinobu Yamaguchi4*

Counterfeiting of financial cards and marketable securities is a major social problem globally. 
Electronic identification and image recognition are common anti-counterfeiting techniques, yet 
they can be overcome by understanding the corresponding algorithms and analysis methods. The 
present work describes a physically unclonable functions taggant, in an aqueous-soluble ink, based 
on surface-enhanced Raman scattering of discrete self-assemblies of Au nanoparticles. Using this 
stealth nanobeacon, we detected a fingerprint-type Raman spectroscopy signal that we clearly 
identified even on a business card with a pigment mask such as copper-phthalocyanine printed 
on it. Accordingly, we have overcome the reverse engineering problem that is otherwise inherent 
to analogous anti-counterfeiting techniques. One can readily tailor the ink to various information 
needs and application requirements. Our stealth nanobeacon printing will be particularly useful for 
steganography and provide a sensitive fingerprint for anti-counterfeiting.

Counterfeit goods account for 3.3% of world trade value and financial losses of USD 509 billion (EUR 460 billion), 
based on data for 20161–3. Accordingly, counterfeit-enabling technology is so valuable that reverse engineering 
remains an ongoing challenge. Conventional anti-counterfeit technology has two problems: one must imitate 
the authentication system, and doing so can be time-consuming and costly when the system is complex. Conse-
quently, there is a need for anti-counterfeiting technology that overcomes these problems.

Digital authentication systems in integrated-circuit-equipped credit cards and electronic commerce with 
blockchain technology via the internet4 are compatible with robust security systems that are used all over the 
world. However, because 20.4 billion Internet of Things devices were connected via the internet in 20205, the 
cyber world is closely integrated with the physical world. In modern society—including human activities such as 
transport; commerce; and use of goods, food, and drugs—the risk of cyber-attacks is considerable. Therefore, in 
addition to cyber security, physical identification is an anti-counterfeit technology for goods that are distributed, 
traded, and used. Recently, proposals have also been demonstrated to prevent counterfeiting by photodetection 
using the nanostructured metasurfaces6,7.

For secure identification, physically unclonable functions (PUFs) with a specific challenge-response that 
is dependent on the fingerprint properties of the device are indispensable4,8–11. PUFs combined with chemical 
methods that are compatible with well-established nanotechnology are an active area of research1,12–14. PUFs 
have been intrinsically limited to electronic and mechanical devices, but currently PUFs are also being applied 
as various taggants to soft materials, such as printed devices13 and organic semiconductors14. For anti-counterfeit 
measures, these PUF taggants are identified by analytical methods based on the properties of the taggants instead 
of specific challenge-responses of the devices.

PUF taggants are compatible with numerous analytical detection procedures. Because extremely sensitive 
analysis on a small quantity of PUFs is desirable for quick identification and minimal cost, surface-enhanced 
Raman scattering (SERS) detection is promising for PUF taggants. For example, Mirkin’s group demonstrated 
an encoding system based on dispersible arrays of nanodisks prepared by lithography and functionalized with 
SERS-active chromophores15–17. Their nanodisk arrays can be encoded both in terms of the physical arrange-
ments of the chromophores and by SERS spectroscopy. Natan and coworkers proposed encryption based on 
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silica-encapsulated noble metal nanoparticles with Raman-active molecules and SERS detection18,19. Ling’s group 
fabricated SERS-active nanowires and nanopillars by lithography and demonstrated anisotropic plasmonic image 
printing20,21. Tian et al. fabricated a SERS-active polymer film with silver-coated Au nanorods22.

Fukuoka et al. reported discrete self-assemblies of Au nanoparticles (AuNPs) and a reporter molecule; and 
demonstrated long-lived, on-dose authentication of commercial tablets23. In this manner, nanoparticles assem-
bles are common in SERS PUFs24–29. Multiplex encoding is important for PUF taggants; SERS taggants have the 
advantage of enabling researchers to choose the reporter molecule from a diverse set of Raman-active molecules. 
For example, Gu’s group demonstrated a three-dimensional encoding capacity of greater than 3 × 1015051 by drop-
casting SERS tags and a coarse-grained method30.

Arppe and Sørensen recently reviewed such SERS taggants12. In their review, they described “Inks and 
engraved structures are modern and highly advanced extensions of historical anti-counterfeiting systems. The same 
is true for approaches that combine nanostructured surfaces containing chemical probes with surface-enhanced 
Raman scattering (SERS) signatures. However, all of these approaches rely on deterministic tags and can therefore 
be copied by counterfeiters.” Even though SERS enables label-free and trace-level molecular detection31–38, it 
requires noble metal nanostructures, the presence of which is a vulnerability that counterfeiters can use as a 
starting point for reverse engineering PUF taggants.

To overcome the reverse engineering problem in a practical manner, we used a nanobeacon aqueous-soluble 
ink based on SERS. The nanobeacon comprises discrete, aperiodic structure that induced by a contingence. Our 
chain aggregates are primitive structures but firmly emit SERS. Due to its discretely distributed nanostructure, 
it is less likely to be found by malicious intent than regular and sophisticated structures made by lithography 
or encapsulation. If not found, it will not be reverse engineered. The nanobeacons can be dispersed in an aque-
ous solution to mask the presence of this PUF taggant in the printed material and prevent reverse engineering 
because reporter molecule randomly distributed and included in the chain like AuNPs aggregates. We have thus 
developed a stealth nanobeacon that facilitates steganographic embedded printing39,40. For SERS applications, we 
applied a stealth nanobeacon in an aqueous-soluble ink to anti-counterfeiting. Our technology does not depend 
on deterministic tags and exhibits stealth features that one can observe in the ink.

Results and discussion
We fabricated the nanobeacons by bottom-up, diffusion-limited aggregation of colloidal AuNPs under a shear 
force of time-controlled agitation (Fig. 1a)41–49. Aqueous suspensions of AuNPs were synthesized using a standard 
citrate reduction protocol50. Accordingly, we mixed 4, 4ʹ-bipyridine (4bpy) molecules into the stealth nanobea-
cons. Because chain-like aggregates reported by Creighton’s group48 spontaneously form in the shear field41–49, 
the stealth nanobeacons exhibited the strong SERS signal of 4bpy. We spray-coated the nanobeacons and used 
a shadow mask to obtain the desired positions (Fig. 1b). We deposited the nanobeacons in a blue area, printed 
with a copper phthalocyanine pigment. Even magnifying the observation area with an optical microscope did 
not reveal the presence of the stealth nanobeacons. Next, we used a portable Raman spectroscope (C13650, 
Hamamatsu Photonics Corporation; laser excitation wavelength: 785 nm, laser spot size: ∼ 0.8 mm × 0.8 mm) 
connected to a smartphone or laptop personal computer to image the place where we applied the stealth nano-
beacons (Fig. 1c). We readily and quickly observed the Raman signal from 4bpy (Fig. 1d).

We next discuss the optical properties of the stealth nanobeacons. Figure 2 shows the structure-dependence 
of the optical absorbance for three typical structures: (1) AuNPs dispersed without agglomeration; (2) stealth 
nanobeacons, which we meta-stabilized by diffusion-limited aggregation; and (3) unstable and precipitated 
aggregates. Each schematic denotes the corresponding typical nanostructure in Fig. 2. These structures are made 
separately by controlling the time when the shear field is applied41–49. Evaluation of the absorption spectrum 
enables us to distinguish the cases (1)–(3). Regarding case (1), AuNPs dispersed without agglomeration, we 
observed a single resonance (red solid line). This peak resonance wavelength was at ~ 540 nm. Regarding case 
(2), stealth nanobeacons, we observed the other red-shifted resonance at ~ 800 nm. We attribute this red-shifted 
resonance to coupled localized surface plasmon resonance, which can generate SERS with a two-fold electromag-
netic enhancement41,45–47,51,52. According to Le Ru and Etchegoin38, the red-shifted resonance arises from dipolar 
interactions or dipolar coupling between the two single-sphere dipolar localized surface plasmon resonances. The 
red-shift depends on the strength of the interactions and therefore increases in accordance with decreasing gap 
sizes between the AuNPs. Taylor et al. also reported that if nanoparticles with a diameter of 30 nm and excita-
tion wavelength of 685 nm, the SERS intensity is maximal around 3 or 4 particles, corresponding to the length 
for which the chain resonance is close to the illumination wavelength. For illumination in the near-infrared, 
785 nm, the detuning diminishes with increasing particle number, and the enhancement is optimized for the 
larger chains. However, as shown in Fig. 2 and other reports41,45–47, if the chain has multiple branch points and 
is networked, the SERS intensity drastically decreases. In the stealth nanobeacons, we formed chain-like nano-
structures [(ii) of Fig. 2] and confined 4bpy between the gaps in the assemblies, as we have reported in previous 
work45–47,49,51. Broad resonances are attributable to higher-order interactions from the chain-like nanostructures 
comprising AuNPs. Regarding case (iii) of Fig. 2, precipitating aggregates (blue solid line), the absorbance was 
independent of the wavelength and we observed no resonance. This result arises because the aggregates became 
too large to remain in a dispersed state; the localized surface plasmon resonance became undetectable in this 
measurement range45–47.

Figure 3 shows SERS spectra for the following: (1) stealth nanobeacon sol (blue solid line), (2) stealth nano-
beacons on paper (red solid line), and (3) blank paper (green solid line). The SERS peak positions in condition 
2 agree with those in condition 1, whereas we mainly observed the Raman peak of calcium carbonate53 loading 
filler in condition 3 (Fig. 3). These results indicate that the stealth nanobeacons can help prevent the forgery of 
printed materials such as financial cards and marketable securities.
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Other SERS or Raman signals might also depend on the superposition of the dyes, pigments, and fillers from 
blank paper (Fig. 3). In particular, copper phthalocyanine, known as phthalocyanine blue, exhibits a strong 
absorption in the near-infrared and strong Raman peaks39,40. Phthalocyanine blue is a common blue color in 
printed materials because of properties such as light fastness, tinting strength, covering power, and resistance to 
alkalis and acids. In the following demonstration, to obtain a deeper understanding of the properties of the stealth 

Figure 1.   Experimental overview: (a) Schematic of the time evolution of Au nanoparticles aggregates and 
formation of a chain structure. With time evolution under the shear field, the following nanostructured 
aggregates are sequentially formed: (i) dispersed structure, (ii) chain-like structure, and (iii) aggregates 
structure with a branch point. (b) Magnified optical photograph of a business card with ink containing stealth 
nanobeacons, and the position of the spot. (c) Raman spectroscopic measurement of the spotting position and 
(d) spectrum detection result from the ink, including the stealth nanobeacons.

Figure 2.   Typical absorption spectra of Au nanoparticles: (i) dispersed structure, (ii) chain-like structure, and 
(iii) precipitated aggregates structure with a branch point.
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nanobeacons, we performed more-detailed SERS spectrum analyses and comparative studies. We deposited the 
stealth nanobeacons over a blue area on a business card, painted with copper phthalocyanine pigment (Fig. 1).

We obtained SERS spectrum measurements on three positions: where nothing was printed on the business 
card, the blue area, and the place where we deposited the nanobeaon over the blue area. Accordingly, we obtained 
Raman spectra (Fig. 4a) of the nonprinted area and the blue area without the nanobeacon (black dotted and 
blue solid lines, respectively). No conspicuous Raman resonance structure was evident in the nonprinted area 

Figure 3.   Surface-enhanced Raman spectra of stealth nanobeacon sol (blue), stealth nanobeacons on paper 
(red), and paper blank (green).

Figure 4.   Surface-enhanced Raman spectroscopy measurements on three positions, and the corresponding 
measurement scheme: (a) Spectra of stealth nanobeacons on the blue area of a name card (red solid line), blue 
area of the name card without the nanobeacons (blue solid line), and paper (black dotted line). (b) Scheme of 
the measurements indicating.
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without the nanobeacon. We clearly observed a Raman spectrum from the blue area without the nanobeacon; 
the Raman peak positions at 686, 752, 959, 1013, 1148, 1344, 1451, and 1527 cm−1 are consistent with phth-
alocyanine blue (PB15) K-2305054. In contrast, we observed the characteristic enhanced Raman spectrum (red 
solid line) of 4bpy (1000, 1200, 1280, and 1600 cm−1) from the stealth nanobeacons deposited on the blue area 
of the business card and detected slight Raman signals from phthalocyanine blue (Fig. 4a). The reason for this 
is considered to be the relationship between the laser spot size of the Raman spectroscope and the size of the 
spotted area of nanobeacon ink. The laser spot size is less than about 0.8 mm × 0.8 mm, while the size of the 
spotted area is about 0.5 mm × 0.5 mm or less. That is, signals from the areas other than the area where the 
nanobeacon ink is dotted are superimposed. Even a small amount of nanobeacon will generate a stronger signal 
than the background signal. This fact is considered to be a very useful in terms of application for the rapid-easy 
authenticity judgment authentication. In this demonstration, the mobile Raman spectroscope was used, and 
Raman spectroscopy was performed by hand. The focal length and measurement angle changed depending on the 
measurement location and camera shake. Consequently, the background intensity of each line is different. Even 
if the background intensity changed as shown in Fig. 4a, the signal from the nanobeacon ink can be noticeably 
expressed, indicating that it will provide a very easy-to-use operation.

We clearly distinguished our stealth nanobeacon, overlaid on the printed pigment, from the pigment com-
ponents printed on the printed materials. SERS is common in pigment analyses of printed materials55; but in 
this study, by depositing the stealth nanobeacon over the printed pigment, the pigment was not evident by 
Raman spectroscopy. Concomitantly, the color of the pigment reduced the visibility of the overlaying stealth 
nanobeacon. One can use the stealth nanobeacons as a hidden ink without interference from the pigment in 
the printed area (Fig. 4b).

To further investigate the characteristics of this nanobeacon ink, we evaluated the distribution of the nano-
beacons—after applying them to coated paper—by, for example, microscopic Raman spectroscopy, optical micro-
scope observations, and Raman mapping. Figure 5a shows an optical micrograph of the paper surface. The surface 
appears to be smooth and uniform. Figure 5b shows high-resolution scanning electron microscope observa-
tions. The particles were in a discrete chain-like morphology. This result agrees with the conceptual diagram of 
Fig. 1a. Figure 5c,d show Raman mapping images in 1 mm × 1 mm and 100 μm × 100 μm regions, respectively, 
at a Raman shift of 1600 cm−1. Figure 5e,f show Raman spectra at positions e and f in Fig. 5d, respectively. The 
regions of high SERS intensity were lumps of ~ 8–15 µm and were randomly distributed (Fig. 5d). The following 
three factors contributed to the SERS intensities being relatively well-spread as several large lumps: (1) the rela-
tively larger agglomerates consisting of several nanobeacons were mixed in the ink and non-uniformly spatial 
distribution of the agglomerates occurred, (2) the ink soaked into the porous paper and diffused to form lumps, 
and (3) the laser spot of the Raman microscope that we used for this measurement was several micrometres 
in diameter. Other contributing factors are possible and are a focus of ongoing research. By printing the nano-
beacon ink in this manner, we embedded information in only the narrow area to which we applied the ink. The 
embedded information was randomly distributed; an ink that emits a strong SERS signal is useful as a versatile 
anti-counterfeiting technology.

Finally, we demonstrated an example of hidden embedded information that we fused with Japanese traditional 
crafts. By mixing this nanobeacon ink with Au mud paint used for drawing Au folding screens, we embedded—
in an invisible manner—the Raman spectrum in the picture drawn with Au paint. In this nanobeacon ink, we 

Figure 5.   Distribution of the nanobeacons: (a) Optical photograph of the paper surface to which we applied 
aqueous ink that included nanobeacons. (b) Scanning electron microscopy image of Au nanoparticle 
aggregates included in the stealth nanobeacon. Surface-enhanced Raman spectroscopy (SERS) mappings of (c) 
1 mm × 1 mm and (d) 100 μm × 100 μm at 1600 cm−1. (e,f) SERS spectra for the locations in the Raman mapping 
shown in (d). The inset in (f) shows a SERS mapping at (d) at 1400 cm−1.
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embedded 4, 4’-Vinylenedipyridine (BPE). The picture shown here is the Japanese supernatural spirit Amabie56. 
Here, we demonstrated the Amabie stamps can include plasmonic information. Figure 6a shows a rubber stamp 
that depicts Amabie. Figure 6b shows an ink mixed with Au mud paint. Figure 6c shows this ink stamped onto 
paper (the inset shows the original drawing). Au mud paint is usually stamped in this manner. Although the 
nanobeacon is evident with unaided eyes, the Raman spectral information is embedded and not evident (Fig. 6c). 
Figure 6d shows the corresponding Raman spectrum. In this manner, by using the nanobeacon ink, one can print 
a figure. In fact, the structure reminiscent of expressing SERS cannot be observed in neither the 50 × objective 
lens image of Fig. 5a nor 10 × objective lens images of SFigs. 1 and 2 in the supplementary information. As shown 
in the SFigs. 1–3, it is clear that SERS appears from only the paste. Repeatedly, our nanobeacon is so small that it 
is randomly dispersed in space, so that it cannot be seen with the naked eye, and even if it is observed by SEM or 
Transmission Electron Microscopy (TEM), it has an aperiodic chain structure and cannot be reverse engineered. 
By combining multiple types of ink, extremely complex cryptographic information can be included in the figure.

Our nanobeacon ink facilitates incorporation of Raman signals that one can embed in various compositions, 
not limited to paints and drawings. Combining Raman spectroscopy with the stealth nanobeacons will facilitate 
development of a versatile steganography print.

Conclusions
We applied invisible stealth nanobeacons to steganographic prints. One can use this stealth nanobeacon as an 
aqueous-soluble ink. The SERS signals are strong enough that a fingerprint-like signal is clearly distinguishable 
without interference from the pigments in the printed area. One can readily tailor the stealth nanobeacons with 
4bpy or other molecules as desired. Therefore, one can readily design a stealth nanobeacon in accordance with 
the application and desired embedded information.

The potential of this development to anti-counterfeiting is especially noteworthy. A true–false test system 
in combination with a Raman spectrometer can readily authenticate the stealth nanobeacons. Therefore, this 
development is a unique technology for developing security features that rely on steganography, and can provide 
fingerprint-type watermarking for anti-counterfeiting. The quantity of the AuNPs used in the stealth nanobeacons 
was small: on the order of nanograms. There is no need for time-consuming and expensive syntheses for bottom-
up self-assembly. Therefore, we have facilitated development of a next-generation anti-counterfeiting system.

Methods summary
Aqueous suspensions of AuNPs were prepared according to the standard citrate reduction protocol50. Shearing 
conditions were optimized to control cluster chain length and distribution as described by refs. 41 and 49. After 
purification, the separated particles were dispersed in ultrapurewater containing 50 nM 4, 4’-bipyridine (4bpy) 
molecules and bound 4bpy with AuNPs to convert the functionalities on the AuNPs chains, resulting in creating 
the stealth nanobeacons. This suspension was completely created in all self-assembly process and was spayed 
through a shadow mask to the desired positions or areas. The Raman spectra were obtained using a simple Raman 
spectrometer with 785 nm excitation laser.

Figure 6.   Example of hidden embedded information: (a) Rubber stamp with Amabie engraved. (b) Stamp ink 
comprising Au mud paint and nanobeacons. (c) Stamped Amabie. Inset: original figure. (d) Raman spectra of 
Amabie and background. We processed the Amabie portrait from a photograph courtesy of the Main Library of 
Kyoto University.
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