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ABSTRACT

The possibility of performing microarray analysis
on limited material has been demonstrated in a
number of publications. In this review we approach
the technical aspects of mRNA amplification and
several important implicit consequences, for both
linear and exponential procedures. Amplification effi-
ciencies clearly allow profiling of extremely small
samples. The conservation of transcript abundance
is the most important issue regarding the use of
sample amplification in combination with microarray
analysis, and this aspect has generally been found
to be acceptable, although demonstrated to decrease
in highly diluted samples. The fact that variability and
discrepancies in microarray profiles increase with
minute sample sizes has been clearly documented,
but for many studies this does appear to have affec-
ted the biological conclusions. We suggest that this is
due to the data analysis approach applied, and the
consequence is the chance of presenting mislead-
ing results. We discuss the issue of amplification
sensitivity limits in the light of reports on fidelity, pub-
lished data from reviewed articles and data analysis
approaches. These are important considerations
to be reflected in the design of future studies and
when evaluating biological conclusions from pub-
lished microarray studies based on extremely low
input RNA quantities.

MICROARRAY TECHNOLOGY

In 2005 we reached the decade mark for the microarray tech-
nique, one of the most powerful high throughout gene

expression technologies. Microarray technology was intro-
duced in a seminal paper by Schena et al. (1) and was an
initiating step towards a microrevolution in the field of
molecular biology. Genomic advances, particularly in sequen-
cing projects, have provided the basis for microarray construc-
tion applicable to a wide range of species. The technique
provides a snapshot of the repertoire of genes expressed by
a cell or tissue at the time of harvest and RNA purification. A
series of samples can be compared horizontally, gene by
gene for all the genes, to obtain an expression profile. In
biomedicine, detection of differences and alterations in
expression patterns holds the potential to yield valuable insight
into a broad range of biological processes accompanying nor-
mal or diseased tissue, disease prediction, diagnostics and
treatment, cellular differentiation, development and drug dis-
covery. The technology has become widespread for investiga-
tional purposes, particularly within some fields of research,
and availability is now less of an issue. Production facilities
are commonly found at many academic institutions, and a
wide range of products from necessary laboratory equipment
to experimental reagents are commercially available.

The development of the technology is still progressing.
However, the main focus has shifted from the technology itself
to the pre- and post-processes related to the experiments, more
specifically, to study-design and material preparation, in
addition to data management and mining. The shift in focus
is partially driven by the urge to expand the use of microarrays
and also expand extractable knowledge and to avoid mis-
interpretation. It is important to emphasize that although
microarrays are powerful biological tools, there are potential
pitfalls that can attenuate their power. Critical evaluation of
what we put into the experiment followed by relevant pro-
cessing of data out is essential. Despite of the pitfalls, micro-
array technology is certainly making an impact, not least
within cancer research. The numerous exploratory trials to
scan for robust patterns of data (signatures) within patient
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groups that classify and/or correlate with clinical data, support
the vision of the use of arrays as a routine clinical tool.
However, realization of this vision has been burdened with
validation issues regarding the lists of genes included in a
molecular signature (2). To date, only one array-based analysis
tool, the DNA-based AmpliChip CYP450 genotyping test, has
been cleared for clinical use in the US and the EU. Through
standardization and validation, customized RNA-based arrays
are likely to eventually follow.

MATERIAL REQUIREMENT IN THE EARLY YEARS
OF THE MICROARRAY ERA

One of the main reasons why the microarray technology
initially failed to enter a number of research fields was the
large amount of material that each experiment required. In the
introductory microarray technology paper, the amount of
mRNA used for target preparation was 5 mg (1). In terms
of total RNA, this figure converts to 165–500 mg assuming
1–3% of total RNA consists of mRNA. In a collection of
microarray review papers from 1999, the total RNA quantity
requirement was noted to be 50–200 mg (3). As one cell
contains 10–30 pg total RNA, the number of cells required
to obtain 50–200 mg spans from 1.6 · 106 to 2 · 107. Needless
to say, not all investigators could provide those quantities of
their cells of interest and were thus prevented from using
micorarray technology. One solution to investigate homo-
genous cells from a specific cell type or diseased tissue,
was to culture cells from freshly taken clinical samples.
The drawback of using short-term cultures is that cells are
separated from the natural microenvironment, and changes
in gene expression due to handling could potentially confound
biological findings. The advantage with cancer research has
been that material from tumor tissue or cell lines could often
be supplied in large quantities. However, for investigators who
can provide bulk tissue, the question is whether it is possible to
decipher the complex expression patterns and extract the gene
expression profile from cells of interest, considering the het-
erogeneity of cell types present in the tissue. Studies have
shown that gene expression profiling of bulk tissue yields
the profile of the dominating cell type while the minor cell
subsets are washed out (4). In addition, high-abundance mes-
sages from cells of interest, as well as contaminating cells, can
easily obscure measurements from low abundance transcripts.
Hence, profiling bulk tissue has its limitations. However,
advances in technology designed for selective collection of
specialized cells, such as laser capture microdissection (LCM),
could not be fully exploited in combination with microarray
analysis. Although LCM allowed the fine precision of laser
dissection of single cells, the number of laser firings had to be
increased to answer to the dilemma of sufficient material for
gene expression profiling. When regarding the hopes and
intentions to use of microarrays as routine diagnostic tools,
it is in fact ironic that the best choice of feasible patient sam-
pling, biopsies, were excluded by standard microarray proto-
cols due to limited material. Thus to exploit the potential of
microarray technology and to profile purified cell populations
of interest, this large material requirement had to be overcome
in a quantitatively valid manner. Strategies to reduce the
required sample sizes have been technically relatively suc-
cessful. However, the lower sensitivity limits (lower input

quantities) with respect to accurate, reliable expression mon-
itoring are rarely investigated, and pose a potential limitation
to the use microarray technology that cannot be overlooked.

TWO APPROACHES TO OVERCOME THE
SUBSTANTIAL MATERIAL REQUIREMENT

Efforts to reduce the amount of RNA needed for target
preparation have focused on two main strategies, signal amp-
lification and sample amplification. The first strategy entails
improving and optimizing the labeling reaction in order to
increase the number of signal molecules per transcript.
Augmenting the number of signals per transcript can be
achieved by technologies such as dendrimer (5) or tyramide
signal amplification (TSA) (6). The dendrimer technology
uses a two-step hybridization procedure. First, cDNA is syn-
thesized using an oligo dT primer containing a capture
sequence and subsequently hybridized to the array. Second,
dendrimers, containing a multitude of fluorescent molecules
per dendrimer, are hybridized to the capture sequence. The
claims of this technology is less material needed, no dye bias
and improved signal to background ratio compared to con-
ventional labeling. Improvements increasing signal output
can also be achieved by applying enhanced reagents in the
standard protocol, alternative labeling strategies, or alternative
signal molecules. Considerable optimization of the target
preparation has in fact occurred in the commercial sector.
A probable driving force is the advantage gain in terms of
sensitivity claims of the various reagents or labeling kits. For
indirect labeling, the latest version of a commonly used kit
(Fairplay II, Stratagene) claims that as little as 2 mg of total
RNA (a minimum of �7 · 104 cells) is required. In addition,
another brand allows the use of 3 mg total RNA (Atlas
Powerscript Kit, Clontech). A dendrimer technology based
product (Genisphere) claims that the use of 0.25–1 mg total
RNA (2.5 · 104–1 · 105) is sufficient for a target preparation
leading to good quality arrays.

The minimum number of cells required by the commercial
products mentioned above was 2.5 · 104. This number still
exceeds by far the quantity of cells found in certain samples
[biopsies and fine needle aspirates (FNA)] or small, purified
cell populations (cell sorted, immunomagnetically selected or
laser captured). The second strategy to reduce material
requirements has therefore focused on global amplification
of the sample. Before the microarray era, Van Gelder et al.
(7), devised a strategy to linearly amplify mRNA from limited
quantities of heterogeneous cDNA in their studies of gene
expression in the brain. Their method, commonly referred to
as the Eberwine method, has provided the basis of the pro-
cedures used today. The general steps involve RT of mRNA
with an oligo dT primer, bearing a T7 RNA polymerase pro-
moter site (Figure 1). After conversion of the mRNA–cDNA
hybrid to double stranded (ds) cDNA, antisense RNA (aRNA)
was transcribed in vitro by T7 polymerase. This method was
used even down to single cell analysis of gene expression of
neurons in several studies (8–13). Radioactively labeled
aRNA was hybridized to either known genes on dot blots
or screened libraries of unknown mRNAs from selected tis-
sues. The complexity (the number of unique RNA sequences)
of the aRNA products was in several cases used as a measure
of the success of amplification of a heterogeneous RNA
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pool (8,11,13). Using mRNA amplification for quantitative
analysis of gene expression was possible under the assump-
tion that the multistep procedure maintained the relative
abundance of the gene transcripts. An examination of whether
this assumption holds and that the aRNA actually represents
the initial mRNA sample, was only first investigated by
Poirier et al. (14). In this case, mRNA was not amplified
from single cells, but from 5 mg of total RNA from HeLa
cells. The study compared aRNA versus poly(A) RNA differ-
ential screening and they found equivalent patterns, indicating
that the gene expression pattern was maintained throughout
the amplification step.

Within an interval of input material, an investigator has
the option of using either signal amplification, such as the
dendrimer technology based kit or sample amplification.
The dendrimer assay is more streamlined. However, there
are fewer quality checkpoints and the entire sample is applied
in one hybridization experiment. Using sample amplifica-
tion, although laborious, the procedure can be monitored at
several steps and the amount of material generated is generally
sufficient for several hybridizations. Further, the use of pro-
prietary technology exemplified by the dendrimer based kit
limits flexibility while the reagents needed for mRNA amp-
lification are common molecular research products that easily

can be assembled by the investigator if not purchasing one of
the many commercially available sample amplification kits.
Flexibility is also an issue regarding the input amount and
since sample amplification has shown potential down to one
cell, this approach has an increased overall applicability
compared to current signal amplification technology.

mRNA AMPLIFICATION AND MICROARRAY
ANALYSES

Despite the lack of systematic assessments of the potential
distortion to the relative transcript abundance or other
limitations of global mRNA amplification, the method rapidly
became a tool of choice for the profiling of small samples. The
Affymetrix platform (high density oligonucleotide arrays)
integrated at an early stage the use of mRNA amplification
and hybridization with biotinylated complementary RNA
(cRNA) products (15–17). The procedure was rapidly con-
sidered a standard step for all samples, even large. Due to
the widespread use of the Affymetrix oligo array platform,
numerous papers have been published containing data
obtained with at least one round of in vitro transcription.
Wang et al. (18) and Baugh et al. (19) presented modified
versions of the Eberwine protocol and were the first to quant-
itatively inspect the differences in gene expression profiles
before and after amplification using cDNA and Affymetrix
chips, respectively. The amplification protocol found in
Baugh et al. (19) follows closely the classical Eberwine
method, but includes modifications directed towards optim-
ization. The classical antisense mRNA amplification is 30 end
biased, due to the use of oligo dT primers to initiate first strand
cDNA synthesis at the poly(A) 30 end of the mRNA transcript
and complete coverage of the 50 end is not ensured. For that
particular reason, Wang et al. (18) exploited a template-
switching effect at the 50 end of the mRNA transcript to
ensure the synthesis of full length ds cDNA (Figure 2).
This template-switching effect is based on the terminal
transferase activity of the reverse transcriptase that adds addi-
tional, non-template residues, primarily cytosines, to the 30 end
of the cDNA. The reverse transcript buffer mixture also con-
tains a primer containing an oligo(G) sequence at its 30 end
which will base pair with the newly synthesized dCTP stretch.
Reverse transcriptase then switches templates and continues
replicating the defined sequence of the annealed primer. The
result is full-length cDNA. The impact of 50 end loss of the
mRNA transcript, however, is dependent on the probe design
as discussed in a later paragraph. Both studies concluded that
the level of concordance between amplified and non-amplified
material was high, although there were some discrepancies
that increased as the input of mRNA into the amplification
reaction decreased (18,19).

Following these two seminal amplification papers, a
number of protocol variations for sample amplification have
appeared, all promising improvements either in terms of tech-
nical issues, fidelity or sensitivity of the procedure (20–22). As
an alternative to the conventional T7-based linear approach,
PCR-based exponential strategies were introduced. The
PCR-based methods share the feature of introducing PCR-
priming sites at both ends of each reverse transcribed
cDNA molecule, followed by global amplification of cDNA
by PCR cycles (Figure 3) (23,24). Li et al. (25) proposed the

5’ AAAAA-3’ mRNA

5’ AAAAA-3’
3’ TTTTT-T7-5’

First strand cDNA synthesis+T7-oligo dT primer  

5’ AAAAA-T7-3’
3’ TTTTT-T7-5’

3’ UUUUU-5’

Second strand cDNA synthesis+ RNase H

In vitro transcription

Ready for labeling or 
second amplification round 

First round amplification

Second round amplification

3’ UUUUU-5’

3’ UUUUU-5’

+ dN6

5’ AAAAA-3’

5’ AAAAA-T7-3’

+ RNase H
+ T7-oligo dT

3’ TTTTT-T7-5’

3’ UUUUU-5’

First strand cDNA synthesis

Second strand cDNA synthesis

In vitro transcription

Ready for labeling 

aRNA

aRNA
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Figure 1. Flowchart of a global, linear mRNA amplification procedure gen-
erating antisense RNA (aRNA). This figure is based on the classical Eberwine
method presented by Van Gelder et al. (7). An oligo dT primer containing a
T7 polymerase binding site is used to prime the first strand cDNA synthesis.
Digestion of the mRNA strand in the mRNA-cDNA hybrid by RNase H leaves
small fragments of RNA, which are used to prime second strand cDNA
synthesis. Antisense RNA is then transcribed by T7 RNA polymerase. Second
and subsequent rounds of amplification are initiated by random priming.
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inclusion of a cDNA amplification step using the SMART�
PCR technology, which is based on the template switching
principle described above. Another alternative strategy uses
the template switching feature to generate ds cDNA, from
which only one strand is copied throughout consecutive cycles
(26). A separate reaction synthesizes the second strand cDNA
and the resulting double stranded products serve as templates
for in vitro transcription.

Amplification of sample material using PCR techniques
does have some advantages. PCR-based amplification yields
amplification rates exceeding by far the efficiency of linear
amplification (24). This implies that the amount of input
material can be further reduced compared to most linear amp-
lification procedures. The method is less labor intensive than
the multistep protocols for linear mRNA amplification, which
directly implies better cost-effectiveness. The ds cDNA pro-
ducts are suitable for hybridization to array probes of either
strand orientation, unlike aRNA products as discussed below.
Further, the double stranded products are more stable than
RNA products. However, there are great concerns regarding
relevant properties inherent in DNA polymerase such as mis-
incorporation of bases, bias toward shorter transcripts and
differential amplification efficiencies of different templates
based on GC composition. Effects of these properties,
especially the two latter which give rise to non-linear

amplification, may lead to the misrepresentation of the quant-
itative transcript values in a sample after multiple PCR cycles.

DNA polymerase can also be applied in linear amplification
as in a single primer amplification (SPA) method described by
Smith et al. (27). Extension of this technology has resulted in
an isothermal amplification of cDNA using a single primer
(Figure 4) (28). Only one purification step is required, hence
the method is streamlined and rapid. The single stranded (ss)
cDNA generated is complementary to conventional oligo array
probes.

For a more detailed review of amplification procedures
and protocols that have been applied to cDNA arrays includ-
ing practical suggestions, we refer to a recent publication by
Wang (29).

STRAND SPECIFIC AMPLIFICATION—ANTISENSE
AND SENSE STRANDS

Unlike amplification strategies that generate ds cDNA as
final products, such as PCR-based procedures, the in vitro
based procedures generate RNA with either sense or anti-
sense strand orientation. The general linear mRNA amplifica-
tion protocols result in antisense RNA production. Strand
specification has no implications when using cDNA array.
However, hybridization to oligonucleotide arrays is strand

5’ AAAAA-3’ mRNA

5’ AAAAA-3’

3’ TTTTT-T7-5’

First strand cDNA synthesis+ T7-oligo dT primer
+ TS-oligo dG primer 

AAAAA-3’

TTTTT-T7-5’

3’ UUUUU-5’

dC tailing by RT polymerase

In vitro transcription

Ready for labeling or second 
amplification round 

First round amplification

aRNA

GGG-3’

5’-TS

5’ AAAAA-3’

TTTTT-T7-5’CCC

CCC

Template switching and extension by 
RT polymerase

AAAAA-T7-3’

TTTTT-T7-5’

Second strand cDNA synthesis+ RNase H
+ TS-oligo dG primer

GGG5’

CCC3’

GGG-3’

5’-TS

GGG5’-TS

3’-TS

Figure 2. Overview of a linear mRNA amplification based on the procedure described by Wang et al. (18). Following oligo dT priming, the method exploits the
template switching effect of the reverse transcriptase enzyme. The RT enzyme incorporates non-template dCTPs at the 30 end of the transcript, then switches
templates and continues replication to the end of the primer. The result is full length cDNA. For the second strand, a primer with bases complementary to the dCTP
stretch is applied. Antisense RNA is transcribed by the T7 RNA polymerase.
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specific and requires the antisense strand of the nucleic acids
(RNA or DNA). The strategy chosen by Affymetrix involves
the synthesis of biotin-labeled cRNA (or amino allyl incorp-
oration for indirect fluorescent labeling) which is directly suit-
able for hybridizations. A potential disadvantage of labeled
RNA probes is the reduced specificity of RNA–DNA interac-
tions compared to DNA–DNA interactions due to increased
stability of binding energy and thus less sensitive to mis-
matches. Besides the commonly used method of cRNA syn-
thesis, there are a number of strategies reported to obtain the
correct strand for labeling. The template switch effect can be
applied to incorporate a second primer with an RNA poly-
merase binding sequence at the 30 end of the first strand cDNA
product (Figure 5A) (30). In that way, the ds cDNA products
serve as templates for sense strand directed in vitro transcrip-
tion, which can be reverse transcribed into labeled cDNA
suitable for oligonucleotide arrays. Alternatively, the first
round of amplification can follow a standard procedure,
while in the second round it is possible to prime the aRNA
with random 9mers bearing a T3 polymerase promoter site
(Figure 5B) (31). The use of a T3 RNA polymerase will then
lead to synthesis of sense-stranded RNA. In an additional
strategy, either transcript orientation during RNA amplifica-
tion can be chosen (Figure 5Ci and ii) (32). Schlingemann
et al. (33) showed how the classical Eberwine procedure could
be modified for strand specific hybridization on oligoarrays
(Figure 5D). In this protocol, the final RNA in vitro reaction
is followed by dye incorporation using a Klenow fragment,
generating labeled antisense cDNA.

COMMONLY INVESTIGATED FEATURES OF
SAMPLE AMPLIFICATION

The most common aspects arising from the use of sample
amplification, irrespective of whether the method confers

linear or exponential amplification, include; amplification
efficiency, 30 bias and length of aRNA/cDNA products,
reproducibility, fidelity of maintaining relative transcript
abundance, benefits of using amplified material versus non-
amplified and disadvantages with amplification procedures.

Amplification efficiency

Amplification efficiency is often noted as the amplification
fold or factor. This is calculated by dividing the final
aRNA yield by the estimated initial mRNA input. Generally,
it is the total RNA that is measured and the content of mRNA
is calculated based on a certain fraction composition of total
RNA. The general assumption is a 1–3% mRNA content in
total RNA, dependent on the cell type. Accurate quantification
of total RNA may be difficult, especially when dealing with
small samples and low RNA concentrations. Hence, besides
technical aspects inherent in the amplification protocol, the
amplification fold factor is affected by RNA measurements
and theoretically estimated mRNA content of the cell type in
the sample. In other words, the amplification efficiency repor-
ted is potentially different from the actual value due to error
prone measurements and incorrect assumptions of true mRNA
content. A facilitated comparison of amplification efficiencies
between protocols and laboratories would require standard-
ization of e.g. an assay using a commercially available
RNA source with either a documented and stable mRNA con-
tent or a mix of known quantities of transcripts. For linear
amplification, the efficiency range for two rounds of linear
amplification that has generally been reported lies between
103 and 105. It is advisable to critically evaluate the basis
of this calculation for comparison between studies or proto-
cols. Typically, cell line material and serial cell dilutions to
obtain sequentially smaller samples yield better amplification
efficiencies than clinical material.

5’ AAAAA-3’ mRNA

5’ AAAAA-3’

3’ TTTTT-5’

First strand cDNA synthesis+ oligo dT primer 

5’ AAAAA-3’

3’-AAAAA TTTTT-5’

dA tailing

Ready for labeling 

PCR-based amplification

PCR cycles

5’ AAAAA-3’

3’-AAAAA TTTTT-5a

+ oligo dT primer

Figure 3. Schematic illustration based on a reported exponential amplification method (24). The mRNA transcript is reverse transcribed with an oligo dT primer. The
cDNA is tailed by terminal transferase to create an oligo dA tail. Addition of a poly dA stretch allows the use of one oligo dT- (or oligo dT adaptor-) primer to be used in
subsequent PCR cycles.
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With respect to the technical issues, increase in the ampli-
fication efficiency can possibly be achieved by optimization
of the individual steps, for example by choice of enzymes
or temperature settings. It is worth noting that the yield of
aRNA increases as the in vitro reaction extends in time.
However, prolonged synthesis is not recommended, as
degradation of near full length aRNA products are observed
past 4 h (34).

The amplification factor using a PCR based method has
been reported to be 3 · 1011 (24). This figure was obtained
by dividing the cDNA yield by the initial estimated mRNA
content in the sample. Strategies combining both linear
and PCR amplification procedures have been described in
the literature (35–37). The reported amplification factor of
106–107 lies between that of two rounds of linear amplification
and exponential amplification (36).

30 bias and aRNA product lengths

The conventional Eberwine based amplification protocols
involve directional priming from the 30 ends of mRNA

transcripts in the first round of amplification and random
priming in the second and subsequent rounds, leading to shor-
tened products. The transcript lengths are dependent on the
processive features of the specific reverse transcriptases and
polymerases applied as well as reaction conditions. Product
lengths after two rounds of amplification can easily be evalu-
ated on an Agilent Bioanalyzer, and are typically in the range
of 200–1000 bp, peaking at 400–500 bp. Baugh et al. (19)
showed that signal obtained from oligo probes that are
50 biased are markedly reduced, due to 30 bias and the lack
of full length products. Hence, the consequence of these two
features is dependent on the probe design on the arrays.
However, the effect is minimal as the probe sets for cDNA-
and oligoarrays are generally 30 end biased and so are also
conventional labeling protocols of non-amplified targets.

Reproducibility

In general, the reproducibility of amplification experi-
ments and the subsequent hybridizations is reported to be
high. Parallel amplifications yield highly correlated expression

5’ AAAAA-3’ mRNA

5’ AAAAA-3’

3’ TTTTT-P2-5’

First strand cDNA synthesis+ oligo dT -P2 RNA chimeric primer 

5’ AAAAA-P2-3’

3’ TTTTT-P2-5’

Second strand cDNA synthesis+ RNase H

Ready for labeling 

+ RNase H
+SPIA P2 composite primer 

5’

3’ - - - - - - -5’

5’ AAAAA-P2-3’

3’

SPIA P2-5’

SPIA P2-5’

3’

Unmasking priming site

Strand displacement and cDNA synthesis

antisense cDNA

Figure 4. In the first step of this isothermal linear amplification procedure, a DNA–RNA chimeric primer hybridizes to the poly (A) tail of the mRNA where both
segments are extended by the reverse transcriptase. The first strand cDNA is template for the second strand synthesis, which leaves an RNA–DNA heteroduplex at one
end. RNase H unmasks the priming site by digestion of the RNA P2 segment of the chimeric primer. Isothermal amplification of cDNA is performed using a single
DNA–RNA primer that binds to the revealed single strand segment and is extended by a strand-displacing DNA polymerase. Once the extension is initiated, the
RNase again digests the RNA P2 segment allowing a new primer molecule to bind again and extend leading to a continuous isothermal generation of ss cDNA copies.
The illustration was adapted from Dafforn et al. (28).
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profiles (18,19). A common observation is that the reprodu-
cibility of replicate hybridizations is higher than for
experiments using total RNA (38,39). These observations
demonstrate consistency and indicate that amplification is
reproducible even for genes whose relative transcript levels
are not maintained. Baugh et al. (19) also showed that repro-
ducibility was high, even if diluting the input RNA down to
tens of nanograms (r � 0.94). In a comparable dilution experi-

ment the correlation value was slightly reduced (r � 0.87)
showing that variable reproducibility increased as the quantity
of RNA amplified was reduced (40). In a comparison between
linear and PCR amplification, the results showed that repro-
ducibility was very high for linear amplification, and slightly
lower for a SMART PCR-based amplification (41). In contrast,
Klur et al. (42) showed that their PCR-based protocol was
slightly more reproducible than the linear approach.
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Fidelity of maintaining relative transcript abundance

Faithful preservation of the abundance levels of gene tran-
scripts is the most important issue regarding the use of any
amplification procedure in combination with quantitative
microarray studies. If the up-scaling procedure introduces
variability by inaccurate maintenance of relative transcript
copy numbers, then quantitative measures of gene expression
levels are rendered invalid. Hence, in order to combine amp-
lification protocols with microarray technology, it is necessary
to document that the procedure conserves the quantitative
features of the input RNA source. In early reports introducing
global mRNA amplification for microarray studies, the docu-
mentation of the degree of fidelity was generally conducted
by comparing profiles between amplified and non-amplified
material, comparing calls present or absent (Affymetrix plat-
form), use of internal RNA standards, or northern blot or real
time RT–PCR verification. These evaluations covered linear
based procedures (18–20,43–45), exponential based pro-
cedures (46,47), or compared both amplification strategies
(41,48). When comparing profiles, calculation of Pearson
correlation coefficients was the most common statistical
approach applied. Evaluation of the consistency of outliers
between amplified and non-amplified material was a widely
used parameter in the early papers, due to the popular differ-
ential expression analysis, where any ratio greater than 2-fold

was conventionally accepted as relevant for further analysis.
The study by Wang et al. (18) only focused on the maintenance
of differentially expressed genes (outliers) between two RNA
sources. When aRNA was generated from 0.25–3.0 mg of total
RNA, 85–92% of the outliers from the control experiments
using total RNA, were also identified as differentially
expressed genes after aRNA hybridization analysis. Scheidl
et al. (43) presented all genes in common between aRNA and
total RNA, and not only the outliers. Although the intensity
levels were not preserved, the relative abundances of tran-
scripts were maintained, giving rise to a relatively high
correlation factor (0.84). However, as signal intensities
approached background levels, the correlation coefficients
dropped. Independent studies achieved comparable correlation
coefficients (0.82 and 0.8) (20,49). The general conclusion
drawn in these studies was that microarray data from amplified
material is comparable to non-amplified material but there
is a slight decrease in correlation coefficients, reflecting
changes in transcript ratios. Superficial examination would
characterize many of these reports showing the reliability of
sample amplification. The studies are informative, but limited.
Notably, one study presented components of a variance model
in their study (20). The variance of true expression and
measurement errors were estimated for both amplified arrays
based on aRNA obtained with different amplification
protocols and non-amplified material. The authors found a

5’ AAAAA-3’ mRNA

5’ AAAAA-3’

3’ TTTTT-T7-5’

First strand cDNA synthesis+ T7-oligo dT primer 

5’ AAAAA-T7-3’

3’ TTTTT-T7-5’

3’ UUUUU-5’

Second strand cDNA synthesis+ RNase H

In vitro transcription

3’ UUUUU-5’

+ dN6

5’ AAAAA-3’

5’ AAAAA-3’

+ RNase H
+ Klenow fragment

3’ TTTTT-5’

First strand cDNA synthesis

aRNA

Labeling second strand cDNA

antisense cDNA

D

Figure 5. (A) First strand cDNA is initiated by priming with an oligo dT primer containing and anchoring primer site. The template switch effect is applied to
incorporate a primer containing both an anchoring primer site and a RNA polymerase binding site. The anchored priming sites are used in a limited PCR cycling step.
Sense RNA (sRNA) is transcribed by SP6-RNA polymerase during an in vitro reaction. Adapted figure from Rajeevan et al. (30). (B) The first round of this procedure
is equivalent to the first round of the classical Eberwine procedure and RNA in the antisense direction is synthesized in the in vitro reaction. At the start of the second
round of amplification, aRNA is primed with random nonamer primers modified by the addition of an upstream T3 polymerase promoter site. Second strand cDNA is
synthesized as in the Eberwine protocol. The RNA transcripts produced in this second amplification round are oriented in the sense direction. Modified figure from
Kaposi-Novak et al. (31). (Ci and Cii). An oligo dT primer and a terminal continuation (TC) primer containing a T7 promoter sequence in the sense oriented
transcription are added to the mRNA sample for first strand cDNA synthesis. TC is based on the observation of the reverse transcriptase enzyme adds a few Cs and also
Gs nonspecifically at the end of mRNA templates. The TC primer anneals with this stretch and provides a binding site for second strand cDNA synthesis. RNA in vitro
transcription can be driven using a promoter sequence attached to either the 30 or the 50 oligo primers and in thus generates either sense or antisense RNA transcripts.
For further methodological details of the terminal continuation strategy see Che and Ginsberg (32). (D) The first and subsequent rounds of amplification follow the
same procedure as the classical Eberwine method. The final aRNA is reverse transcribed into sense cDNA and used as a template for Klenow labeling, yielding
fluorescently labeled antisense cDNA, which are in the correct orientation for hybridization to oligo arrays. Adapted figure from Schlingemann et al. (33).
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decreased variance in gene expression after amplification, and
concluded that amplification had a dampening effect on the
true expression of some genes. Nygaard et al. (38) presented a
quantitative study to examine the effects of amplification on
ratio preservation. They assessed the number of genes that
showed differential expression when comparing amplified ver-
sus non-amplified to be 10%. Here, a two-sample t-test, using
the Benjamini-Hochberg multiple testing procedure, to find
genes consistently or inconsistently expressed between amp-
lified and non-amplified material from two RNA sources was
applied. As microarray experiments are subjected to a sub-
stantial amount of variability, the contribution to noise due to
the amplification procedure was estimated by ANOVA ana-
lysis. Using the estimated ANOVA parameters, they calcu-
lated the signal to noise ratios both with inclusion of variations
due to amplification, and without. A decrease in the signal to
noise ratio due to amplification was reported.

In recent literature regarding mRNA amplification, Pearson
correlation coefficient calculations to estimate inconsistency
of data generated from amplified material compared to non-
amplified material or from different amplification protocols,
have consistently been a main choice of statistically based
analysis (40,50–54). The reported results from these analyses
have been restricted to outliers or genes with a fold change
of >2. However, it is necessary to comment on the use of the
2-fold change criterion as a measure of significance. Many
published microarray studies have utilized the 2-fold criterion.
The method is straightforward, but it is apparent that this
is not informative in all settings. Utilization of this criterion
is diminishing and is being replaced by the application of
t-tests. In addition, there is a larger focus on genes co-
regulated in pathways or signatures rather than single,
differentially expressed genes. These features strongly
indicate that the 2-fold criterion to detect outliers between
two RNA samples is not a suitable end-point for evaluations
of RNA amplification fidelity.

An alterative approach to strictly using microarray datasets
for evaluation of fidelity was presented by Goff et al. (55).
They chose to compare a subgroup of amplified data against
real time RT–PCR data and calculate the correlation value.
Their reason for using real time RT–PCR data as the true
standard was the common use of this latter technique to
validate microarray data.

Besides the continuous use of Pearson correlation coeffi-
cients, more sophisticated, statistical analytical methods
have also recently appeared (44,56–58). To analyze the
degree of fidelity of amplification on differential gene
expression between two different samples, a comparison of
t-scores or posterior distribution of fold change for individual
genes have been applied (44,57,58). Again, the documentation
from these analyses has been restricted to a small subset of
genes, more specifically the outliers, e.g. the top 10 ranked
genes.

As the amplification protocols are tested to cover even lower
ranges of input RNA quantities it is likewise important to
investigate the maintenance of relative transcript abundance
levels at these settings. This has been done by less informative
approaches such as correlation studies and not surprisingly,
correlation drops. Baugh et al. (19) calculated gene-specific
t-scores for the observed difference between two different
RNA sources that were amplified from serially diluted

amounts of material (10 mg, 200 ng and 10 ng). They then
derived the correlation coefficient of the t-scores from the
different datasets and found a good correlation, although
the top ranked genes (highest t-scores) did not extensively
overlap when comparing 10 mg with 10 ng. A poor overlap
between outliers was also found in another study, where only
44% of differentially expressed genes in the 50 ng amplified
RNA specimens matched the 5 mg non-amplified RNA mater-
ial (50). Without generating a specific subset, Schlingemann
et al. (33) used a linear model to assign P-values to differences
in ratios found across a data series from a range of RNA
dilutions. There was an increase in number of genes that dis-
played differential ratios, compared to the standard protocol,
as material was gradually reduced. Further investigations of
the use of scarce material and the effects of amplification on
the preservation of transcript levels, was recently studied (59).
The hybridization design was based on the use of only one
source of RNA and co-hybridizing a reference cell quantity
with smaller test samples. The authors globally estimated
the portion of genes differentially expressed in the reference
and test samples, based on P-values calculated from a mod-
erated t-test. The number of differentially expressed genes
increased when amplifying from minute samples. By using
a novel model to determine sensitivity limits of amplified
material with respect to reliable microarray data, it was
shown that the accuracy of maintaining relative transcript
abundance was transcript copy number dependent. The
authors found that only moderate/high expression genes
were quantitatively reliable in experiments <1000 cells.
Low expression genes were subjected to stochastic fluctu-
ations, thus limiting the precision of gene expression meas-
urements. Hence, to summarize this section, these published
studies show that the use of RNA amplification on small-
size samples confer the risk of generating unreliable data,
and the validity of biological conclusions drawn from such
data may therefore be poor. This risk increases as sample
size decreases.

For profiling of scarce material, exponentially based
global mRNA amplification methods have been developed.
However, more concern is raised regarding ratio preservation
in exponential amplification procedures due to non-linearity
caused by DNA polymerase enzymatic function as this may
contribute to reduced validity when used in quantitative
expression studies. Over-amplification is also an issue for
PCR-based strategies. Endege et al. (60) suggested that the
reaction should be terminated one cycle prior to saturation of
highly expressed genes to ensure that the majority of gene
transcripts are in the exponential phase. Iscove et al. (24)
was the first group to focus their study on the fidelity of
exponential amplification by comparing ratios obtained
from amplified and non-amplified targets. Outliers were
defined within a specific interval and the results from expo-
nentially and linearly amplified targets were compared to
the true ratios (non-amplified). From the data, they concluded
that their method was superior to one round of linear ampli-
fication. In contrast, Nagy et al. (61) found that 21 cycles in
their PCR amplification lead to overamplification [in com-
parison Iscove et al. (24) applied 65 cycles] which resulted
in major distortion of ratios. However, they claimed that their
method of real-time PCR, halted after 13–15 cycles, preserved
the ratios. The non-amplified control samples used in this
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study were labeled using dendrimer-based signal amplification
(Genisphere). In a SMART–PCR setting, the maintenance
of transcript abundance was estimated using real time PCR
on initial number of cDNA copies before amplification, and on
cDNA copies after amplification. The mean amplification
factor was calculated for four genes with different copy
number levels (62). The factor ranged between 28–40,
which was considered sufficient accuracy, according to the
authors. A study comparing the classical T7-based method
with SMART-PCR, found that on cDNA arrays, gene expres-
sion measurements of linearly amplified material showed
better correlation with non-amplified samples than material
from SMART-PCR (41).

A critical mind is necessary in evaluation of the informative
value of the contribution to the topic of RNA amplification
fidelity provided by published studies. First of all, is the start-
ing point in terms of material quantities relevant and is the
experimental design reasonable? There are many reports in the
literature where the authors have applied serial dilutions of
RNA to investigate different input amounts into the amplifica-
tion protocol of choice. The results are certainly informative,
but the question is how close they are to reality. Starting
from diluted RNA and starting from what is roughly the
equivalent in cell material, are two entirely different settings.
The additional handling of material in order to isolate RNA
imposes technical variability to the composition of the tran-
script pools in the samples.

Most of the comparisons are performed against non-
amplified total RNA experiments, following a standard
protocol. Whether total RNA reflects the ‘true’ standard is
debatable. Increased variability of detection of low expressing
genes is a feature common to both amplified RNA- and total
RNA-labeled targets and altered expression profiles are com-
monly found in this expression range. It is important to have in
mind that targets made from total RNA are based on the 1–3%
mRNA content of the initial material, and thus there is norm-
ally a great difference between the amount of target applied for
the amplified and non-amplified arrays. The difference in
amount can be up to ten times in a comparison experiment
and result in a doubling of absolute intensity measured on the
amplified arrays (38). A likely outcome in this case is that
some genes with low expression are scored as differentially
expressed in the amplified target compared to the reference,
non-amplified target, but in reality the amplified products
are closer to the true expression as these transcripts are
well within the detection range when amplified from an
optimal amount of RNA. Hence, it is difficult to extract
which differentially expressed genes between the amplified
material and the total RNA are the result of poor performance
of the amplification protocol or from imprecise measurements
of the true expression obtained from the total RNA arrays.
Replicate arrays may reveal consistent or variable results,
where consistency indicates a true measurement of data. An
alternative approach to verify the source of the variability
would be to compare against results from other high-
throughput methods. However, access to other methods
is limited, and thus many resort to low-throughput real-
time RT–PCR for verification of gene expression or ratio
levels. Quantitative real time RT–PCR is considered more
sensitive than standard microarray procedures. However,
it is important to remember that real-time RT–PCR also

suffers the same inconsistencies at low copy numbers as
global RNA amplification and may similarly not represent
true measurements.

One feature of these studies of transcript and ratio pre-
servation is that authors confer a subjective opinion of what
defines sufficient amplification accuracy and in several cases
the analysis is limited to a subgroup of genes. Correlation
coefficients are generally found to be good and acceptable.
An unanswered question is: at what correlation value should
one reject a given method? At what level does the output
data contain too much uncertainty that further biological
interpretation is questionable? It is certainly advisable to care-
fully read the details of the comparisons or analysis to critic-
ally evaluate the basis of the author’s conclusions. For
example, it is likely that other investigators would not perceive
an amplification factor varying between 28–40 among genes in
the global reaction to yield sufficiently accurate quantitative
data.

Benefits from using amplified material versus
non-amplified

The main benefit of sample amplification is obviously that less
material is needed to perform the microarray hybridization,
but there are also other advantages. When following standard
labeling procedures, the quality of RNA is a crucial factor
influencing array quality. When applying mRNA amplifica-
tion, however, the aRNA products are normally of very high
quality after purification, and the signal to noise ratios on the
arrays are significantly increased (38). In addition, the number
of genes detected by fluorescent signaling using amplified
material is significantly higher compared to non-amplified
samples (38,39,41,44). One study confirmed by other molecu-
lar techniques that these genes were in fact expressed in the
cells and not the result of unspecific binding or artifacts (44).
This indicated that amplified RNA was more sensitive to low
abundance transcripts than the standard method using total
RNA. Due to improved signal to background levels using
aRNA, Feldman et al. (49) not only scored more genes on
arrays with amplified material, but also observed a doubling
in the number of outliers. Increased sensitivity appears to be
greatest for low copy number genes. A probable reason is that
the amount aRNA used for labeling is roughly 3–10 times
higher than the corresponding mRNA content in the total
RNA targets.

Partially degraded RNA can be used without disturbing the
conservation of relative expression levels (63). In partially
degraded samples, only the transcripts missing the original
30 end are lost.

The amplification efficiency generally results a surplus of
aRNA material, so that multiple hybridization experiments can
be performed. However, this may not apply for extremely
small samples.

Disadvantages with amplification procedures

A disadvantage with amplification procedures is that they are
generally multistep and laborious, often taking 3–5 days to
complete two rounds of linear amplification. This is an issue
taken seriously by kit providers, knowing that users appreciate
rapid, streamlined protocols.
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Products of certain linear amplification protocols are not
compatible with the conventional strand orientation of the
probes on oligoarrays.

Reduced hybridization specificity has been observed
using commonly applied cRNA targets compared to use of
ss cDNA targets (64).

Furthermore, a slight distortion of relative transcript
abundance maintenance has been identified when comparing
against data from non-amplified material (38,41).

Finally, according to Nygaard et al. (59) reliable quantitat-
ive data are limited for small samples. Hence, there still
remain restrictions to the microarray experiments, and due
to the nature of these restrictions (stochastic processes)
it is unlikely that they will be surpassed with the current
microarray technology and are further discussed in a latter
section.

COMMERCIAL AMPLIFICATION KITS

Instead of using discrete reagents, it is now possible to choose
between a range of amplification kits from vendors such
as Affymetrix, Arcturus, Ambion, Clontech, Telechem Int.,
Roche Applied Biosciences and NuGen (Table 1). Table 1
displays information regarding the minimum input material
amount specified in the respective manuals found on the manu-
facturers’ web site. In general, two rounds of amplification
are required to generate sufficient amplified RNA when
starting with minimum total RNA quantities. A few manufac-
turers provide a minimum value of input material that is
different from their recommended input, indicating that
they have a sensitive assay, but the rate of success is variable
for the lowest input range.

Recent articles have validated amplification procedures
and kits provided by commercial manufacturers (64–66).

LITERATURE SURVEY: WHAT STRATEGY HAS
BEEN USED FOR SMALL SAMPLES?

So which strategy have investigators chosen to convert their
small, limited samples to material that is sufficient for micro-
array analysis? To answer this question, the articles surveyed
below were divided into groups according to how the samples
were collected, starting with fine needle biopsies, followed by
LCM, cultivation of specific cells and finally microaspiration.

Fine needle biopsies represent a feasible, minimally
invasive method to collect patient tissue specimens while
the latter techniques are commonly used to obtain relatively
homogenous cell populations from various types of tissues
sources. FNA or fine needle core biopsies are in many settings
borderline cases regarding the need for amplification or not.
Total RNA yield is typically less than 5 mg and commonly
reported to be ±1 mg. The use of signal amplification is one
option if all the samples are within the range of total RNA
quantity specified by the signal amplification procedure.
Another strategy to bypass the use of an amplification step
is the use of radioactive labeled targets and nylon membranes,
reported to yield increased sensitivity (67,68). In a breast
cancer study, 1–2 mg total RNA obtained from FNA was
labeled with 33P and hybridized to high-density cDNA
microarray nylon membranes (67). The analysis was restricted
to genes expressed at higher levels than the typical mean
expression value for the individual arrays and showed that
profiling of FNA material could assess estrogen receptor
and HER2 receptor status. However, the array industry has
generally switched away from nylon membrane array to glass
arrays. The use of radiolabeled targets on small membrane
arrays or glass arrays in attempts to increase sensitivity
have been problematic due to the general lack of appropriate
detection systems that can handle the fine resolution of iso-
topes. For the use of FNA, glass arrays and conventional

Table 1. An overview of commercially available target amplification kits

Kit Manufacturer Principle Range of
input total
RNA

Minimum input
total RNA

Recommended
minimum input
total RNA

GeneChip two
cycle target labeling

Manufactured by
Invitrogen for
Affymetrix

Linear amp 10–100 ng 10 ng 10 ng

RiboAmp Arcturus Linear amp 1–40 ng 1–10 ng
(250–500 cells)

10–40 ng
(500–2000 cells)

RiboAmp HS Arcturus Linear amp 100 pg–1 ng 100–500 pg
(10–50 cells)

500 pg–1 ng

MessageAmp II Ambion Linear amp 0.1–100 ng 0.1 ng 100 ng
Low RNA Input

Fluorescent Linear
Amplification

Agilent Technologies Linear amp 50 ng–5 mg 50 ng 50 ng

BD SMART mRNA
Amplification

Clontech Linear amp
(Template switch mechanism)

0.1–5 mg 100 ng 100 ng

BD Atlas SMART
Fluorescent Probe
Amplification

Clontech PCR-based
(Template switch mechanism applied)

10 ng–1 mg 10 ng 10 ng

ArrayIt MiniAmp TeleChem Inc PCR-based (5–10 cycles)
and one round linear amp

50 ng–1 mg 50 ng 50 ng

RAS Microarray Target
Amplification

Roche PCR-based 50 ng–1 mg 50 ng
(1000 cells)

50 ng
(1000 cells)

Ovation (Ribo-SPIA)
Aminoallyl RNA Amplification

NuGen Linear isothermal amp 5–100 ng 5 ng 5 ng

Abbreviations: amp (amplification).
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procedures, Assersohn et al. (69) showed that the success rate
for adequate quality hybridization of non-amplified material
was 15%. This low percentage indicated the necessity of amp-
lification. Wang et al. (70) conducted a prospective study
when amplifying total RNA extracted from FNA from melan-
oma metastases and followed the history of the lesions in
order to correlate transcript patterns with clinical outcomes.
Biopsies were taken before and after treatment, and RNA was
amplified according to their modified Eberwine protocol.
Genes that discriminated treatment response from non-
responders were generated by statistical analysis. In a similar
study, total RNA isolated from FNAs from breast cancer
patients undergoing neoadjuvant chemotherapy were sampled
(71). The amplification procedure followed the Eberwine
protocol with minor modifications. Specific profile features
were found to distinguish responders from non-responders
of treatment. Rouzier et al. (72) investigated whether the dif-
ferent molecular subtypes of breast cancer displayed different
responses to preoperative chemotherapy. A minimum of 1 mg
total RNA was amplified and profiled on Affymetrix chips.

Another use of the combination FNA and RNA amplifica-
tion has been to elucidate the progression of cancers by
profiling samples at different stages of the disease. This can
be exemplified in a study by Mazzanti et al. (73). The
amplification approach applied was the modified Eberwine
method and the purpose was to find diagnostic genes for
the different states of the disease.

The beneficial factors of using FNAs, are first of all that the
sampling technique is feasible for large studies, and that
multiple aspirations from same patient/individual are possible.
Further, as long as the quality of the RNA isolated is satisfac-
tory, the amount is usually in excess with respect to most
amplification protocols and thus reducing the technical chal-
lenge of up-scaling the material. As mentioned, the FNA may
represent borderline cases with respect to the need to amplify,
but rather than performing hybridizations in the lower end of
the sensitivity range with respect to amount non-amplified
target labeled, the advantage resides in the ability to increase
the number of genes detected through amplification of tran-
scripts. The studies presented above exemplify that non-
invasive sampling procedures, amplification of RNA and
expression profiling together form a powerful combination
for cancer care management. Material can be collected pre-
operatively, and expression profiles may be analyzed for dis-
ease stage, sub-classification of cancer type, treatment
response and clinical outcome. However, currently a large
part of gene expression profiling is performed on surgically
removed tumor tissue where neoadjuvant chemotherapy treat-
ment has already been selected and exerted.

In contrast to fine needle biopsies, LCM requires an RNA
amplification step prior to gene expression profiling, unless
the investigator spends a substantial amount of time vastly
increasing the sample size by multiple captures. There are a
number of published reports combining laser microdissection
with microarray technology. The first reported study collected
1000 neurons, performed three rounds of linear amplification,
and hybridized in a single channel design to cDNA arrays
containing 477 clones (16). To get a view of more recently
used experimental protocols (specifically amplification
protocols and array types) and the extent of findings reported,
selected papers from a literature search were divided into two

groups according to initial amount of input material, moderate
range (3000–50 000 cells) [Table 2 (A)] and minute range
(1–2500 cells) [Table 2 (B)]. The papers were selected by
searching in PubMed using the following terms and com-
binations thereof: gene expression, microarray, profiling,
RNA amplification, laser capture, microdissection, LCM
and small samples. Papers where the main focus was demon-
strating the feasibility of combining small samples and
microarray technology were discarded, as the aim was to
look specifically at the application of these technologies in
a biological study. The selection was biased towards journals
available online through our institution subscriptions, and
towards relatively recently published papers (2002–2005).
The experimental protocols have been retrieved from the
respective materials and methods sections, while the reported
findings based on amplified material were primarily extracted
from the abstracts. Frequent output from the datasets were,
a handful of genes that were subjectively chosen for valida-
tion by real time RT–PCR, and/or validated by supporting
literature connecting some biological significance between
the chosen genes and the samples. More specific analysis of
differentially expressed genes or other strategies applied are
noted.

One aspect that distinguishes the studies in Table 2 (A)
compared to (B), is the frequent application of mRNA amp-
lification kits in 2 (B). One possible reason is the easier choice
to apply a kit that claims successful amplification from
minute materials, rather than testing a procedure using self-
assembled products. With respect to the results, there are a few
points to critically consider. The use of a high fold change
criterion such as 15-, 5- or 4-fold change may indicate at least
two possibilities. Firstly, that the samples are from very dif-
ferent cell type sources and hence many genes are differenti-
ally expressed. Secondly, the variability in gene expression
between closely related samples is high so that too many genes
are above the generally used 2-fold change. The latter may
indicate randomness inherent in the amplification procedure
when starting from minute samples. Also notable in a few
minute sample-studies is that the focus of a high-throughput
analysis is placed on just a few subjectively chosen genes. It is
ambiguous to the reader whether there was no other findings
in the rest of the data or not. Lack of further biologically
significant data may imply noisy data. In those cases, micro-
arrays are not the best experimental choice for examining
similar samples and perhaps real time RT–PCR would be
more convenient to measure the levels of a small set of
genes, although this method is subject to stochastic variation
at low input sample levels.

Minute samples can be procured by other means than
LCM. In embryology research, embryos can be cultured in
medium. For studying the process of hatching in early embryo
development, pre-hatched and hatched blastocysts were
collected for RNA extraction, amplification and microarray
analysis (74). Again, a standard operating procedure (SOP)
was performed and a fold change of 3 was applied. Based on
literature reports, the differentially expressed genes where
categorized according to function. Gene expression during
kidney morphogenesis has been studied using in vitro models,
RNA amplification and microarrays (75). The tissues of
interest were cultured in vitro and sampled at different stages
of morphogenesis. Hierarchical clustering and differential
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expression analysis were applied, and several potentially
relevant pathways were identified. Cell selection techniques
such as immunomagnetic positive selection and fluorescent
sorting are other strategies to enhance the homogeneity of a
cell samples. In a metastasis related study, the positive fraction
of circulating tumor cells (CTC)-enriched blood sample were
profiled and compared with the negative (CTC-depleted)
fraction from the same patient (76). Immunomagnetic beads
were used for the positive selection of tumor cells from three
patients with each a different type of cancer. A list of genes
differentially expressed in all three cancers was generated
and from this list 35 candidate genes were selected for further
real time RT–PCR analysis in a selection of 74 metastatic
cancer patients and 50 healthy controls. The gene subset
was claimed to be a good predictor for tissue of origin clas-
sification, but the biological role of these genes could not be
clarified.

Single cell analysis is without doubt technically challen-
ging. In the original report by Van Gelder et al. (7) a micro-
injection technique was used where a patch electrode filled
with first strand cDNA synthesis components was injected into
a single cell. The cell was loaded with the reaction mix,
followed by suction of entire cell content into the electrode
and a transfer step for further processing. This technique was
applied to sample single cells in early single cell gene expres-
sion studies, where radioactively labeled amplified material
was hybridized to slot blots (10,11). The same single cell
sampling technique was also applied in a more recent study
(77). In Table 2 (B) are two reports where the authors collected
single cells by LCM for analysis (78,79). In embryology
studies, tissue grown in media was dissociated and single
cells were picked by microcapillaries and placed directly
into tubes for lysis and direct cDNA synthesis for the invest-
igation of pancreas development (80). A similar method to
obtain single cells was used in a neuron study (81). If exclud-
ing the LCM samples, the amplification method reported in
these more recently published studies were PCR-based (80,81)
or a combination of both linear and exponential (77). The
labeling strategies included Genisphere fluorescent dendrimer
technology (80), 32P radioactive labeling (81) and fluorescent
one-channel hybridization (77). One group reported the need
to pool 4–10 cells in order to achieve significant signals (81).
From the data output, two groups reported qualitative findings
by gene discovery for distinct cell types (77,80) and one group
followed SOP (81). Notably, the reported results in the two
single cell studies in Table 2 (B) were also oriented towards
cell identification by gene expression profiling. In other
words, results were based on gene detection and discovery
rather than gene level measurements. The one study reporting
quantitative measurements included in this literature survey
over single cell analysis, strictly does not belong in this cat-
egory because they pooled aRNA from single cells to generate
adequate data.

IMPORTANT CONSIDERATION: MATERIAL
REQUIREMENT—NO LOWER LIMIT?

As long as the amplification efficiency allows it, can con-
tinuously lower material input values be used? Is the use of
consecutive linear amplification rounds or PCR cycles the
answer to profile minute samples? Should the cut-off in sample

size be determined by amplification efficiency or sample size?
Many studies have observed a markedly reduced correlation
with extremely small samples, especially for mRNA tran-
scripts in the low abundance range (18,19,43). A common
observation is the reduced number of gene specific transcripts
detected with minute samples (38,81,82). Few investigators
have established the lower boundaries with respect to fidelity,
but report according to their observations that variability is
augmented in experiments with low RNA input values.
Nygaard et al. (59) presented arguments that it is the sample
size that is the crucial factor and not amplification efficiency.
The majority of genes are transcribed at a low abundance level
(1–5 copies per cell) and at low template concentrations
amplification is not faithful and determinant with respect
to relative abundance. Rather it is stochastic in nature. Stoch-
astic effects have rarely been recognized as a phenomenon in
global RNA amplification of minute samples. The quantitative
accuracy is greatly affected by sampling variation due to the
stochastic distribution of low abundance mRNAs. The lower
the abundance of any template, the smaller the probability its
true abundance will be maintained in the amplified product
(83). This feature calls for methods to filter out the affected
genes. If the transcript level of a gene of interest is not present
in sufficient numbers in the initial sample, then quantitative
gene expression measurements cannot be established. This
statement indirectly implies that the yield of quantitative
data from scarce material is restricted to a few highly
expressed genes, thus rendering the use of this high throughput
method relatively useless. The authors of single cell expres-
sion profiling may already have experienced difficulties in
extracting quantitative data, and thus shifted focus towards
qualitative data. For small input values, only high magnitude
changes can be detected at low/moderate expression values.
How does invalid data affect the reported findings from pub-
lished studies? In our view, the validity of the data will be,
uncovered by the type of data analysis and mining conducted.
Investigators experienced with microarray data and statistical
analysis, will know that by sampling measurements for a large
number of genes, false discovery of differentially expressed
genes is inevitable. The common approach to generate a list of
differentially expressed genes according to arbitrary thresh-
olds does not attribute any biological significance to the
results, and genes inspected further are frequently selected
subjectively. In other words, poor maintenance of relative
transcript levels when amplifying from a small sample will
most likely not be detected in this analysis approach. Nor will
it be detected in clustering analysis, which also analyzes
genes in an independent manner and does not identify causal
biological mechanism that regulate genes with similar expres-
sion patterns. Therefore, microarray data that is partially
unreliable data due to random amplification will not be visible
in such analysis strategies. The pitfall is thus presenting
misleading data. Gene transcripts, however, do generally
not change individually, but in a complex concerto with a
large number of participants. Therefore, analysis strategies
where biological processes and pathways are mapped and
analyzed using expression data are more likely to reveal
experimental flaws, such as poor amplification performance
due to a resulting randomness of data and lack of pattern
recognition. The implementation of methods to analyze
microarray data in a more comprehensive biological view is
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a current and important issue in the microarray community
(84). The shift in analysis is from individual genes ranked in
a list, towards coherent changes in gene expression of
gene sets. To accommodate these new approaches, it is evident
that the degree of quantitative reliability when profiling
minute, amplified samples needs to be adequate in a global
manner. Further, this implies the need to investigate fidelity
of amplification across all genes, and not just a subset as is
commonly reported, in order to assess the usefulness of the
procedure.

To answer the questions posed above, there is a threshold
for sample size with respect to reliable gene expression
measurements. The fine-tuning of this threshold is dependent
on the tissue source, sample size, amplification efficiency,
array platform and detection method. Although amplification
efficiency makes it possible to generate material from minute
samples, a large number of moderate to low abundance tran-
scripts are not preserved in their relative distribution, due to
stochastic effects. Hence, the chance of presenting misleading
data is high, and requires the investigator to fully understand
this risk and take the consequence by filtering out unreliable
data. Validation of microarray data is generally performed by
other molecular techniques. However, custom validation by
quantitative real time RT–PCR may be equally problematic
with minute samples as mentioned earlier. It is important to
have these aspects in mind when planning a microarray
study and when evaluating the biological conclusions drawn
in published microarray studies based on extremely low RNA
input values.

CONCLUDING SUMMARY

The relatively large amount of material that each microarray
experiment requires has posed restrictions on the use of this
high throughput technique. Development of sample amplifica-
tion procedures has challenged this obstacle. Linear and expo-
nential sample amplifications are commonly used methods to
obtain gene expression data from small samples using micro-
array technology. The conservation of transcript abundance
throughout the procedures, has generally found to be accept-
able in both strategies. Exponential amplification has been
reported to be less faithful than the linear strategy. However,
also with the latter, high amplification efficiencies can be
achieved. There is currently a wide range of amplification
protocols, and a number of commercially available kits are
targeted to investigators of small samples. As reported in the
scientific literature, sample amplification has been applied in
a number of different experimental settings.

Amplification efficiencies technically allow profiling of
extremely small samples, from tens of nanograms to single
cells. However, discrepancies in comparison against non-
amplified material or larger samples are increased with
reduced sample size, as shown in a number of reports.
Specifically, stochastic processes pose a restriction to accurate
quantitative data from minute samples, a phenomenon that has
rarely been recognized in the literature. Knowledge of the
limitations with respect to input transcript concentration is
a prerequisite for quantitatively measuring gene expression
levels in order to avoid stochastic variability. This is a highly
relevant aspect as not to confer biological significance
to invalid quantitative data. Random amplification of

rare/moderate gene transcripts in minute samples will gener-
ally not be revealed as long as genes are analyzed individually,
such as by ranking differentially expressed genes. However,
the implementation of novel methods to analyze microarray
data in a more comprehensive view is more likely to reveal
experimental flaws due to poor amplification performance.
This further implies the need to investigate fidelity of
amplification in a global manner and not as subsets as com-
monly reported.

Sample amplification if often the only option to perform
high throughput microarray analysis on small samples and
should not necessarily be avoided, but the tradeoff with
time, assay cost and the potentially short list of relevant
reliable genes, may be negative below a certain threshold
of input material. For more moderate samples, microarray
analysis of amplified targets has been shown to have a number
of advantages compared to the use of conventional non-
amplified targets. In the applied protocols for a number of
studies, in addition to the widespread use of Affymetrix arrays,
RNA amplification is performed on all samples, even large
samples, as a standard step thus making its way as a conven-
tional procedure in the microarray community.
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