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Recent advances in multiplexed imaging technologies promise to improve the understanding

of the functional states of individual cells and the interactions between the cells in tissues.

This often requires compilation of results from multiple samples. However, quantitative

integration of information between samples is complicated by variations in staining intensity

and background fluorescence that obscure biological variations. Failure to remove these

unwanted artifacts will complicate downstream analysis and diminish the value of multi-

plexed imaging for clinical applications. Here, to compensate for unwanted variations, we

automatically identify negative control cells for each marker within the same tissue and use

their expression levels to infer background signal level. The intensity profile is normalized by

the inferred level of the negative control cells to remove between-sample variation. Using a

tissue microarray data and a pair of longitudinal biopsy samples, we demonstrated that the

proposed approach can remove unwanted variations effectively and shows robust

performance.
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Recent developments in multiplexed staining and imaging
such as cyclic immunofluorescence (CyCIF)1–3, multi-
plexed immunohistochemistry (IHC)4, CODEX5, and other

multiplexed imaging methods have greatly expanded the palette
that researchers and pathologists can use to visualize and analyze
tissue sections, allowing deep in situ assessment of the tumor
microenvironment complexities6–11. Multiplexed analyses have
the advantages of both highly multiplexed detection and retention
of morphological context at the level of single-cell and subcellular
compartments. However, integration of information from mul-
tiple samples is challenging due to the lack of normalization
procedures that can correct for technical variations in staining
intensities between samples that result from variations in fixation,
antibody concentration, etc. so that biological differences between
samples can be accurately assessed6,12,13.

At present, the most common approach for the quantitative
assessment of images of IHC- and IF-labeled material is an
analysis technique commonly referred to as “gating” or “binary
thresholding” based on single-cell features. Essentially, a parti-
cular pixel intensity level (the threshold) is manually defined and
then used to demarcate what is considered to be “signal” (the
immuno-labeled material of interest) and “noise” (non-specific
material attributable to the immuno-labeling process). This
manual thresholding procedure can only provide genuinely valid
results if one adjusts the threshold cut-point for each individual
sample to deal with such intensity variations. This approach is
often used during analysis of multiplex IHC data4. However,
manual thresholding is subjective and cannot be scalable by its
nature. Our recent analyses of images acquired during CyCIF
analyses of tissue microarrays (TMAs) showed that tissue-to-
tissue variation in autofluorescence and/or nonspecific immu-
nofluorescent staining required manual setting of individual
thresholds for each tissue and marker, creating a bottleneck and
introducing bias. As an extreme example, we observed in some
cases that the intensity value of negative cells in one tissue was
higher than the values of positive cells in a separate sample. In
this case, setting a global threshold was not possible. This extreme
variation also precluded taking full advantage of the quantitative
nature of the fluorescence images.

Recently, unsupervised clustering approaches14–17 have been
adopted for identification of different cell types from a con-
tinuous intensity distribution, instead of binarization. However,
the sample-to-sample intensity variations due to the technical
artifact throughout the procedure cause cells to cluster by samples
or batches, instead of their cell types. For the above example we
mentioned, applying unsupervised clustering without compen-
sating for intensity variation will yield a mixture of positive and
negative cells from two samples due to batch effects. Therefore,
the corrections of the unwanted intensity variations due to
technical artifact and batch-effect within a group of samples are
required as pre-processing steps for unsupervised clustering
approaches to identify cell types. Quantile normalization (QN) in
which intensity measurements that encompass values between 1st
and the 99th percentile are aligned, is often used as a pre-
processing step2 to normalize intra-sample variations. However, if
samples contain few or no positive cells for a certain marker,
different cell populations, or different intensity distributions, QN
may cause confounding variations by changing overall intensity
profiles.

The general problem is that the intensity features produced by
multiplexed immunostaining have different intensity variations
across markers, tissues, batches, etc. As an example, Fig. 1 shows
intensity variation from three adjacent sections (considered as
almost technical replicates since each section is acquired with 5
μm thickness difference) where these unwanted variations may be
caused by technical issues such as batch effect, exposure time,

protocols or tissue preparation. Note that in our previous study24,
we were able to register one section (Hematoxylin and Eosin
stain) to the other section (IF imaging) based on nuclear staining
(hematoxylin-stain and DAPI) where they differ by 5 μm thick-
ness, which guarantees little variation in cell population within
5 μm difference. These sections were stained on separate days
using CyCIF for 20 proteins and phosphoproteins identifying
tumor, immune and stromal cells and functional states (the
downloadable data sets carry 20 biomarkers (except DAPI) and
additional 17 markers shown in Supplementary Table 1 are
validated in the protocol). Individual cells in the multiplex images
were segmented using watershed segmentation followed by
morphological operation and staining intensities were calculated
for each segmented cell3,18. Figure 1 shows t-SNE projection
based on mean intensity profiles, where each dot represents a
single-cell feature and red, green, and blue color indicate sections
1, 2, and 3, respectively. The top region of t-SNE25 shows cancer
cell clusters from each section but due to intensity variation of
cytokeratin (CK) markers, it shows batch effect (i.e., red, green,
and blue clusters). In contrast to cancer cell types, the bottom
region of t-SNE projection represents immune cell types showing
a more uniformly distributed pattern between samples, which we
expect to see in the ideal setting, i.e., if there is no intensity
variation across three adjacent sections.

In IHC, the antibody validation reference is performed with
control tissues known to contain the antigen of interest detected
by an identical staining method. For example, the “sausage tech-
nique” has been used where the entire sample has been proposed
as a reference control standard19,20. It is recommended that
validation studies should be carried out on multi-tissue control
blocks containing both known-positive and known-negative nor-
mal and tumor tissues21. If we consider only a few markers in
typical IHC or IF staining, it is feasible to include control tissue
samples in the staining/imaging process for individual markers
and address antibody validation or staining variation by deter-
mining an appropriate transformation or normalization for each
marker. Unfortunately, it is not practical to add control tissue
samples for reference of individual CyCIF channels since there
exist tens of markers (>40) that may require more control tissue
samples than the test sample to cover various cell types and
functional states. In addition, even though we could normalize
features based on reference samples, there still exist other
uncontrollable factors causing intensity variations such as tissue
fixation, processing in a different way than the test tissue, and
antibody lot-to-lot variations especially for large cohort study.

In parallel, computational approaches have been proposed to
adjust for unwanted variation and can be divided into two broad
categories: (1) global adjustment and (2) an application-specific
method22. As an example, QN, in which intensity measurements
that encompass values between 1st and the 99th percentile are
aligned, generally regarded as a self-contained step that plays no
role in the downstream analysis of the data, belongs to the first
category. In the second category, we find methods that incorpo-
rate adjustment into the main analysis of interest. For instance,
the batch effects can be handled by explicitly adding “batch
terms” to a linear model. Other linear model-based methods such
as factor analysis attempt to infer the unwanted variation from
the data and then adjust for it. However, these models require
technical replicates or a priori information to identify batch
effects, which is not feasible in our case, especially because tissue
biopsies are precious and are often difficult to obtain in sufficient
quantities. In addition, for needle biopsy samples, it is difficult to
consider individual region of interests as technical replicates due
to the intrinsic heterogeneity.

We propose RESTORE for image quantification in a multi-
plexed imaging platform to address these issues. A key feature in
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RESTORE is the recognition that some cell types defined by
reference markers in the multiplex can be safely assumed to have
background or noise levels (herein, we consider intensity level of
negative cells defined by mutually exclusive marker pairs as
background or simply noise level, i.e., interchangeably used) for
other markers in the multiplex. For example, immune cells can be
assumed to have background or noise levels of cancer-associated
cytokeratins and vice versa. RESTORE uses these orthogonal
staining patterns to set negative staining thresholds as a guide to
further image intensity normalization. We then make the sim-
plifying assumption that signals in the positive channels can be
normalized by dividing by the inferred background level.
This assumption is inaccurate for low signal levels but becomes
increasingly accurate for high signals based on our simulation
study (Section: Intensity normalization by inferring auto-
fluorescence signal). We demonstrate the feasibility of the pro-
posed approach for intensity normalization of multiplexed image
data for robust analysis and comparison of tissue samples during
analysis of a data set comprised of CyCIF analyses of three
adjacent sections cut from a TMA comprised of 59 cores from
diverse breast cancers (TMA was composed of 75 breast cancer
tissues (two cores each) and 59 tissues were analyzed in this study
based on tumor content and overall quality of staining) and
stained for 20 proteins and phosphoproteins selected to identify
diverse tumor and stromal cells and functional status.

Results
One could consider two approaches to evaluate the proposed
approach: (1) use cell classification based on manual gating as a
ground truth, or (2) use technical replicates as a ground truth.
The former approach needs manual gating for cell-type classifi-
cation, but it might be subjective and time consuming to classify
various cell types from many TMAs (177 total, 59 × 3 adjacent
sections as shown in Fig. 2a). For the latter one, we can use 59
TMAs that have three adjacent tissue sections. Since each TMA
sample has three adjacent tissue samples, we could consider them
as almost technical replicates where we expect to see a similar cell
type component in their population. For instance, if there is no
intensity variation across these three adjacent tissue samples, no
matter where we draw threshold line or gate, the population of
those cell types should be similar across three adjacent tissue
samples. Thus, we measure the cell component as a metric and
evaluate how the proposed approach compensates intensity var-
iation. We also compare the correlation coefficient of cell

composition between three adjacent sections with and without
using the proposed normalization technique. Finally, we illustrate
a clinical use case by applying the proposed approach to the study
with longitudinal biopsies.

Application with TMAs analysis using 3 adjacent tissue sec-
tions. We compare the correlation coefficient of individual cell
populations of three adjacent TMAs across 59 samples where rij
represents correlation coefficient of cell population between the
ith and the jth section as shown in Fig. 2a. We define cell
population by two approaches: (1) calculating positive cell count
for individual markers by inferring background signal and (2)
using an unsupervised clustering approach by changing the
number of clusters.

Cell population comparison by inferring background signal.
First, we count positive cell population across all the CyCIF
markers by inferring background signal. In order to illustrate
intensity variations across three adjacent sections, we infer
background signal in two different approaches. For a local
approach, we infer background signal for an individual adjacent
section, and for a global approach, we combine intensity features
across three adjacent sections and infer background signal. If
there is no intensity variation, we expect the local and global
approaches to show similar results. With a local approach, we
observe high correlation of cell composition across three adjacent
TMAs as shown in Fig. 2b. However, with a global approach, the
correlation of cell composition across three adjacent sections is
poor, due to the intensity variation across samples as shown in
Fig. 2c. We note that in Fig. 2b (the proposed result), we found
that only three cores in TMAs show poor correlation coefficient
due to the technical artifacts such as segmentation or staining
issues.

Second, we compare the correlation of cell populations across
individual markers (n= 18) as shown in Fig. 3. Similar to the
previous result, the local approach shows better correlation,
which confirms that the proposed method provides a robust cell
classification result by inferring background signal from the
negative control group and compensating intensity variation.

Lastly, we use the coefficient of variation (cv= σ/μ, known as
relative standard deviation) of positive cell count based on the
inferred threshold of background signal where μ and σ represent
mean and standard deviation of positive cell counts across three

Fig. 1 An illustration of immunostaining intensity variation. Multiplexed immunostaining intensity varies across samples; intensity profiles from three
adjacent sections (5 μm) show intensity variations. t-SNE embedding of individual single-cell intensity features from three adjacent sections show
uniformly distributed in immune cell types (bottom half) but clustered group in cancer cell type (top half) due to the intensity variation in cytokeratin (CK)
markers.
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adjacent TMAs, respectively. The coefficient of variation is a
standardized measure of dispersion of a frequency distribution,
which is commonly used in analytical chemistry to express the
precision and repeatability of an assay. We use coefficient of
variation to access the positive cell number across individual
markers. Figure 4 shows the extent of variability of positive cell
count in relation to the mean of population across individual
marker. Since there exists intensity variation across CyCIF
intensity features, the coefficient of variation of the global
approach shows large variation compared with the coefficient of
variation of the local approach. For CD45 marker, although the
global approach shows slightly better performance, we note that a
scale of the value is quite small compared with other cv for
different markers. Similarly, for Ki67 marker, we do not see much
difference between the local and global approach.

Cell population comparison with and without the proposed
intensity normalization by using unsupervised clustering
approach. We apply an unsupervised clustering algorithm (k-
means) with and without the proposed intensity normalization
method on the three adjacent sections to define cell types. If the
proposed method reduces intensity variation properly, we expect
to see the identified cellular population by unsupervised clustering
to be similar across the three adjacent sections. We run k-means
clustering with N= 5, 10, 15, and 20 and calculate correlation
coefficient of cell populations as shown in Fig. 5. The top row

illustrates correlation of cell types across three adjacent sections
without intensity normalization and bottom row shows correla-
tion of cell types with the intensity normalization approach.

Since the proposed approach reduces intensity variation, the
correlation coefficient based on the clustered group component
shows high correlation. On the other hand, due to the intensity
variation, unsupervised clustering often identifies the same cell
types from each section into different groups (i.e., one cluster
originates from section 1 and the other from the other section).
Thus, without normalization, unsupervised clustering identifies
batch effect, i.e., the same cell type can be clustered into different
clusters as shown in Supplementary Fig. 1, and the correlation of
cell population is lower.

As the number of clusters (N) increases, the correlation decreases
slightly although the proposed method still improves correlation
compared with no normalization. Even though we expect to see
similar populations across three adjacent sections, there are still
small variations in cell populations, which may separate as the
number of clusters increases as shown in Fig. 5 (more details are
shown in Supplementary Fig. 1) and cause lower correlation of cell
composition. As an example, Supplementary Fig. 1a shows cell
population distribution when we cluster cells into five clusters (N=
5). Without normalization, clustered ID 1 population is mainly
from batch 1 (or section 1), clustered ID 2 population is mainly
from batch 2 (or section 2), and clustered ID 4 is mainly from batch
3 (or section 3) due to the intensity variation. On the other hands,
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Fig. 2 Cell component comparison with three adjacent TMA sections. Example of three adjacent TMA sections (a n= 59 with three adjacent sections)
and correlation coefficient based on group component using unsupervised clustering across these samples; b, c represent correlation coefficient with and
without the proposed approach (RESTORE), respectively, where each dot represents single TMA core. Note that in the result of the proposed approach,
three TMA cores show poor correlation coefficient (below 0.8) but we confirm that those three cores show technical artifacts such as segmentation or
tissue loss.

Fig. 3 Cell component comparison across individual CyCIF markers. Correlation coefficient based on cell component across individual markers (n= 18).
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with the proposed approach, each clustered ID shows similar
distribution across three adjacent sections.

Application with longitudinal biopsies sample study. We vali-
date the proposed approach with a longitudinal biopsy sample
study, from the Serial Measurements of Molecular and

Architectural Responses to Therapy (SMMART) trials23, where
tissue biopsy, fixation, processing, and multiplexed imaging are
done at different times. Since we need to identify cellular com-
position changes for comparative study from longitudinal biop-
sies (before/after drug treatment), it is critical to remove
unwanted variation and integrate two datasets together for

Fig. 4 Comparison of cofficient of variation across CyCIF markers. Coefficient of variation (cv ¼ σ
μ) of positive cell counts based on local and global
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r
12

r
23

r
13

batch (i)-(j)

-1.5

-1

-0.5

0

0.5

1

1.5

co
rr

. c
o

ef
f

cluster (N=5) w/o norm.

r
12

r
23

r
13

batch (i)-(j)

-1.5

-1

-0.5

0

0.5

1

1.5

co
rr

. c
o

ef
f

cluster (N=5) w/ norm.

r
12

r
23

r
13

batch (i)-(j)

-1.5

-1

-0.5

0

0.5

1

1.5

co
rr

. c
o

ef
f

cluster (N=10) w/o norm.

r
12

r
23

r
13

batch (i)-(j)

-1.5

-1

-0.5

0

0.5

1

1.5

co
rr

. c
o

ef
f

cluster (N=10) w/ norm.

r
12

r
23

r
13

batch (i)-(j)

-1.5

-1

-0.5

0

0.5

1

1.5

co
rr

. c
o

ef
f

cluster (N=15) w/o norm.

r
12

r
23

r
13

batch (i)-(j)

-1.5

-1

-0.5

0

0.5

1

1.5

co
rr

. c
o

ef
f

cluster (N=15) w/ norm.

r
12

r
23

r
13

batch (i)-(j)

-1.5

-1

-0.5

0

0.5

1

1.5

co
rr

. c
o

ef
f

cluster (N=20) w/o norm.

r
12

r
23

r
13

batch (i)-(j)

-1.5

-1

-0.5

0

0.5

1

1.5

co
rr

. c
o

ef
f

cluster (N=20) w/ norm.

Fig. 5 Cell population comparison by using unsupervised clustering. Correlation coefficient based on group component using unsupervised clustering
across three adjacent TMA samples (n= 59) where top figure shows the result without the proposed approach and bottom figure shows the result with
the proposed approach.
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unsupervised clustering analysis. Because of the previous afore-
mentioned aim, and because we often observe different cell
population in paired biopsies, we cannot use the QN approach.

Figure 6a shows a heat map of intensity profiles. Without
normalization, if we apply any unsupervised clustering, it will
cluster cells based on their batches (i.e., Bx1 and Bx2) as we can
see huge variations in intensity. By applying the proposed
approaches, intensity profiles look similar to each other across all
the markers. Figure 6b shows intensity distribution changes
before/after normalization. As we can see, the proposed approach
aligns intensity profiles by removing any unwanted variation and
matching the intensity level of negative control. Note that if we
use QN instead of using the proposed approach, we may generate
an obscure shift of the intensity distribution depending on their
cell populations as shown in CK17 and HER2 and we expect that
this will result in unwanted artifact. More detailed information
such as a comparison between before/after normalization for all
other markers is shown in Supplementary Fig. 2.

Discussion
In order to infer background signal, for a given ith marker, we
need to find the most mutually exclusive marker pairs to identify
the negative control group. For each marker, we examine all pairs
and choose the top 5 mutually exclusive marker pairs based on
biologically-known mutually exclusive marker and a data-driven
approach (Section: Identifying mutual exclusive maker pairs).
Supplementary Table 1 shows a comparison between the data-
driven approach (left panel) and biologically-known mutually
exclusive marker pairs (right panel). We found that the data-
driven approach identifies similar and consistent marker pairs to
biologically-known mutually exclusive pairs. The red color in the
data-driven approach indicates the matched marker pairs pre-
sented in biological knowledge-based approach. Similarly the
green color in the biological knowledge-based approach indicates
the matched marker pairs presented in the data-driven approach.
To apply the proposed approach, there might be potential

challenges such as non-specific staining, inherent variable back-
ground signal, variability in mutually exclusive biomarkers, and
cell types. We recommend to use both data-driven and
biologically-known mutually exclusive marker pairs for validating
data for quality control purpose. For instance, if there exists non-
specific staining in biologically-known mutually exclusive mar-
kers, the marker pair will be positively correlated. In this case, we
can use the other mutually exclusive markers to infer background.
Herein, as we described, we use biologically-known mutually
exclusive markers for inferring autofluorescence signal after visual
confirmation. Moreover, one can use more than one mutually
exclusive markers to have more robust background inference.

Mutually exclusive marker identification works reasonably well
in many cases and confirms that biologically-known mutually
exclusive marker pairs show mutual exclusiveness in our CyCIF
imaging data. From data-driven approach, in general, immune
markers show most mutual exclusiveness with CK markers.
Interestingly, we also observe more specific mutual exclusiveness
patterns, for instance, the top mutually exclusive pairs with CD20
which is B-cell marker (i.e., lymphoid lineage immune cell with
CD45+) are CD68+, a macrophage (myeloid lineage) marker, and
CD31+, an endothelial cell marker and it is consistent with
biologically-known mutually exclusive cell types.

We observe that a few cells often show stain in both cancer and
immune markers and thus, we need to carefully check marker
staining quality for this analysis. Herein, we simply use (fixed)
biologically-driven mutually exclusive marker pairs to infer
background signal, instead of identifying the most mutually
exclusive pairs for individual cores from the TMAs dataset and a
longitudinal study.

In addition, these potential issues can be addressed mostly in a
quality control (QC) step. To support this, we implement a simple
visualization tool for multiplexed imaging data based on an open-
source platform26, which will be useful to visually evaluate non-
specific staining, inherent variable background signal or mutually
exclusive biomarkers as an alternative way to visualize data. As an

Fig. 6 Intensity normalization application with longitudinal biopies sample study. Cyclic multiplexed IF Intensity distribution across Bx 1 and Bx 2: a heat
map shows intensity features without and with the proposed normalization and b intensity distribution of selected markers (CK45, Ecad, CK17, HER2) (all
other markers’ distribution is shown in Supplementary Fig. 2.
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example, Supplementary Fig. 3 demonstrates a use-case of a multi-
dimensional image viewer with selected markers (CD45 and CK19),
which shows mutual exclusiveness as shown in scatter plot.

Methods
We now propose RESTORE as a practical strategy for batch effect corrections during
staining that does not require adding control tissues or using technical replicates in
staining and processing. Our approach is composed of two parts: (1) definition of
mutually exclusive marker pairs or cell types that are known to be positive for a given
markers and negative for others based on biological literature or data-driven based,
and (2) inference of background levels for specific markers in cells that are defined to
be negative for those markers based on positive identifying markers. The positive/
negative marker sets used in this study are defined in Supplementary Table 1.

For a given reference marker, we can use target marker (shown in Supplementary
Table 1), which shows mutual exclusiveness or positive-negative associations to define
the background levels of negative controls. For a given reference marker, since we
expect the background levels of negative controls should be aligned within the same
ranges across tissue samples, we can normalize a reference marker expression by the
inferred background levels. Also, since we have thousands or millions of cells in tissue
and various markers to characterize different cell types, it is not difficult to find a
negative control for individual markers from the same tissue sample.

Concepts for intensity normalization. Here, we introduce the fundamental
concepts for intensity normalization. For a given reference marker, expression
levels of the negative control are known a priori to be truly unassociated with the
factor of interest. On the other hand, positive control markers are those expression
levels that are known a priori to be truly associated with the factor of interest. For
example, if the factor of interest is finding immune cells, CD45 would be a positive
control, and a negative control would be any cytokeratin (CK5, CK7, CK19, etc.)
markers. Since the expression of the negative control group is known to be
unassociated with the factor of interest, there is no danger in picking up any of the
relevant biology and thus we could use them to remove unwanted variations. Even
though individual tissue samples may have different background levels, we identify
negative cells for each tissue sample by using mutually exclusive marker pairs in
Supplementary Table 1 and then make their expression level below the level of any
positive cells by normalizing with the inferred background levels.

For our CyCIF imaging3, we have tens of markers as shown in Supplementary
Table 1. Thus, for a given ith marker as a reference, there exists at least one marker,
the jth marker (target), showing a mutually exclusive expression pattern. The
positive cell of the ith marker cannot express the positive signal of jth marker as
shown in Fig. 7a. This is a reasonable assumption; since current CyCIF panel
includes immune/cancer markers (biologically mutually exclusive). Therefore, there
should exist at least one mutually exclusive marker pair. Herein, we do not consider
if there exists no positive cell in the reference marker since this marker is not useful
for further analysis by definition (i.e., no positive staining in the tissue sample).

Identifying mutual exclusive marker pairs. This procedure can be done by using
either (1) biologically-known mutually exclusive marker information (i.e., a cancer
vs. immune marker), or (2) a data-driven approach by identifying mutually
exclusive information from the ith marker and all other maker pairs. For the latter
case, we use a singular value decomposition (SVD) to measure the mutual
exclusiveness.

Define D ¼
xi1 xj1
� � � � � �
xin xjn

2
4

3
5 2 Rn ´2 where i, j represents the ith and jth markers,

respectively, and x{⋅} represent mean intensity of individual cell. By using SVD, we can
factorize D=UΣV* where U 2 Rn´n , Σ 2 Rn´2 and V� 2 R2´2. U and V* can be
viewed as rotation matrix and the diagonal entries σi of Σ are known as the singular
values of D, which can be regarded as a scaling matrix. Since the singular values can
be interpreted as the semi-axis of an ellipse in 2D, we measure the mutually exclusive
of two marker expressions as a ratio (r= σ2

σ1
). If two markers are highly correlated with

each other, we will get an elongated ellipse (i.e., r is close to zero). On the other hand,
if they are mutually exclusive, you will get a more circular shape (i.e., close to one).

Identifying cell types via non-negative matrix factorization (NNMF) or sparse
subspace clustering (SSC). For a given mutually exclusive marker pair, we define

mean intensity profiles of two markers as Y ¼
Y1

Y2

Y3

2
4

3
5 2 RN´2, where Nð¼

P3
i¼1niÞ represents the total number of cells, Y1 2 Rn1´2 represents 2-dimensional

(ith and jth markers) mean intensity profile of a set of the ith marker positive cells,
Y2 2 Rn2´2 represents intensity profile of a set of the jth marker positive cells and
Y3 2 Rn3´2 represents intensity profile of a set of negative cells for both the ith and
jth marker where ni represents the number of cells belong to Yi .

The lth row of Y can be denoted by y0l ¼ yl1 yl2
� � ¼ bli þ sli b

l
j þ slj

h i
2 R1 ´2,

where bli and blj represents baseline (autofluorescence level) of the ith and jth

marker, respectively, and sli and slj represents signal level of the ith and jth marker,
respectively. By definition (and expectation of high signal-to-background ratio
(SBR) of immunofluorescence intensity profile), we assume sli � bli > 0 and
slj � blj > 0:

Lemma 1. Consider mutually exclusive set (i, j)-markers, i.e., fY1;Y2;Y3g where
y0p 2 Yp, p represents group index, i.e., p= {1, 2, 3}. Then yp cannot be represented
by linear combination of αyq + βyr with constraint (α > 0 and β > 0) where p ≠ q ≠ r
and (p, q, r) represents any permutations of (1, 2, 3).

Proof. (suppose not) i.e., yp= αyq+ βyr where we simply consider p= 1, q= 2
and r= 3:

bpi þ spi
bpj

" #
¼ α

bqi
bqj þ sqj

" #
þ β

bri
brj

" #
ð1Þ

Then, reformulating this

α

β

� �
¼ � 1

sqj b
r
i þ ðbri bqj � bqi b

r
j Þ

brj �bri

�ðbqj þ sqj Þ bqi

" #
bpi þ spi
bpj

" #
ð2Þ

Recall sli � bli or simply assume brj � bpj � bqj , b
r
i � bpi � bqi :

α

β

� �
¼ � 1

sqj b
r
i þ ðbri bqj � bqi b

r
j Þ

ðbrj bpi � bri b
p
j Þ þ brj s

p
i

�ðbqj spi þ sqj b
p
i þ sqj s

p
i Þ þ ðbqi bpj � bpi b

q
j Þ

" #
ð3Þ

� � 1

sqj b
r
i

brj s
p
i

�ðbqj spi þ sqj b
p
i þ sqj s

p
i Þ

" #
) ð�Þ

ðþÞ

� �
ð4Þ

(by contradiction). &

Fig. 7 A conceptual illustration of inferring intensity level of negative cells based on mutually exclusive marker pairs. Conceptual illustration (a) and
example of scatter plot using longitudinal biopsy samples (b Bx1 and c Bx2): mean intensity distribution of two markers shows different baseline and signal
level of each marker (CK7 and CD8) in Bx1/2 where green lines illustrate example of inferred intensity of baseline for each marker, red and blue line shows
corresponding cell population density.
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By Lemma 1, simple NNMF or SSC or other method (e.g., gaussian mixture
model (GMM)) with this constraint should be able to identify the group of cell
types for a given mutually exclusive pattern.

Non-negative matrix factorization (NNMF). We can use NNMF:

min k Y �WHkF subject to W ≥ 0;H ≥ 0 ð5Þ
If we consider a 2-dimensional feature set (i.e., mean intensity profile), there exists
a trivial solution, i.e., W ¼ Y and H= I so we need to consider additional con-
straint such as H ≠ I. If we include more than 2 dimensional features by adding
more features including total intensity, other cellular mean intensity (nuclear-,
cytoplasm-, or cellular), we can simply use (5).

Sparse subspace clustering (SSC). We can use SSC with additional constraint by
considering that each data point in a union of subspaces can be efficiently
reconstructed by a combination of other points in the dataset. More precisely, each
data point for data point ym ¼ Y0cm where cmm= 0 and cij ≥ 0 (additional con-
straint). Then,

min k cikq subject to ym ¼ Y0cm; cmm ¼ 0; cij ≥ 0: ð6Þ

min k Ck1 subject to Y0 ¼ Y0C; diagðCÞ ¼ 0; cij ≥ 0: ð7Þ
In practice, since the intensity values of ym are all positive and l1 optimization
penalizes a sparsity of coefficient C, it does not choose negative coefficient of cij
even without having an additional constraint (i.e.., cij ≥ 0) in the optimization
problem in (6) or (7). In this paper, we simply use the optimization problem in (7)
to identify two groups, i.e., positive cell and negative cell group to infer background
signal.

Inferring autofluorescence level with mutually exclusive marker pairs. Here,
we simply use SSC to divide Y into two groups, either [Y1 � Y3 and Y2] or [Y1

and Y2 � Y3], by selecting the number of clusters is equal to 2 (note that one could
cluster more than 2 and assign each cluster into the group of interest for inferring
background or autofluorescence signal). Since we are interested in inferring
baseline signal of the ith marker, we measure the ith marker expression from the
clustered group and determine the group for measuring baseline signal:

Y1

Y2

Y3

2
64

3
75 ¼

Y1
1 Y1

2

Y2
1 Y2

2

Y3
1 Y3

2

2
64

3
75 ¼

B1
i þ S1i B1

j þ S1j

B2
i þ S2i B2

j þ S2j

B3
i þ S3i B3

j þ S3j

2
664

3
775 ¼

B1
i B1

j

B2
i B2

j

B3
i B3

j

2
664

3
775þ

S1i 0

0 S2j
0 0

2
64

3
75 ð8Þ

For a given clustered group, either [Y1 � Y3 and Y2] or [Y1 and Y2 � Y3], we can
infer baseline signal of the ith marker from either B2

i (from Y2) or (B2
i or B

3
i ) (from

Y2 � Y3). Note that we can measure the autofluorescence level or baseline signal
from each clustered group Yq

p and identify background signal and signal level,
respectively, as follows:

E½B2
i � � E½Y2

1� � E½B3
i � � E½Y3

1� ð9Þ

E½B2
j � � E½Y1

2� � E½B3
j � � E½Y3

2� ð10Þ

E½S1i � � E½Y1
1� �E½Y3

1� � E½Y1
1� �E½Y2

1� ð11Þ

E½S2j � � E½Y2
2� �E½Y1

2� � E½Y2
2� �E½Y3

2� ð12Þ

Intensity normalization by inferring autofluorescence signal. For a given
reference marker (i.e., ith marker), intensity normalization step is straightforward
by the fact that the autofluorescence level of negative controls (the ith marker
expression of B1

i , B
2
i or B

3
i ) should be in the same ranges across batches or samples.

As we infer background signal based on the negative control, we can scale intensity
values by the inferred background signal level of the negative control for individual
sample, respectively, to align intensity distribution. One could use the maximum
intensity value from the negative control instead of using the mean intensity value.
Thus, for a given reference marker, all the background/baseline levels of the
negative control are below one, i.e., in the same ranges across samples.

As an example, consider two sample tissues p and q which have different gains
Gp and Gq. This gain reflects any possible source of intensity variation such as
tissue fixation, exposure time, batch effect, etc. Due to the different gain, the
intensity values of p and q could be different. For a given ith marker, the mean
intensity measurement of a single cell can be defined as follows:

ypi ¼ Gp
i ðbpi þ spi Þ ≜ Bp

i þ Spi

yqi ¼ Gq
i ðbqi þ sqi Þ ≜ Bq

i þ Sqi

where bpi ; b
q
i represent baseline or autofluorescence signal, spi ; s

q
j represent signal,

and ypi and yqj represent measurement signal, i.e., single-cell mean intensity from

sample p and q, respectively. Gp
i and Gq

i represent gain value of the ith marker for
sample p and q, respectively.

We infer B
p
i and B

q
i using mutually exclusive maker pairs and herein, we assume

that we choose B
p
i ð¼ Gp

i b
p
i Þ and B

q
i ¼ ðGq

i b
q
i Þ from the maximum values from the

negative controls (i.e., b
p
i ¼ maxðbpi;kÞ and b

q
i ¼ maxðbqi;lÞ where k and l represents

cell index for sample p and q, respectively). Then, we normalize intensity profiles
(i.e., ypi and yqi ) based on these values as follows:

ypi ≜
ypi
B
p
i

¼ Gp
i ðbpi þ spi Þ

B
p
i

¼ Gp
i ðbpi þ spi Þ
Gp
i b

p
i

¼ bpi
b
p
i

þ spi
b
p
i

yqi ≜
yqi
B
q
i

¼ Gq
i ðbqi þ sqi Þ

B
q
i

¼ Gq
i ðbqi þ sqi Þ
Gq
i b

q
i

¼ bqi
b
q
i

þ sqi
b
q
i

Therefore,

ypi ¼
bpi
b
p

i

ð≤1Þ; if negative cell; i:e:; spi ¼0

1þ spi
b
p

i

; if positive cell; i:e:; spi > 0

8><
>:

;

yqi ¼
bqi
b
q

i

ð≤1Þ; if negative cell; i:e:; sqi ¼ 0

1þ sqi
b
q

i

; if positive cell; i:e:; sqi ¼ 0

8><
>:

Note that
bpi
b
p

i

≤ 1,
bqi
b
q

i

≤ 1 and
spi
b
p

i

� 1,
sqi
b
q

i

� 1 by definition (high SBR). So, all

the negative cell from the sample p and q will be less than or equal to 1 and positive
signal will be above 1 by normalization. Also, note that normalized measurement
ypi and yqi are not dependent on the gain term Gp

i and Gq
i anymore and if we assume

b
q
i � b

q
j , normalized signal ypi and ypj are representing the true signal, i.e., si and sj

with the same scaling factor (b
q
i � b

q
i ).

It is important to see whether normalization conserves the true signal ratio
sqi
spi

� �

for positive cell. Since normalized intensity for negative cell will be less than or
equal to 1, we do not consider here. Assuming b

q
i � b

q
i ¼ bi , we consider the signal

ratio of two positive cells from p and q samples:

yqi
ypi

¼
1þ sqi

bi

1þ spi
bi

¼ bi þ sqi
bi þ spi

ð13Þ

If signal level is high enough (high signal-to-baseline ratio (SBR)), i.e., spi � bi
and sqi � bi ,

yqi
ypi

� sqi
spi

ð14Þ

Thus, for high SBR region, we could preserve the true signal ratio well but we may
have distorted signal ratio when signal level is close to near baseline or background
level. On the other hand, without normalization, we assume b

p
i � b

q
i ¼ bi and

consider the signal ratio of positive cells from p and q samples as below:

yqi
ypi

¼ Gp
i ðbi þ spi Þ

Gq
i ðbi þ sqi Þ

� Gp
i

Gq
i

spi
sqi

ð15Þ

For the last approximated term, we assume that signal level is high enough. We can
see that the true signal ratio is scaled by the gain ratio if we do not normalize them.

In order to show this, we simulate data and compare the result with and without

normalization, i.e.,
ypi
yqi
and

ypi
yqi
. The simulated result and heat map of the result are

shown in Supplementary Fig. 4 and 5, respectively. As we described above, as SBR
increases, the normalized measurement is close to the true signal ratio. In
Supplementary Fig. 5, a heat map shows clearly the region of distortion in low SBR
region with high true signal ratio. On the other hand, without normalization, the
measurement is converged to gain ratio (i.e., G2/G1) where we have G2/G1= 0.5 in
this simulation.

Statistics and reproducibility. We evaluate the performance of the proposed
method with three adjacent TMA sections (n= 59) and results are presented as
mean and the full distribution of the sample as specified in the figure. We use the
three adjacent TMA sections as technical replicates and compare correlation
coefficient of cell population and coefficient of variation as quantitative metrics.

Ethics. We purchased TMA tissue sections (BR1506, US Biomax, Derwood, MD).
All human tissue is collected under HIPPA approved protocols with the highest
ethical standards with the donor being informed completely and with their consent.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
For research reproducibility, our data (https://www.dropbox.com/sh/mhlep8oashyf2lo/
AAAZGva4Cr1pIz0jJHYa9hLXa?dl=0download) is available: (1) 59 TMAs with three
adjacent sections and (2) longitudinal biopsies sample.

Code availability
Our code (in Matlab and Python) is available at https://gitlab.com/Chang_Lab/
cycif_int_norm.
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