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Abstract: Marine macroalgae produce a wide variety of biologically-active metabolites that have been
developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory,
cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time,
suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination
of their structure could provide leads for the development of environmentally-friendly antifouling
paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides,
alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic
microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites
have the potential to be produced commercially using genetic and metabolic engineering techniques.
This review provides an overview of publications from 2010 to February 2017 about antifouling
activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds
of brown macroalgae, while metabolites of green algae received less attention. Several studies tested
antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the
quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from
macroalgae were isolated and tested in an ecologically-relevant way.

Keywords: macroalgae; antifouling; biofouling; biogenic compounds; quorum sensing; marine
natural products

1. Introduction

Biofouling is the undesirable growth of micro- (bacteria and protists) and macro-fouling
(invertebrates and algae) organisms on submerged surfaces [1]. Clean substrates in the marine
environment will be quickly fouled by such organisms [2,3]. Biofouling of marine installations costs
billions of US dollars for the maritime industry and navies around the world [4]. The majority of
antifouling technologies use toxic biocides, like copper, that kill organisms and accumulate in the
environment [4–6]. While there are non-toxic antifouling methods on the market, they are costly and
not as effective as traditional biocidal solutions [4,5]. Thus, new non-toxic antifouling methods are
urgently needed.

The term biofouling is applicable not only to man-made structures but to marine organisms.
Several studies state that most marine organisms stay relatively free from biofouling [3]. This suggests
that these organisms have evolved different antifouling strategies. By investigating such strategies,
we may find and develop new antifouling methods.
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How can marine organisms defend themselves from biofouling? Surface wettability and surface
microstructures were proposed as critical antifouling mechanisms [3,7]. Many organisms excrete
secondary metabolites that repel or deter biofouling species [8]. Additionally, it was shown that
specific microorganisms associated with surfaces of marine algae, sponges, and corals can prevent
the colonization of hosts by other fouling organisms [2,3,5]. In most cases, marine species rely not
only on one mechanism, but use combined physical, chemical, and biological strategies to prevent
biofouling [3].

Macroalgae represent a large multicellular polyphyletic group of photosynthetic eukaryotic
organisms [9]. Classification of seaweed follows the genealogy of their plastids. The main groups
include green algae (division Chlorophyta), brown algae (division Phaeophyta) and red algae
(division Rhodophyta) [9]. Some investigators also include prokaryotic blue-green algae (phylum
Cyanobacteria), which are excluded from this review. Marine macroalgae are quite dominant in polar,
temporal, and tropical waters [9]. Large biomasses of drifting marine macroalgae are wasted and
only a few species are currently in use as human foods, cosmetics, fertilizers, biofuel and source of
natural products [10]. Additionally, marine macroalgae can be easily cultivated and have a great
biotechnological potential.

Since 2010, more than 160 scientific publications about antifouling products from marine algae
have been published (Figure 1a). These include articles, reviews and book chapters. An analysis of
this literature suggested that most publications were about macroalgae, while researchers published
articles dealing with microalgal antifouling compounds 1.7 times less frequently. Among macroalgal
publications, the majority of articles were dealing with green algae (Figure 1a). Publications about
brown and red algae were less abundant. Approximately 16% of all publications about antifouling (AF)
compounds from algae were published by researchers from China (Figure 1b), and 76% of publications
were produced by researchers from China, France, Germany, Japan, USA, and UK.
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Figure 1. (a) Antifouling algal-related publications in the scientific literature. To access the frequency 
of publications, we ran a search on Scopus for the period from 2010 to February 2017. Our search 
terms include “antifouling”, plus other keywords; and (b) affiliations of researchers of antifouling 
algal-related publications. To access the frequency of publications, we ran a search on Scopus  
for the period from 2010 to February 2017. Our search terms include “antifouling alga” plus  
“natural product”.  

Marine macroalgae are ubiquitous at rocky shores and have a high biotechnological potential.  
A comprehensive review about antifouling (AF) compounds from marine algae was published in 
2004 [10]. After that, several reviews about compounds of marine organisms with potential AF 
properties have been published. These include several publications about antifouling natural 
products from all groups of marine organisms [8,11–13], as well as from marine microbes, including 
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Figure 1. (a) Antifouling algal-related publications in the scientific literature. To access the frequency
of publications, we ran a search on Scopus for the period from 2010 to February 2017. Our search
terms include “antifouling”, plus other keywords; and (b) affiliations of researchers of antifouling
algal-related publications. To access the frequency of publications, we ran a search on Scopus for the
period from 2010 to February 2017. Our search terms include “antifouling alga” plus “natural product”.

Marine macroalgae are ubiquitous at rocky shores and have a high biotechnological potential.
A comprehensive review about antifouling (AF) compounds from marine algae was published
in 2004 [10]. After that, several reviews about compounds of marine organisms with potential
AF properties have been published. These include several publications about antifouling natural
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products from all groups of marine organisms [8,11–13], as well as from marine microbes, including
cyanobacteria and fungi [2,14–16]. The present publication is aimed to review scientific publications
dealing with AF compounds of macroalgae from 2010 to February 2017, to examine current progress
and highlight future trends. We review the antifouling compounds from green, brown, and red
macroalgae, their mechanisms of action, and provide future perspectives.

2. Antifouling Compounds from Marine Macroalgae

2.1. Green Macroalgae (Chlorophyta)

Chlorophyta algae belonging to the genera Ulva, Codium, Caulerpa, and Ulva (Enteromorpha),
in particular, were studied for their antimicrobial (antibacterial and antialgal) effects in laboratory
experiments (see Table 1). Only a few algal species were tested against bacterial quorum sensing
(QS, see below). The compounds were rather undefined in these studies, ranging from alkaloid
phenolic acids, to organic extracts and included, in one case, polar and non-polar extracts. Several
structures of the identified substances were provided in Figure 2. Only the alga Ulva rigida was tested
for, and showed, general AF activity [17]. In this study the investigators tested the polymeric replica of
brown algae Saccharina latissima and Fucus guiryi doped with 3-bromo-5-(diphenulene)-2(5H)-furanone
isolated from the green alga U. rigida. The study demonstrated that both chemical and physical
properties of algae were important for antifouling defense [17]. Prabhakaran and co-workers [18]
studied the antifouling potential of various extracts from seaweeds, seagrasses, and mangroves.
When comparing the inhibitory activity of all extracts, mangrove plants had the highest inhibitory
activity against tested biofilm-forming bacteria compared to seaweeds and seagrasses. In contrast, tests
conducted with micro-fouling bacteria obtained from biofilms developed on PVC sheets showed that
extracts of seaweeds had a better antimicrobial activity than those of seagrasses and mangroves [18].
Ethanol extracts of seaweed U. reticulata had maximal antibacterial activity against Flavobacterium sp.
and a minimum activity against the remaining three biofilm bacteria of that study. The inhibitory
activity was correlated with the major functional groups of the extracts, such as hydroxyl, amino,
carbonyl and phosphoryl functionalities, aliphatic (fatty acids), NH2 (amide I and II). The authors
claim that molecular bonds, such as O–H stretch, H-bond, C–H stretch, –C=C– stretch, C–O stretch,
and C-Br stretch, were involved in the inhibitory activity of all the extracts. Bonds such as O–H stretch,
H-bond, C–H stretch, –C=C– stretch, C–O stretch, and C–Br stretch were found in all the extracts [18].
Hence, compounds with such bonds can be considered as potential anti-biofilm molecules.
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Table 1. Antifouling compounds from green macroalgae (Chlorophyta).

Algae Type of Activity Compound Reference 1

Ulva rigida Antifouling 3-bromo-5-(diphenylene)-2(5H)-furanone [17]

Ulva pertusa Anti-algal Alkaloid phenolic acid [19]

Ulva reticulate Halimeda macroloba Anti-bacterial Organic extract 2 [18]

Ulva lactuca Anti-bacterial Organic extract 2

Codium fragile Anti-algal Organic extract 2 [20]

Caulerpa racemosa Codium spp.
Ulva (Enteromorpha) fasciata Anti-QS, Anti-bacterial Polar and non-polar extracts 2 [21]

Ulva sp. Antifouling β-carotene [22]

Caulerpa prolifera Antibacterial, antialgal Acetylene sesquiterpenoid esters [23]

Chlorococcum humicola Antibacterial and anti Aspergillus Chlorophyll a and b [24]
1 The data are from research published from January 2010 to February 2017. 2 The structure is unknown. QS:
quorum sensing.

2.2. Brown Macroalgae (Phaeophyta)

Brown algae were, by far, the best investigated macroalgae within the report frame of this review
(see Table 2). They showed primarily anti-bacterial (including anti-QS) effects, followed by anti-algal,
anti-diatom, and anti-larval effects. Most of the responsible compounds remained undefined, but were
extracted primarily by alcoholic polar extracts (Table 2). Several of the identified substances causing
AF are provided in Figure 3. Ethanol extract of the seaweed Sargassum wightii showed maximal
antibacterial activity against Flavobacterium sp. and Bacillus sp., which was similar to that of extracts of
the green algae Ulva reticulata and Halimeda macroloba [18]. Several investigators studied the seasonal
variation of AF defense of Fucus vesiculosus [25–27]. It was found that the defense varied spatially
and temporally. Surface extracts of the alga allowed the isolation of surface-attached AF compounds
from F. vesiculosus that were identified as dimethylsulphopropionate (DMSP) and proline [28]. Several
investigators studied AF compounds from Sargassum spp. (Table 2), which included phlorotannins [29],
galactoglycerolipids [30], stigmasta-5,22-E-,28-triene-3β,24α-diol [31], and chromanols [32] (Figure 3).
Extracts of the invasive Sargassum muticum were more effective against the growth of diatoms, bacteria,
and the settlement of Bugula neritina larvae than native Sargassum species [33]. Similarly, in another
study the anti-diatom effect of S. muticum extract was 10-fold lower than AF booster biocides, but algal
extracts were less toxic [34].
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Taonia atomaria and Dyctiota sp.; (b) sesquiterpenoid (−)-gleenol from T. atomaria; (c) monocyclic
meroditerpenoid from Cystoseira tamariscifolia; (d) dimethylsulphopropionate from Fucus vesiculosus;
(e) 1-(3′,5′-dihydroxyphenoxy)-7-(2′ ′,4′ ′,6-trihydroxyphenoxy)-2,4,9-trihydroxydibenzo-1,4-dioxin;
and (f) 6,6′-bieckol.

Table 2. Antifouling compounds from brown macroalgae (Phaeophyta).

Algae Type of Activity Compound Reference 1

Native and invasive
Sargassum spp.

Anti-QS Anti-larval
Anti-diatom Non-polar extracts 2 [33]

Sargassum spp. Anti-algal Phlorotannin [29]

Sargassum muticum Anti-diatom Ethanol and Dichlormethane extracts 2 [34]

S. muticum Anti-bacterial Galactoglycerolipids [30]

S. thunbergii Anti-larval Stigmasta-5,22-E-,28-triene-3β,24α-diol [31]

S. horneri Anti-bacterial Anti-larval
Anti-diatom Chromanols [32]

S. vulgare Padina sp. Anti-QS Anti-bacterial Polar and non-polar extracts 2 [35]

S. furcatum Dyctiota sp. Anti-QS Anti-bacterial Polar and non-polar extracts 2 [21]

Taonia atomaria Anti-bacterial Sesquiterpenoids [36]

Taonia atomaria Anti-bacterial Anti-larval Sesquiterpenoid (−)-gleenol
sn-3-O-(geranylgeranyl)glycerol [37]

Padina tetrastromatica Anti-bacterial Anti-diatom
Anti-mussel Methanol extracts (fatty acids) 2 [38]

Cystoseira tamariscifolia Anti-bacterial Anti-fungal,
Anti-larval, Anti-algal

Cystophloroketals A-E monocyclic
meroditerpenoid [39]

Halidrys siliquosa Anti-bacterial Methanolic extracts 2 [40]

Dyctiota spp. Anti-bacterial Diterpenes 1-O-octadecenoylglycerol
sn-3-O-(geranylgeranyl)glycerol [41]

Dyctiota sp. Anti-bacterial Anti-algal Extract 2 [42]

Bifurcaria bifurcata Anti-bacterial Anti-fouling Acyclic linear diterpenoids [43]

Fucus vesiculosus Anti-bacterial Surface extracts 2 [25]

F.vesiculosus Anti-bacterial Surface extracts 2 [26]

F.vesiculosus Anti-bacterial Dimethylsulphopropionate Proline [28]

Laurencia johnstonii Anti-bacterial Organic extract 2 [20]
1 The data are from research published from January 2010 to February 2017. 2 The structure is unknown.
QS: quorum sensing.
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2.3. Red Macroalgae (Rhodophyta)

In terms of AF activity, red algae provided the second best investigated macroalgal group
(see Table 3). Several genera led by Laurencia spp. and Asparagopsis spp. were shown to have
antimicrobial (particularly anti-bacterial, including anti-QS, and anti-diatom) effects, followed by
spore, anti-larval and, generally, AF inhibition. It is interesting that fatty acid derivatives with AF
activity, mainly docosane, hexadecanoic acid, and cholesterol trimethylsilyl ether, were not only
produced and secreted by cortical cells, but also deposited on the surface of Laurencia translucida [44].

Table 3. Antifouling compounds from red macroalgae (Rhodophyta).

Algae Type of Activity Compound Reference 1

Crustose coralline algae Anti-algal Methanol extract 2 [48]

Galdieria sulphuraria Antifouling Floridoside [49]

Laurencia translucida Anti-bacterial Fatty acid derivates [44]

Laurencia obtusa Anti-larval 2,10-dibromo-3-chloro-7-chamigrene
12-hydroxyisolaurene [45]

Asparagopsis taxiformis Anti-bacterial
Anti-QS

Methanol extract
2-dodecanoyloxyethanesulfonate [50]

A. taxiformis Anti-bacterial
Anti-algal Extract 2 [51]

Ceramium botryocarpum Anti-diatom Ethanol and Dichlormethane
extracts 2 [34]

Chondrus crispus Anti-algal
Anti-bacterial Crude extracts 2 [52]

Pterocladiella capillacea
Spyridia aculeata

Anti-QS
Anti-bacterial Polar and non-polar extracts 2 [35]

P. capillacea Peyssonnelia
capensis Spyridia spp. Anti-QS Anti-bacterial Polar and non-polar extracts 2 [21]

Laurencia sp. Antifouling Omaezallene [46]

Laurencia translucida Antifouling Fatty acid [44]

Laurencia viridis Anti-diatom Dehydrothyrsiferol [47]

L. viridis Anti-diatom Saiyacenols B [47]

L. viridis Anti-diatom Saiyacenols C [47]

L. viridis Anti-algal 28-hydroxysaiyacenols B and A [47]
1 The data are from research published from January 2010 to February 2017. 2 The structure is unknown.
QS: quorum sensing.

In most studies, only AF of extracts of red macroalgae was tested. The majority of the extracts
with AF activity were polar (either methanol or ethanol). Several of the identified AF substances
are provided in Figure 4. 2,10-dibromo-3-chloro-7-chamigrene 12-hydroxyisolaurene from L. obtusa
inhibited barnacle Balanus amphitrite settlement at a concentration three-fold lower than the biocide
copper sulfate [45]. Laurencia sp. also produced omaezallene, which, in the barnacle settlement assay,
has an EC50 0.22 µg/mL, while it shows a low toxicity LC50 of 4.8 µg/mL [46]. In another study,
saiyacenols B and C, dehydrothyrsiferol, as well as 28-hydroxysaiyacenols B and A, were isolated
from L. viridis [47]. AF activity of these compounds was investigated against bacteria, fungi, diatoms
and algal spore settlement. All compounds at micromolar concentrations were effective only against
diatoms Navicula cf. salinicola and Cylindrotheca sp., while 28-hydroxysaiyacenols B and A also inhibited
the germination of Gayralia oxysperma spores.
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3. Quorum Sensing Inhibitors from Macroalgae

QS is a population-density dependent communication between bacteria [53]. During this process,
bacteria produce small signal QS molecules, which accumulate in the environment until, at a threshold
concentration, the change of density-dependent behavior of bacteria is triggered [15]. Well-known
examples of QS molecules are N-acyl homoserine lactones (AHLs) that are part of this intercellular
signaling system in Gram-negative bacteria [54]. Bacterial quorum sensing (QS) has been proposed
as a potential new approach for controlling biofouling [8]. Since the discovery of bacterial QS
communication, many investigators have searched for molecules that can disrupt or block QS signaling
in bacteria [55].

Marine macroalgae are able to stimulate, inhibit, or compromise QS signals in bacteria [56,57].
The first QS inhibitory compound was isolated from the marine red macroalga Delisea pulchra [57].
This alga secretes furanones that mimic bacterial AHL signals (Figure 5). Later studies have shown
that other macroalgal species, as well, produce QS and biofilm formation inhibitors (see Tables 1–3).
Jha et al. [50] studied 30 macroalgal species, but only 2-dodecanoyloxyethanesulfonate from the red
alga Asparagopis taxiformis inhibited QS of the reporter strains Chromobacterium violaceum CV026
and Serratia liquefaciens MG44. In addition, compounds demonstrated significant toxicity, but QS
inhibition was observed at non-toxic concentrations. Hypobromous acid produced by the brown alga
Laminaria digitata interferes with bacterial QS signals and genes [58]. The brown alga Spatoglossum sp.
produces the QS inhibitor dulcitol [59]. This compound compromised luminescence production
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of E. coli-based reporters in the presence of acyl homoserine lactones (QS signals). Batista and
co-workers [21] found that about 91% of polar (methanol/water) extracts of tested macroalgae inhibited
the QS of the reporter bacterium C. violaceum CV017. Additionally, polar extracts of algae were found
to show considerable antibacterial activity exhibited against biofilm forming bacteria. The higher
bioactivity of polar extracts could be due to a higher solubility of QS-inhibitory compounds in seawater
that was used in this study. The minimal inhibitory concentrations (MICs) of non-polar extracts were
10- to 1000-fold higher than the effective concentrations, suggesting that the extracts were not toxic.
Another study that used green, brown, and red macroalgae from the Brazilian coast showed that their
extracts inhibited QS of the reporter C. violaceum CV017 [35]. Additionally, bacteria from the surface of
the green algae Ulva sp. and Colpomenia sinuosa can inhibit QS and prevent biofouling [60]. There is no
clear understanding about the true biosynthetic origin of QS inhibitors from macroalgae, which may
be produced by the algae themselves, by their associated bacteria, or by both [56]. In most of cases,
the mechanisms of QS inhibition by algal metabolites are not clear and need to be studied in the future.Mar. Drugs 2017, 15, 265 8 of 15 
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4. Potential of Macroalgal Extracts in Biological Synthesis of Nanoparticles

Nanotechnology is currently affecting many aspects of science and applied technologies,
which include the design, synthesis, and manipulation of small structures for several applications,
e.g., in medicine and life sciences. Nanoparticles and nanostructures are currently used in various
applications, such as catalytic activity, water purification, chemical and biological sensors, and wireless
electronic logic and memory schemes [61]. Particularly, metal and metal oxide nanoparticles,
such as silver, gold, and platinum, have been used in the sector of bioelectronics, medicine,
and pharmaceuticals [62]. Recently, antifouling activity of metal and metal oxide nanostructures
has been reported [63–66].

Biological synthesis of nanoparticles is an emerging technical tool to address eco-friendly,
cost effective, energy-efficient, and reliable production method of metal nanoparticles. Among these are
silver nanoparticles (AgNPs), one of the most widely used due to their size, shape, and applications [67].
AgNPs are proven to have AF activity [64]. Chemical synthesis of metal nanoparticles requires reducing
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and capping agents, such as surfactants, which are toxic. In contrast, biological synthesis requires
only extracts with a reducing agent, and a capping agent at low energy requirements [68]. Seaweeds
can effectively be synthesized to metal nanoparticles [69]. Green synthesis of nanoparticles using
seaweeds attracts significant research attention nowadays, which also holds for antifouling applications.
Ramkumar et al. [70] synthesized biocompatible and functionalized silver nanoparticles by using
an aqueous extract of the green seaweed Ulva (Enteromorpha) compressa as a reductant, as well as a
stabilizing agent. They also demonstrated that these nanoparticles have strong antimicrobial and
anticancer activity. Metal nanoparticles synthesized by macroalgae could potentially be utilized in
AF applications.

5. Antifouling Defense

Macroalgae need several factors in order to survive in the marine environment. These include
the availability of nutrients and light. They have to cope with grazing pressure, competition for space
and resources, as well as parasites and diseases [71]. Biofouling on the surface of macroalgae (called
epibiosis) leads to a reduction of algal access to light, gases and nutrients, and probably increases
grazing and infections by pathogens [3]. Marine macroalgae evolved different chemical, physical
and biological mechanisms to prevent epibiosis [8,11]. Understanding these ecological strategies is of
importance for the successful development of AF technologies for marine installations. Macroalgae
prevent biofouling by a combination of different, not only chemical, AF strategies. For example,
experiments with polymeric surfaces mimicking thalli of Saccharina latissima and Fucus guiryi
demonstrated that doping of such synthetic matrices with brominated furanones would increase
their AF performance by 40% [17]. This clearly suggests that both chemistry and microtopography are
important for the successful defense of algae from fouling.

Marine macroalgae may have a complex, largely unknown, AF compound delivery system.
This includes different structures at the thallus cortex, such as gland cells in Delisea and Asparagopsis
species [72], intracellular organelles “corps en cerise” in some Laurencia species [73], and specific
vacuoles, mevalonosomes, in Plocamium brasiliense [74].

Most of the research has been performed with common green (Ulva spp.), brown (Fucus spp.,
Sargassum spp., Dyctiota spp.), and red (Ceramium spp.) macroalgal species (Tables 1–3). As yet,
macroalgae from tropical environments were poorly investigated. Species in tropical environments
probably experience higher fouling pressure compared to temperate or polar species [75]. Thus, tropical
and subtropical algal species may hide a high number of AF compounds [75,76]. Invasive macroalgal
species can be another potent source of AF compounds. Recent studies suggested that extracts of
the invasive alga Sargassum muticum from Japan have higher anti-bacterial, anti-diatom, anti-larval,
and quorum sensing (QS) inhibitory activity in Oman waters compared to Sargassum spp., which are
endemic here [33].

Most studies investigating AF activity of algal extracts or compounds in laboratory experiments
were using monocultures of bacteria, diatoms, larvae of invertebrates, and spores of algae. To the
contrary, there is a multitude more of different micro- and macro-fouling organisms in the marine
environment [77]. It is estimated that less than 2% of bacteria taken from environmental samples
can be grown in laboratory conditions [78]. Thus, successful performance of AF compounds in the
laboratory does not guarantee that these compounds will be active under field conditions. In the
laboratory, extracts of Sargassum spp. inhibited the growth of pathogens and environmental bacteria,
while in field experiments these extracts embedded in a Phytagel matrix stimulated the growth of
marine bacteria [33].

Investigators commonly use the whole thalli of macroalgae in order to extract bioactive
compounds under laboratory conditions. Such methods do not allow for understanding the production
of bioactive compounds and their concentrations under in vivo conditions. Moreover, in most cases
it is not possible to compare the effective concentrations of algal AF compounds with ones that are
produced in the environment. Only a few studies developed and used gentle soaking techniques
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to extract algal surface metabolites without destroying the integrity of algal cells, which leads to
contamination with intracellular compounds [25,28,36,37]. Gentle soaking techniques include quick
(5–10 s) soaking of algal thalli in organic solvents, like hexanes or dichloromethane [26,79]. Recent
studies demonstrated new AF mechanisms that included the production of fatty acid derivatives by
corticoid cells of the red alga Laurencia translucida and their deposition on the surface of the algal
thallus [44]. A novel, robust method of the extraction of surface-bound metabolites was proposed [80].
It is based on the powdering of wet algal surfaces with C18 solid phase material. Later, the authors
recovered algal metabolites and analyzed them through liquid or gas chromatography coupled with
mass spectrometry. The development of new methods is required to study the production of AF
compounds by algae in vivo and estimate their realistic effective concentrations.

6. Role of Epibiotic Organisms

Surfaces of marine macroalgae are commonly covered by different species of bacteria, microalgae,
and fungi (epibionts), whose composition and density vary with environmental conditions and
algal parts ([25]; Figure 6). In some cases, several epibionts are known to penetrate the thalli
of macroalgae [76]. There is growing evidence that microbial communities associated with algae
are different from other substrata and surrounding waters (see review [3]). Several studies
demonstrated that epibionts associated with algae can produce antifouling compounds that defend
their hosts [16,81–83]. For example, Vibrio sp. isolated from the green alga Ulva reticulata produces an
AF waterborne compound [84,85]. Another study demonstrated that most of the bacteria isolated from
the surface of the brown alga Colpomenia sinuosa produce QS inhibitory compounds [60].
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of the same alga which was heavily fouled with fungi, microalgae, and bacteria. Magnification = 1900×;
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Investigators usually do not take into account that epibiotic microorganisms are associated with
macroalgae (Figure 6). This may result in the extraction of both algal and microbial metabolites.
In contrast to previous studies that used extracts of algae and their natural microflora [50,55],
Batista et al. [21] used an ethanol treatment [86] to eliminate surface-attached bacteria and diatoms.
Their data indicated that microorganisms living on the surface of some algae could be responsible for
the production of QS inhibitory compounds [21]. Although extracts of U. fasciata, Caulerpa racemosa, and
Codium sp. had some QS inhibitory activity in the absence of microbes, the activities of extracts from
these algae with microbes were significantly higher [21]. Polar extracts of those macroalgae mentioned
above with attached microorganisms, but never without them, inhibited the attachment of Pseudomonas
aeruginosa PAO1. This confirms the notion that epibiotic bacteria are important for the production of
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antibacterial compounds [87]. Other studies also have shown the importance of bacteria isolated from
the surface of seaweeds for protecting the host from fouling by other organisms [3,56]. On the other
hand, microorganisms located in the thalli of marine algae probably would not be responsible for the
production of surface-associated or excreted AF compounds [76].

7. Conclusions and Future Outlook

This review demonstrated that marine macroalgae provide a potent source of novel AF
compounds. Additionally, macroalgae can be used for green synthesis of nanoparticles that can
be utilized in AF applications. In most cases, researchers tested crude extracts of algae, but neither
isolated nor elucidated the structure of AF compounds (see Tables 1–3). Thus, it is difficult to tell if
these extracts contain novel AF compounds or not. In contrast to a Scopus publication search (Figure 1),
we found that most of AF compounds were isolated from brown and red algae, but not from green
macroalgae. This could be explained by the fact that, traditionally, these groups were studied more
intensively or reflect the fact that these algae could be better defended against micro- and macrofouling.
In previous studies many authors have failed to elucidate AF chemicals compounds from green algae
from different regions [88,89]. Moreover, previous screening programs indicated that red, but not
brown, seaweeds are the most potent in terms of production of AF compounds [88,89]. Isolation
of bioactive compounds from algae involves a bioassay-guided approach, whereas imaging-based
high-content screening (HCS) has been proposed as a promising tool for screening of algal bioactive
potential [90]. However, screening and isolation of more AF compounds from macroalgae are needed
in the future.

Isolation of these potentially-important biogenic compounds from marine algae is currently very
expensive and time consuming. Combinatorial genetic or metabolic engineering [91], or hybrids [92],
might be possible remedies for this problem. In addition to offering a secure supply of naturally-
occurring metabolites, such technologies could be used to produce more-diverse chemicals. Although
research is relatively new within this area, with only a few studies published to date, it seems
that soon it will be possible to transfer the genes responsible for the production of these active
secondary metabolites from one organism to more productive organisms. Then, sustainable compound
production will become cheaper, fostering sustainable antifouling practices in aquaculture [92] or in
the food industry [93].

Progress in isolating and producing marine algal bioactive compounds is expected to involve
the integration of biochemistry-validated post-genomic methods and techniques, as well as smart
bioprocessing. Levels of toxicity and capacities for biological degradation of these compounds in
the aquatic environment need to be studied before they will be applicable in AF coatings for the
prevention of biofouling. Once biogenic compounds become incorporated into AF paints, monitoring
needs to be done over longer periods. The identification of these biogenic compounds with antifouling
properties requires a wide range of expertise from the fields of biology, as well as chemistry. Metabolic
engineering may provide a possible approach for future exploitation of secondary metabolites with AF
properties from marine macroalgae.

There are several issues to be studied with priority concerning AF compounds from
macroalgae. In particular, new antifouling compounds from tropical macroalgae should be isolated
and tested in field experiments. Compounds need to be isolated in an ecologically-relevant
way in order to prevent contamination by algal intracellular metabolites and compounds from
epibiotic microorganisms. Finally, a multidisciplinary approach involving organic chemistry, biology,
microbiology, and ecology specialists is required in the search for promising AF compounds and their
biotechnological applications.
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