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Abstract

Spices and herbs are key dietary ingredients used across cultures worldwide. Beyond their

use as flavoring and coloring agents, the popularity of these aromatic plant products in culi-

nary preparations has been attributed to their antimicrobial properties. Last few decades

have witnessed an exponential growth of biomedical literature investigating the impact of

spices and herbs on health, presenting an opportunity to mine for patterns from empirical

evidence. Systematic investigation of empirical evidence to enumerate the health conse-

quences of culinary herbs and spices can provide valuable insights into their therapeutic

utility. We implemented a text mining protocol to assess the health impact of spices by

assimilating, both, their positive and negative effects. We conclude that spices show broad-

spectrum benevolence across a range of disease categories in contrast to negative effects

that are comparatively narrow-spectrum. We also implement a strategy for disease-specific

culinary recommendations of spices based on their therapeutic tradeoff against adverse

effects. Further by integrating spice-phytochemical-disease associations, we identify bioac-

tive spice phytochemicals potentially involved in their therapeutic effects. Our study provides

a systems perspective on health effects of culinary spices and herbs with applications for

dietary recommendations as well as identification of phytochemicals potentially involved in

underlying molecular mechanisms.

Introduction

Culinary practices across cultures around the world have evolved to incorporate spices and

herbs in them. The potential utility of these aromatic plant products in recipes has received a

lot of attention leading to multiple rationales for their wide-spread use in food preparations

[1,2]. Apart from their use as flavoring agents, spices have been suggested to be of value for

their ability to inhibit or kill food-spoilage microorganisms [2]. Beyond their antimicrobial

properties, the diverse therapeutic values of spices have been highlighted through in vivo and

in vitro studies. Spices have been reported to possess therapeutic potential for their hypolipi-

demic [3], anti-diabetic [4], anti-lithogenic [5], antioxidant [6], anti-inflammatory and anti-

carcinogenic [7] activity.
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Scientific investigations into the health effects of spices have resulted in a large body of bio-

medical literature mentioning their direct or indirect connections to health and diseases. With

focus on a specific spice/herb, such studies have discussed their health consequences to report

heterogeneous results. While some of the surveys have attempted to collate and summarize

this knowledge [3,6,8], a comprehensive picture of health impacts of culinary herbs and spices

based on empirical evidence still evades us. Data from MEDLINE suggests an exponential

increase in scientific reports associating culinary spices and herbs with diseases since 1990’s.

Given their importance in food preparations, it is imperative to systematically investigate these

empirical data to investigate health consequences of culinary herbs and spices.

Beyond their culinary use, traditional medicinal systems have also advocated the role of

spices as therapeutic agents [8,9]. Apart from obtaining a coherent picture of the impact of

these exceptional culinary ingredients on health, it would also be of value to probe the molecu-

lar mechanisms behind their action which remain largely unknown. A framework that inte-

grates data on spice-disease associations and their phytochemicals to explore their underlying

connections will help unravel molecular mechanisms behind the health impact of culinary

spices and herbs (Fig 1). Towards this end, we set out to find associations between spices and

diseases from biomedical abstracts available from MEDLINE using a text mining approach.

One of the earliest attempts in linking diet and diseases from literature was by Swanson

who suggested the utility of dietary fish oil for the treatment of Reynaud’s syndrome from indi-

rect associations manually inferred from literature survey [10]. Biomedical literature has

expanded by many folds since this pilot study making it impossible to manually concatenate

the information available from research articles to infer relationships between different entities

or to formulate a hypothesis. Computational approaches to text mining and natural language

processing are potent tools in this pursuit [11] and many studies in recent years have contrib-

uted to efforts in this direction [12–15]. NutriChem [15,16] database relates plant-based foods,

their phytochemicals, and diseases by using a text mining approach. HerDing [17] is another

resource which links herbs to diseases by indirectly connecting constituent chemicals of the

former to genes associated with the latter.

We investigated the impact of culinary spices and herbs for their role as regulators of health

by text mining biomedical literature to assimilate, both, positive and negative associations. We

observed that in general, the benevolent effects of spices span a broader spectrum of disorders

than their adverse effects. Thus by exhaustively integrating evidence for beneficial and harmful

effects of spices, we provide a framework for identification of spices whose benefits far outweigh

their harms. We also suggest ways for their informed culinary use as well as for identification of

phytochemicals with potential therapeutic value. In summary, our study offers a systems per-

spective of health effects of spices and herbs to provide informed culinary recommendations

and insights into underlying molecular mechanisms behind their therapeutic utility.

Results

Protocol for integration of spice-phytochemical-disease data

We text mined spice-disease associations from abstracts available in MEDLINE, the largest

database of biomedical literature containing more than 28 million references to research arti-

cles in biomedicine. First, a comprehensive dictionary of 188 species of culinary spices and

herbs was manually compiled from various sources such as FooDB (http://foodb.ca), Wikipe-

dia (https://en.wikipedia.org/wiki/List_of_culinary_herbs_and_spices), PFAF (Plants For A

Future, http://www.pfaf.org/user/Default.aspx), FPI (Food Plants International, http://

foodplantsinternational.com) and FlavorDB [18] (http://cosylab.iiitd.edu.in/flavordb). This

dictionary was then used to retrieve relevant abstracts from MEDLINE database. We then
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carried out Named Entity Recognition (NER) and normalization of spice and disease entities

using a dictionary matching approach for the former and NCBI’s TaggerOne [19] tool the lat-

ter. For extracting relations, we only considered sentences that mention at least one spice/herb

and disease and manually labeled a subset of these for positive, negative and neutral associa-

tions between the spice-disease pairs. The labeled sentences were then used to train a machine

learning classifier to categorize the associations between the spice-disease pairs in the unla-

beled sentences. To further probe putative molecular mechanisms for benevolent effects of

spices, we identified spice phytochemicals from PhenolExplorer [20] and KNApSAcK [21] and

found their therapeutic associations with diseases using Comparative Toxicogenomic Data-

base [22] (CTD). Fig 1 depicts the computational framework implemented for integrating and

extracting tripartite spice-phytochemical-disease associations. These information are made

available through an interactive resource, SpiceRx [23].

Fig 1. Workflow implemented for data-driven analysis of biomedical literature associating culinary spices and herbs to diseases. Starting with compilation of an

exhaustive dictionary of culinary spices and herbs, towards identification of spice-disease associations, one thread of investigation involved implementation of a

computational protocol for text mining of biomedical literature including named entity recognition of herbs/spices as well as diseases, pre-processing, extraction of

candidate sentences, manual annotations followed by predictions of associations with a machine learning based model. The other thread involved identification of

bioactive spice phytochemicals and linking them to diseases. By integrating tripartite information of spices-phytochemicals-diseases, this study establishes the broad-

spectrum benevolence of spices, suggests ways for their disease-specific culinary recommendations and probes potential molecular mechanisms underlying their

therapeutic properties. Thus it provides a systems perspective to health effects of spices with potential culinary and medicinal applications.

https://doi.org/10.1371/journal.pone.0198030.g001
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Spices disease associations

By combining manually annotated and predicted associations, we obtained a total of 8957

spice-disease associations from 5769 abstracts. Among these 8172 were positive spice-disease

associations and 783 were negative. Out of 188 spices present in the dictionary, we obtained

associations for 152 spices linking them to 848 unique disease-specific MeSH [24] (Medical

Subject Headings) IDs (S1 Dataset). We used a Convolutional Neural Network (CNN) classi-

fier with word, position, part of speech and chunk embedding [25–27] to predict positive, neg-

ative or neutral association in a spice-disease pair. It was evaluated on an external test set and

found to have an accuracy of 86.7% and macro-averaged precision, recall and F1 score of

90.7%, 80% and 84.2% respectively. The class-wise performance metrics for the model are pro-

vided in Table 1.

Disease entities were recognized and normalized to their corresponding MeSH IDs using

TaggerOne [19]. MeSH [24] is a controlled vocabulary of biomedical terms curated and developed

by National Library of Medicine. It organizes terms hierarchically from general to more specific

(S1 Fig). In this hierarchical structure, a spice may have associations with a disease at multiple lev-

els of specificity. For example, Endocrine System Diseases (C19) present at the first level of MeSH

hierarchy constitutes disease sub-categories such as Adrenal Gland Diseases (C19.053), Diabetes

Mellitus (C19.246) at the second level. Further, specific types of Diabetes Mellitus such as ‘Diabe-

tes Mellitus, Type 1 (C19.246.267)’, ‘Diabetes Mellitus, Type 2 (C19.246.300)’ appear at the third

level. To conduct a multi-level analysis, we associated spices with disease terms at three levels of

MeSH hierarchy labeled as ‘category’, ‘sub-category’ and a ‘disease’.

We observed an exponential increase in articles reporting therapeutic properties of spices

after 1995 (Fig 2), with the number of abstracts reporting positive associations of spices with

diseases far out-numbering those reporting negative associations (Fig 3). A large number of

spices such as ginger (Zingiber officinale) and turmeric (Curcuma longa) have very few negative

associations reported in MEDLINE whereas a few others like liquorice (Glycyrrhiza glabra)

and celery (Apium graveolens), have almost an equal number of abstracts reporting positive

and negative associations. The complete list of associations for spices is provided in S2 Dataset.

These data suggest that, in general, beneficial effects of spices have been reported more widely

than their adverse effects in biomedical literature.

On analyzing individual diseases (third level of MeSH hierarchy) associated with spices, we

found that diabetes mellitus, inflammation, and carcinogenesis have the highest number of

positive associations (Fig 4) (S3 Dataset). Spices were also shown to have a preventive role in

various cancers including breast, colorectal, prostatic and liver neoplasms. Among the diseases

adversely affected by spices were hypersensitivity, dermatitis, rhinitis, hypertension and aller-

gic rhinitis, (Fig 5) (S3 Dataset). It is worth noting that majority of these diseases are autoim-

mune in nature and are subjective to certain individuals sensitive to that spice. In such cases,

spices may act as triggering factors rather than causal agents.

Table 1. The class-wise performance metrics for the best CNN model, implementing word, position, part of

speech and chunk embedding features, used for spice-disease relationship extraction. All negative associations

were cleaned manually.

Class Precision Recall F1-Score

No-Association 88.06% 89.83% 88.9%

Negative 1� 65.96% 79.49%

Positive 83.98% 84.32% 84.15%

Macro averaged 90.68% 80.03% 84.20%

�cleaned manually.

https://doi.org/10.1371/journal.pone.0198030.t001
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Broad-spectrum benevolence of herbs/spices

To probe for the effects of spice/herb across a spectrum of disorders, we analyzed its associa-

tions with disease ‘sub-categories’ at the second level of MeSH hierarchy (S1 Fig). Analyzing

associations at this level provides a balance between specificity and generality of disease terms.

Among the disease sub-categories positively associated with spices, pathologic processes, signs

and symptoms, metabolic diseases, diabetes mellitus, vascular diseases as well as central ner-

vous system diseases were found to be dominant (Fig 6), S4 Dataset). Top disease categories

which were negatively associated with spices included vascular diseases, skin diseases, hyper-

sensitivity and respiratory hypersensitivity (Fig 7), S4 Dataset).

To quantify the broad impact a spice may have across diverse disease categories as well as

sub-categories, we devised a ‘spectrum score (Os)’. This metric computes the sum of propor-

tion of disease terms associated with a spice at the second level of MeSH hierarchy (sub-catego-

ries), multiplied by the number of disease terms associated at the first level (categories). (See

Materials and Methods). With 27 disease categories, the lower and upper bound for the spec-

trum score is 0 and 729 respectively. To elucidate further, let us consider a spice that is associ-

ated with all diseases in exactly half of the MeSH disease categories versus another spice that

has associations with half of the diseases in every disease category. In such a case, the latter

would have a higher spectrum score than the former. We computed the spectrum score for

both positive (benevolence spectrum score, O
þ

s ) as well as negative associations (adverse spec-

trum score, O
�

s ).

The spices with highest ‘benevolence spectrum score’ according to our analysis were garlic

(Allium sativum), ginger (Zingiber officinale), turmeric (Curcuma longa), liquorice (Glycyrrhiza

Fig 2. Statistics of spice-disease associations. Historical trend in biomedical literature reporting spice-disease associations. There is an

exponential increase in articles reporting the therapeutic effects of spices in last few decades. Data of research articles archived in

MEDLINE till July 2017 is represented in the illustration.

https://doi.org/10.1371/journal.pone.0198030.g002
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glabra), ginkgo (Ginkgo biloba), black cumin (Nigella sativa), cinnamon (Cinnamomum
verum) and saffron (Crocus sativus) whereas the top adverse spectrum spices were liquorice

(Glycyrrhiza glabra), ginger (Zingiber officinale), fenugreek (Trigonella foenum-graecum),
ginkgo (Ginkgo biloba), sunflower (Helianthus annuus) and Celery (Apium graveolens). Spices

such as garlic, liquorice and ginkgo have a high benevolence as well as adverse spectrum

scores.

We found that for 150 out of 152 spices, the ‘benevolence spectrum score’ exceeded the

‘adverse spectrum score’, with almost 50 spices having ‘relative benevolence’ (ΔOs) greater

than 50 (Fig 8). Hence, it may be concluded that in general spices have positive effects with a

broad spectrum of diseases in contrast to their negative effects which are comparatively nar-

row-spectrum. In line with our analysis, spices have been reported to be effective against a

range of disorders [3–5,7]. Details of benevolent, adverse as well as relative benevolence scores

for all spices are provided in the S5 Dataset.

Culinary recommendations

Each of the MeSH disease categories refers to a class of disorders such as nutritional and meta-

bolic disorders, cardiovascular diseases, nervous systems diseases, digestive system diseases,

immune system diseases, neoplasms, bacterial infections and mycoses, virus diseases and such.

Fig 3. Statistics of positive and negative disease associations for the top 50 spices with most number of associations. Notice that certain spices like liquorice

(Glycyrrhiza glabra) and celery (Apium graveolens) had equal number of positive as well as negative associations. The bias in number of associations may also indicate

the inherent biases in scientific literature suggesting that certain spices are studied more than others.

https://doi.org/10.1371/journal.pone.0198030.g003
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The spectrum score forms the basis to prioritize spices for culinary intervention against a

MeSH disease category. We computed the category-specific ‘benevolence spectrum’ and

‘adverse spectrum’ scores to enumerate the ‘trade-off score’ that represents the therapeutic

value of a spice against a class of disorders. S6 Dataset provides a list of culinary recommenda-

tions intended as a dietary intervention against various disease categories.

There is ample amount of empirical evidence for the recommendations provided by our

study. Our data suggest that spices show therapeutic effects against most of the viral diseases.

Among them, turmeric (Curcuma longa) is the most broad-spectrum antiviral spice and is

reported with inhibitory properties against various viruses including HIV, influenza, and cox-

sackievirus [28]. Studies in human and animal models have shown that dietary spices signifi-

cantly stimulate the activities of digestive enzymes of the pancreas and small intestines such as

pancreatic lipase, amylase and proteases thereby acting as digestive stimulants. Spices like gin-

ger and garlic stimulate TRPV1, a sensor in the digestive system which has implications for

gastrointestinal tract pathology and physiology [29,30]. Prominent spices recommended for

cardiovascular diseases, such as tulsi (Ocimum tenuiflorum), mint (Mentha X piperita), ginkgo

(Ginkgo biloba) and ginger (Zingiber officinale), have been reported with beneficial effects

against cardiovascular disorders. Epidemiological studies suggest that these spices lower cho-

lesterol level, decrease platelet aggregation, reduce blood pressure, and increases antioxidant

status which in turn decreases the progression of cardiovascular diseases [31]. Black cumin

Fig 4. Top diseases (Third level of MeSH hierarchy) ranked according to their total number of positive associations. Numbers shown against the bars indicate the

‘number of spices’ involved in the associations. The number of positive disease associations for spices outnumber the number of negative associations (Fig 5) indicating

that spices, in general, have been reported with beneficial health effects.

https://doi.org/10.1371/journal.pone.0198030.g004
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(Nigella sativa), turmeric (Curcuma longa) and garlic (Allium sativum) are prominent spices

recommended for diabetes, a major metabolic disorder. Evidence from animal studies and

human trials have indicated that these spices modulate hyperglycemia and lipid profile func-

tion. Their antioxidant characteristics and effects on insulin secretion, glucose absorption, and

gluconeogenesis make them potent candidates towards treating diabetes [32,33]. Similarly, the

anti-diabetic property of ginkgo (Ginkgo Biloba)may be linked to the ability of its extract to

reduce insulin resistance.

Incidentally, the spices that frequent in the culinary recommendations are among those

used for culinary and medicinal preparations across cultures. Curcumin (Curcuma longa) and

tulsi (Ocimum tenufloreum), widely used in Indian culinary and medicinal preparations, were

present across recommendations made throughout the spectrum of MeSH disease categories.

Similarly garlic, used in Southern European especially Italian cuisine, also appeared in culinary

recommendations across all categories of diseases. Some of the other most potent spices

include ginger (Zingiber officinale), black cumin (Nigella sativa) and ginkgo (Ginkgo biloba)

(see S1 Table).

Linking spices to diseases through phytochemicals

Our analysis suggests that beyond their utility as flavoring, coloring, and food preserving (anti-

microbial [2]) agents, spices may have been incorporated in traditional culinary practices due

Fig 5. Top diseases (Third level of MeSH hierarchy) ranked according to their total number of negative associations. The numbers mentioned on the bars indicate

the number of spices associated negatively with each disease.

https://doi.org/10.1371/journal.pone.0198030.g005
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to their beneficial health effects across a spectrum of disorders. Given that the therapeutic

properties of plants are mediated by their phytochemicals [34–36] we hypothesize that the

broad spectrum benevolence of spices can be attributed to the presence of bioactive phyto-

chemicals such as polyphenols [36]. For example, curcumin, a polyphenol from turmeric is

known to have a wide range of health benefits including antioxidant, anti-inflammatory, and

anticancer effects [37]. Ajoene, a polyphenol compound derived from garlic, has been shown

to induce apoptosis in leukemic cells [38]. Similarly, eugenol present in clove is reported to

have antifungal property [39]. The antioxidant activity of black pepper has been attributed to

the presence of β-caryophyllene, limonene, β-pinene, piperine and piperolein in its essential

oil and oleoresins [39]. The anticancer properties of ginger are attributed to the presence of

certain pungent vallinoids, gingerol, and paradol, as well as some other constituents like sho-

gaols, zingerone, amongst others [39]. Going beyond the investigation of spice-disease associa-

tions, we linked spices to their constituent bioactive molecules and further connected them to

diseases to obtain potential evidence of therapeutic associations (Fig 1).

We obtained 866 chemical compounds corresponding to 142 culinary spices in our dictio-

nary from PhenolExplorer [20] and KNApSAcK [21], and consisted of 2042 spice-phytochem-

ical associations. These data were filtered using PubChem [40] to keep only 570 bioactive

phytochemicals, as they are known to react with tissues or cells. Further, we associated spice

phytochemicals to diseases with the help of CTD [22], a public database of curated and

Fig 6. Disease categories (First level of MeSH hierarchy) ranked according to the number of positive associations with spices. Numbers shown against the bars

indicate the ‘number of spices’ linked with each of the associations. The number of positive disease category associations for spices outnumber those with negative

associations (Fig 7) further confirming the benevolent health effects of spices.

https://doi.org/10.1371/journal.pone.0198030.g006
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inferred chemical-disease associations from the literature. CTD [22] classifies chemical-disease

associations into therapeutic, inferred or marker associations. Therapeutic and marker associ-

ations are directly curated from the literature, whereas inferred relations are obtained from

indirect associations. Therapeutic associations between a phytochemical and disease imply the

presence of direct evidence of that phytochemical in alleviating the disease. For our further

analysis, we focused only on 211 bioactive chemicals from the spices which were reported to

have therapeutic associations.

We integrated the data of spice-disease associations with spice-phytochemical and phyto-

chemical-disease mappings. This tripartite data of spice-phytochemical-disease associations

can form the basis for finding putative molecular mechanisms behind the beneficial effects of

spices against diseases. Using data of curated phytochemical-disease associations from CTD,

we found that out of 4380 positive spice–disease associations (where disease terms were

mapped to third level of MeSH), 37% (1619) could be explained through evidence of phyto-

chemical-disease associations. To elucidate, we found empirical evidences supporting anti-car-

cinogenic effects of garlic (Allium sativum) against liver neoplasms. With the help of CTD

[22], we found allyl sulfide, a compound in garlic, to be therapeutically associated with liver

neoplasms. It can therefore be hypothesized that the anti-carcinogenic effects of garlic can be

attributed to the presence of allyl sulfide. Incidentally, this hypothesis is independently sup-

ported by the literature [41]. The 63% spice-disease associations which could not be explained

Fig 7. Disease categories (First level of MeSH hierarchy) ranked according to the number of negative associations with spices. Numbers shown against the bars

indicate the ‘number of spices’ linked with each of the associations.

https://doi.org/10.1371/journal.pone.0198030.g007

Broad-spectrum benefits of culinary herbs and spices

PLOS ONE | https://doi.org/10.1371/journal.pone.0198030 May 29, 2018 10 / 20

https://doi.org/10.1371/journal.pone.0198030.g007
https://doi.org/10.1371/journal.pone.0198030


through evidence of phytochemical-disease relations may serve as hypotheses for unearthing

the putative molecular mechanisms by utilizing the data of spice-phytochemical associations.

S7 Dataset provides an exhaustive list of spice-disease associations and phytochemicals

identified from the integration of tripartite data of diseases, spices and their phytochemicals

(Fig 1) and S8 Dataset provides the list of positive spice-disease associations for which no spe-

cific therapeutic phytochemical from a spice could be obtained.

Discussion

Humans are unique in having developed the ability to cook, which has been argued to be criti-

cal for the emergence of their large brains [42,43]. While cooked food must have provided

with much-needed energy supply, it is intriguing that they flavor the food with nutritionally

insignificant quantities of herbs and spices. Going beyond the ability of spices to act as flavor-

ing and antimicrobial agents [2], our analysis of spice-disease associations text-mined from

biomedical literature shows the broad-spectrum benefits of spices. Recent studies have shown

the potential benefits of consumption of spices such as chillies through cohort studies [44] as

well as the role of specific spice phytochemicals in their health effects [45]. Interestingly, the

broad-spectrum benevolence score of a spice was not positively correlated with its phytochem-

ical repertoire (S2 Fig) suggesting that richness in the phytochemical content itself does not

explain its therapeutic value.

We also point out negative health effects of spices, largely reflected in allergies, immune sys-

tem, and skin-related disorders. Few of the negative effects of spices have been linked with

their excessive use. For example, licorice, a beneficial herb for hypertension can cause weight

Fig 8. Spices ranked according to their ‘relative benevolence score’ highlighting their broad-spectrum benevolence. This score

enumerates the relative health benefits as reflected in the difference between ‘benevolence spectrum’ and ‘adverse spectrum’ scores. Barring

two, all spices had positive scores with a large number of them showing significantly larger therapeutic effects compared to their adverse

effects.

https://doi.org/10.1371/journal.pone.0198030.g008
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loss, hypokalemia and other related adverse effects if consumed in large doses. Beyond probing

the molecular basis of positive associations, it would also be of interest to identify toxic phyto-

chemicals present in spices and assess their effect on specific diseases so as to provide an advi-

sory against their consumption. Negative associations for spices projected by our study can

serve as a basis for such investigations.

As opposed to a previous attempt in this direction [15,16] that linked all plant-based foods

with diseases and phytochemicals from literature, our study focused on culinary spices and

herbs. We investigated an exhaustive dictionary of 188 culinary herbs and spices with far better

coverage (99 additional) than that of NutriChem [15,16]. Overall, in terms of the number of

disease associations, the depth of our analysis was better than that of NutriChem [15,16] (S3

Fig) and our data comprised a larger set of associations for most spices (S4 Fig). NutriChem

[15,16] used dictionary based string matching approach for named entity recognition and nor-

malization of diseases as well as plants. In case of diseases, it is empirically shown that depend-

ing on the disease dictionary used, the string matching approach typically leads to a low

precision and recall [46]. We used TaggerOne [19], a machine learning based named entity

recognition tool which yields state of the art performance. Even though the performance of

our relationship extraction model was evaluated on a dataset consisting of positive, negative

and neutral associations in contrast to previous studies which evaluated on only positive and

negative associations, our model achieves a comparative F1 score. In addition to this, we pro-

vide an accurate information of adverse effect of spices by manually correcting all predicted

negative associations. Despite our best efforts to ensure accurate extraction of spice-disease

associations, our method is constrained by shortcomings inherent to text mining approaches

and use of limited information pertaining to biomedical literature, namely, title and abstract.

Overall, our analysis serves as a precursor to systematic reviews including meta-analysis as

well as hypothesis-driven investigations into the health effects of spices and herbs. The data

compiled as part of our study are made available through an interactive resource, SpiceRx [23].

Similar to languages where words are synthesized from the same phonetic repertoire, cuisines

around the world have concocted their own unique ingredient combinations, especially those

made from spices [47,48]. Interestingly, many cuisines around the world such as those from the

Indian subcontinent (paanch phoron, garam masala, sambar masala among a host of others

referred to asmasala), Ethiopia (berbere) and Middle East (baharat) to mention a few, have ended

up developing unique spice combinations of their own. It remains to be critically examined

whether these have been deliberately composed with an appreciation of therapeutic properties of

spices and herbs, or are accidentally emerged constructs. Spices are frequently used as part of

functional foods, for example, the Indian dish rasam is a concoction of different spices and has

been reported to be hypoglycemic, anti-anemic and antipyretic [49]. Sambar, another predomi-

nantly spice-based recipe has been shown to work against prostrate cancer [50]. Traditional

medicinal systems are also known to recommend spices as part of their prescriptions. Trikatu
[51], a spice concoction made with black pepper, long pepper, and dried ginger has been advised

to be of value against rheumatoid arthritis by Ayurveda, a classical traditional medicinal system

from India. In Chinese traditional medicine, Xiaoyao-san, a combination of various spices, has

been recommended for management of stress and depression-related disorders [52].

Cooking typically involves high-temperature processing via heating, boiling, frying and

such. It could be argued [53] that heating is a simpler and more effective means of killing

microbes, thereby refuting the antimicrobial hypothesis [2]. Other beneficial effects of spices

(such as anti-diabetic, anti-carcinogenic and antioxidant and inflammatory), unearthed in this

study, could not be argued against with this logic. Ironically, this argument raises another criti-

cal question: Whether the therapeutic properties and bioactivity of spice phytochemicals can

sustain the intense heating processes typically involved in cooking [54]? Besides that, one of
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the ambiguous factors in appreciating the benevolence of spices is the distinction between the

effectiveness of individual compounds vis-à-vis their synergistic actions. Apart from these

aspects, there is ample scope for improvising the strategy for culinary recommendations as

well as for identifications of molecular mechanisms involved in health impact of spices by

including the data of quantity and disease-specific potency of their constituent phytochemi-

cals. While raising a host of such critical questions related to dietary intake of herbs and spices,

by investigating evidence from biomedical literature reporting health effects of culinary herbs

and spices our data-driven analysis suggests their broad-spectrum benevolence.

Materials and methods

Compilation of spices and herbs dictionary

We compiled a dictionary of 188 species of culinary spices and herbs. Scientific names and

common names were obtained from Foodb (http://foodb.ca/) and Wikipedia (https://en.

wikipedia.org/wiki/List_of_culinary_herbs_and_spices). Varieties in scientific names, wher-

ever available, were standardized to their respective species name. For example, Capsicum bac-
catum var. pendulum, the scientific name of Peruvian pepper, was standardized to Capsicum
baccatum. All scientific names were then mapped to their respective NCBI Taxonomy IDs.

This dictionary was further enriched by adding common names from FPI (Food Plants Inter-

national, http://foodplantsinternational.com/plants/), NCBI Taxonomy (https://www.ncbi.

nlm.nih.gov/taxonomy) and PFAF (Plants for a Future, http://www.pfaf.org). Singular and

plural forms of common names of the spices and herbs were also included. Common names

that did not exclusively map to an NCBI Taxonomy ID were removed.

Biomedical literature

We used MEDLINE (Medical Literature Analysis and Retrieval System Online, https://www.

nlm.nih.gov/bsd/mms/medlineelements.html) as our source of biomedical literature. It includes

citations from more than 5600 scholarly journals with over 24 million references to peer-

reviewed biomedical and life science research articles from as early as 1946. The data was down-

loaded in bulk from the FTP server of NCBI (https://www.nlm.nih.gov/databases/download/

pubmed_medline.html). A modified version of PubMed parser (https://github.com/titipata/

pubmed_parser) was used to extract information of PMID, Date, Title, Abstract, Journal, and

Authors from the XML files. Articles for which no abstract text was available were not consid-

ered. The modified parser is available at https://github.com/cosylabiiit/pubmed_parser.

Named entity recognition

We adopted a dictionary matching approach for Named Entity Recognition (NER) of spices

and herbs. With a large dictionary, the process of dictionary matching becomes a computa-

tional bottleneck. Therefore, we used a modified implementation of Aho-Corasick algorithm

(NoAho, https://github.com/JDonner/NoAho) to efficiently obtain non-overlapping and lon-

gest matches at the token level. For disease NER (DNER) and normalization, we used Tagger-

One [19] which utilizes semi-Markov models with a rich feature set. It was reported to have a

precision of 85% and a recall of 80% on the Biocreative V Chemical Disease Relation test set

[46]. We used the pre-trained disease-only model available with TaggerOne [19] on our data.

Preprocessing

Sentence segmentation was carried out on the retrieved abstracts using Stanford CoreNLP

package [55]. Only sentences with mention of at least one herb/spice and one disease were
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considered for extracting relations. Those with mentions of multiple herbs/spices and/or dis-

eases were simplified by duplicating the sentence while iteratively masking all except a specific

spice-disease pair. In all sentences, numbers were replaced by a standard identifier token and,

barring some punctuation characters (!,.:;), all special characters were removed. The prepro-

cessed sentences were then tokenized using GENIA [56] and the part-of-speech (PoS) tag, as

well as the chunk tag of each token were obtained. Further, we also computed the distance of

each token from the candidate spice-disease pair and used them as position features.

Labelling associations

Hitherto, to the best of our knowledge, no labeled corpus for associations between plant-based

foods and diseases is publicly available. We thus manually annotated a total of 6712 spice-dis-

ease pairs to tag positive, negative and neutral associations. Out of all the annotated pairs, 2669

had positive associations, 301 had negative associations, and 3742 had neutral or no associa-

tions. This data was used for training as well as evaluating our relationship extraction models.

Relation extraction model

We developed a Machine Learning Classifier to categorize tagged spice-disease pair(s) in a sen-

tence as having positive, negative or neutral associations. The following models were tested: (i)

Linear Support Vector Machine (SVM) with unigram and bigram word features; (ii) Convolu-

tional Neural Network (CNN) with word embedding [27] features; and (iii) CNN with word,

position, PoS and chunk embedding features.

For the Linear SVM model, we obtained the unigram and bigram word features and scaled

their respective weights using Term Frequency-Inverse Document Frequency (TF-IDF)

approach. This model was trained using one-versus-all strategy. Following are the equations

describing the method for computing TF-IDF weights of features: (i)tf(t,s) = ft,s; iið Þ idf tð Þ ¼
log Nnt; and (iii)tfidf(t,s) = tf(t,s) � idf(t), where ft,s denotes the number of times feature t appears

in sentence s, nt is the number of sentences in which the feature t appears and N is the total

number of sentences.

The architecture for our CNN models is based on state-of-the-art models for sentence clas-

sification and relation extraction [25–27]. As input, we fed mini-batches of sentence sequences

to the models. The two CNNs differ in the representation of the tokens or words present in

input sequences. For the first model, we only used the word embedding as the token represen-

tation, whereas for the second model we used the PoS, chunk and position embedding in addi-

tion to word embedding. The word embedding was initialized using pre-trained weights from

Chiu et. al [57], with the embedding for unknown words initialized from a uniform (−α,α) dis-

tribution. The parameter α was determined on the basis of the variance of the known words

[58]. Further, CNN requires all input sequences to have consistent size, thus sentences were

zero-padded to equalize their lengths to that of the longest sentence. The input to the CNNs

was a b × d × n × 1 tensor, where b is the size of the mini-batch, d is the length of the ‘token’

vector of the sentence and n is the length of the longest sentence in the corpus. The architec-

ture of the second CNN is depicted in Fig 9. The first layer is a Convolutional layer with nf
filters of different filter sizes f and rectified linear unit (ReLU) activation. The respective maxi-

mum activations of all the filters are then concatenated into a single vector of size nf and fed

to a Dropout layer [59], which randomly sets an activation to zero with probability p. This is

followed by a dense layer of h hidden units with ReLU activation and a softmax layer with 3

units. For both the networks, we used categorical cross entropy as our objective function and

applied l2 regularization of 3 on the dense layers only. The networks were trained using mini-

batch gradient descent with shuffled batches of size 50 and Adam [60] optimizer. We adopted
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an early stopping criterion for the training process and stopped model training if the validation

loss did not decrease for 5 epochs. To address the class imbalance problem, we over-sampled

the negative class and the positive class by a factor of 12 and 1.35 respectively. The hyper-

parameters of both the neural networks were determined using 5-fold cross validation and are

available in S2 Table. The code as well as the data used for the CNNs is available at the Com-

plex System Laboratory, IIIT-Delhi’s GitHub page: https://github.com/cosylabiiit/spice-

disease-associations.

Evaluation metrics

We evaluated the performance of our model based on its precision, recall, F1 score and accu-

racy: Precision = TP/(TP + FP); Recall = TP/(TP + FN); F1 − score = 2 � Precision � Recall/(Preci-
sion + Recall); Accuracy = TP + TN/(TP + TN + FP + FN), where TP, FP, TN, FN are True

Positives, False Positives, True Negatives and False Negatives respectively.

MeSH hierarchy

MeSH is a controlled vocabulary of biomedical terms curated and developed by National

Library of Medicine. The terms are hierarchically organized from generic to more specific.

The DNER tool used in this study (TaggerOne [19]) normalizes the tagged entities to MeSH

IDs. The hierarchical structure of MeSH results in situations where a spice is typically associ-

ated with a disease at multiple levels of specificity. For example, in the first level of MeSH hier-

archy a spice may be linked with the disease category Endocrine System Diseases (C19) and at

the second level C19 may be associated with sub-categories such as Adrenal Gland Diseases

(C19.053) or Diabetes Mellitus (C19.246). Further, it may be linked to the specific type of Dia-

betes Mellitus, say, ‘Diabetes Mellitus, Type 1 (C19.246.267)’ or ‘Diabetes Mellitus, Type 2

(C19.246.300)’ appearing at the third level. We conducted a multi-level analysis by associating

spices with disease terms at top three levels of MeSH hierarchy which were referred to as cate-

gory, sub-category, and a disease (S1 Fig).

Adverse and benevolent spectrum scores

The ‘spectrum score of a spice (Os)’ encodes diversity of adverse (O
�

s ) or therapeutic (O
þ

s )

effects of a spice s across the MeSH disease categories as well as their constituent subcategories,

Fig 9. Architecture of the Convolutional Neural Network. Illustration of the convolutional neural network model utilizing word, position, part of speech and chunk

embeddings.

https://doi.org/10.1371/journal.pone.0198030.g009
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and is defined as Os ¼ D̂s �
PD

i d̂
i
s=d

i. Here, D is total number of MeSH disease categories, D̂s

represents the number of disease categories with which spice s has therapeutic association

with, di represents the total number of disease sub-categories in the ith disease category, and d̂ is
represents the number of disease subcategories in the ith disease category with which the spice

s is associated. When calculating the ‘spectrum scores’ across all 27 categories, the ‘adverse

spectrum score’ and ‘benevolent spectrum score’ vary between 0 and 729. Further, for each

spice the ‘relative benevolence’ (DOs ¼ O
þ

s � O
�

s ) that encodes its residual therapeutic benefit

was computed.

‘Therapeutic tradeoff score’ for culinary recommendations

Category-specific (benevolence and adverse) spectrum score was defined as O
i
s ¼ d̂

i
s �
Pdi

k âks=ak.

Here, d̂ is represents the number of disease sub-categories in the ith disease category with which

spice s has therapeutic association with, αk represents the total number of diseases in the kth dis-

ease sub-category, and âks represents the number of disease subcategories in the kth disease sub-

category with which the spice s is associated. The ‘therapeutic tradeoff score’, DO
i
s, represents

the difference between the ‘benevolence spectrum’ and ‘adverse spectrum’ of spice s for category

i; the higher the tradeoff score of a spice the better is its therapeutic value against the spectrum

of diseases represented by this category. Thus, tradeoff score of a spice serves as a basis for its

recommendation against a MeSH disease category.

Linking phytochemicals from spices/herbs to diseases

We obtained the phytochemical information for spices/herbs using KNApSAcK [21] and CTD

[22]. The different compound identifiers were standardized to PubChem IDs and further Pub-

Chem BioAssay [40] was used for ascertaining their bioactive status. Therapeutic associations

of a compound were obtained from CTD [22] after mapping its PubChem ID to correspond-

ing MeSH ID.

Supporting information

S1 Fig. Hierarchical structure of MeSH disease headers. For the purpose of multi-level analy-

sis, spices were associated with disease terms at three levels of MeSH hierarchy—‘category’,

‘sub-category’ and a ‘disease’.

(TIF)

S2 Fig. Correlation between the number of phytochemicals in spices and their broad-spec-

trum benevolence. The data indicate that the broad-spectrum benevolence score of spices and

their phytochemical repertoire are not correlated.

(TIFF)

S3 Fig. Comparison of the number of associations obtained for spices reported by our

study with that of NutriChem [15,16] indicating richer associations in our data.

(TIFF)

S4 Fig. Comparison of associations retrieved for ‘individual spices’ by NutriChem[15,16]

to those from our study, suggesting better depth/coverage in the latter.

(TIFF)

S1 Table. Top ten broad spectrum spices and number of MeSH disease categories and sub-

categories with which they are positively associated.

(DOCX)
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S2 Table. Hyper-parameters selected for the convolutional neural network Model 2 and

Model 3.
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S1 Dataset. Statistics of positive and negative spice-disease associations for each spice.

(XLSX)

S2 Dataset. Statistics of positive and negative associations as well as number of spices, at

the third level of MeSH.

(XLSX)

S3 Dataset. Statistics of positive and negative associations as well as the number of spices

at the third level of MeSH disease hierarchy.

(XLSX)

S4 Dataset. Statistics of positive and negative associations as well as the number of spices

at the second level (sub-category) of MeSH disease hierarchy.

(XLSX)

S5 Dataset. Benevolent, adverse as well as relative benevolence scores for all spices.

(XLSX)

S6 Dataset. List of culinary recommendations against various disease categories.

(XLSX)

S7 Dataset. Tripartite associations for a spice and a disease along with specific phytochem-

icals reported to be involved in the therapeutic action.
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S8 Dataset. Statistics of spice-disease associations for which bo specific phytochemicals

were ascertained.
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