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Influence of benthic currents 
on cold‑water coral habitats: 
a combined benthic monitoring 
and 3D photogrammetric 
investigation
Aaron Lim1*, Andrew J. Wheeler1,2, David M. Price3, Luke O’Reilly1, Kimberley Harris1 & 
Luis Conti4

Strong currents are a key component of benthic habitats by supplying food and nutrients to filter-
feeding organisms such as cold-water corals. Although field measurements show that cold-water 
coral habitats exist in areas of elevated bottom currents, flume studies show that cold-water corals 
feed more effectively at lower flow speeds. This research aims to explore this disconnect in situ by 
utilising high spatial resolution ROV photogrammetric data coupled with high temporal resolution 
in situ acoustic doppler current profile measurements at seven study sites within the upper Porcupine 
Bank Canyon (uPBC), NE Atlantic. Object-based image analysis of photogrammetric data show that 
coral habitats vary considerably within the upper canyon. Although there is a regional hydrodynamic 
trend across the uPBC, this variation is likely driven locally by topographic steering. Although live 
coral tends not to face directly into the prevailing current direction, preferring lower local flows 
speeds, they can tolerate exposure to high-flow speeds of up to 114 cm s−1, the highest recorded in 
a Desmophyllum pertusum habitat. Not only do these high flow speeds supply food and nutrients, 
they may also help contribute to coral rubble production through physical erosion. These results can 
be incorporated into simulations of future deep-water habitat response to changing environmental 
conditions while extending the upper current speed threshold for cold-water corals.

Cold-water corals (CWC’s) such as Desmophyllum pertusum (recently synonymised from Lophelia pertusa1) 
and Madrepora oculata form three-dimensional, calcium carbonate skeletons that create frictional drag with the 
current, baffle sediments and create habitat for other organisms2–12. Continuous growth of such reef-building 
framework, accumulation of sediment and production of autochthonous coral rubble can lead to the develop-
ment of a CWC reef or mound structure where all environmental conditions are suitable6,7,13–19. These structures 
range in height from < 5 m to > 100 m and range from tens of metres to several kilometres long2,20–26. CWC’s don’t 
always necessarily form reefs and mounds, they also generate habitats with accumulations of coral that do not 
generate topographic highs, so called CWC “gardens” or CWC “thickets”27–29. In either case, biodiversity and 
biomass in CWC habitats is significantly higher than in their surrounding areas30.

CWC habitats have been mapped to understand their occurrence, development and environmental tolerances 
in many parts of the world e.g. the Irish margin22,31, Gulf of Mexico24,32, the Scottish margin33, the Mediterranean34 
and the Norwegian margin9,35–37. In many cases, sedimentary geomorphic features such as sediment waves and 
seabed scours exist in CWC habitats, demonstrating a correlation between CWC’s and intensified currents21,38–40. 
Clear examples evidencing this association can be found in Rebesco and Taviani41. This is supported by spe-
cies distribution modelling studies that reveal in further detail that CWC distribution is influenced by current 
velocities33,40,42–44.

With progressively higher resolution mapping methodologies available (e.g. ROV- and AUV-mounted multi-
beam surveys), repeat mapping can be utilised to monitor the temporal dynamics in CWC habitats. Repeat 
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side scan sonar mapping and ROV video data at the Darwin Mounds, NE Atlantic (UK waters) demonstrates 
the low-recovery rates of trawled CWC habitats over a period of 8 years45. Results from repeat imaging of the 
Piddington Mound the NE Atlantic (Irish waters) show that changes in biodiversity and sediment facies can be 
significant over 4 years46,47. As such, there is a need for local-scale CWC habitat research48.

Whilst repeat mapping occurs on longer time scales, gaining an understanding of the environment that CWC 
reside in requires in situ monitoring that achieves high resolution temporal data. Current speed data from various 
CWC habitats in the NE Atlantic, spanning periods 2 to 3 weeks, show that dense coral occurrences coincide 
with intensified bottom currents and further consider current regime an important CWC mound-building 
influence49,50. Longer term monitoring (up to 1 year) has shown that CWC’s live in energetic environments 
with high current speeds that may prevent sedimentation but provide sufficient food for corals to survive8,51–57.

CWC’s benefit from enhanced bottom currents. This is evidenced spatially by local scale seabed erosion 
or sediment transport features58 and temporally by in situ measurements56. Although current speeds of up to 
60 cm s−1 have been measured at CWC’s habitats in the Gulf Stream59, Dorschel et al.38 and Huvenne et al.21 that 
at some threshold the current may inhibit CWC mound development At some upper current speed threshold 
however, the current may inhibit CWC mound development. In contrast to this, flume tank studies show that the 
corals themselves capture food more effectively at lower flow speeds60,61 and as such, quantified understanding 
of the effect of currents on CWC habitats is required. This research aims to quantitatively characterise several 
CWC habitats in the upper Porcupine Bank Canyon (uPBC), NE Atlantic and determine the effect of currents on 
their surface coverage (live, dead coral and coral rubble) using a unique combination of high resolution spatial 
and temporal datasets. Understanding the effect of currents on CWC status is essential to predict how they will 
respond to a changing climate62.

Porcupine Bank Canyon.  The Porcupine Bank Canyon (Fig. 1) is a tectonically-controlled, north-east to 
south-west trending submarine canyon on the Irish-Atlantic margin63,64 with an inferred fault-scarp exposed 
along the eastern canyon flank in the upper canyon. Phosphatic-rich authigenic deposits indicate high biological 
productivity and low sedimentation rates65. The upper canyon exhibits CWC mound features between 550 and 
900 m water depth, ranging from 50 to 200 m in height and 900 m to 2000 m in diameter65,66. Mound features are 
steep-sided and occur in clusters with a predominant north-west crest-alignment. The eastern canyon is domi-
nated by compact sand and iceberg ploughmarks while mobile sand exists proximal to the mound clusters65. 
The main CWC-influencing water masses in the region at these depths are the warm, saline, northerly-flowing 
Eastern North Atlantic Water (ENAW) at 700 m water depth and Mediterranean Outflow Water (MOW) which 
can be characterised by a salinity high between 800 and 1000 m water depth and a permanent thermocline40,67. 
The NW Porcupine Bank is known for enhanced bottom currents67 which is also true locally on the shelf where 
sedimentary bedforms such as sediment drifts suggest that the prevailing current flows northward and is heavily 
directed by the local topography65.

Materials and methods
Seven study sites were identified within the uPBC for this study (Fig. 1). Sites were chosen to encompass coral 
and non-coral habitats within the full geographic extent of the uPBC, as well as distinct seabed morphological 
features (e.g. mounds, ridges, flat areas and channels). This ensures that the research accurately represents the 
upper canyon.

Multibeam bathymetry.  Vessel-mounted multibeam echosounder data were collected over the uPBC area 
during the following research cruises on board the RV Celtic Explorer: QuERCi I (cruise number CE15009: 
Wheeler et  al.68); CoCoHaCa II (cruise number CE18011: Lim et  al.69) and; MoCha_Scan I (cruise number 
CE19008: Lim et al.70) imaging a total of 2055 km2. Data were acquired using a Kongsberg EM302 operated at 
a frequency of 30 kHz with a vessel survey speed of 8 knots. This achieved a swath width of approx. 2500 m. 
Positioning and attitude data were obtained using a C-Nav positioning system and Kongsberg SeaPath attitude 
sensor system respectively. Data acquisition was planned and managed within the SIS software suite, where 
calibration values, sensor offsets, real-time sound velocity, navigation and attitude data were incorporated. The 
MBES data were stored as *.all and *.wcd files and were processed and cleaned using QPS Qimera. The cleaned 
data were saved as a single *.xyz and gridded to a 25 m ArcView GRID. The gridded data were projected in UTM 
Zone 28 N and in ArcMap 10.4, slope angles (in degrees) were calculated from the bathymetric grid.

Photogrammetry.  ROV video data were acquired to create Structure-from-Motion (SfM) photogrammet-
ric reconstructions of CWC habitats within the uPBC. All ROV video data were acquired during research cruises 
on the RV Celtic Explorer using the Holland 1 ROV: MoCha_Scan I (cruise number CE19008:70) and; MoCha_
Scan II (cruise number CE19014: Lim et al.71). At each study site (Fig. 1), high-definition video data (1080p) 
were acquired at 50 fps. During acquisition, using an altimeter, the ROV maintained a height of approx. 2 m 
above the seabed to achieve a consistent field of view. At > 2 m from the seabed, the ability to clearly identify coral 
was hampered due to lack of light while at heights of < 2 m from the seabed, ROV thrusters would occasionally 
cause sediment resuspension and provides a narrower field of view. These data were not included in the photo-
grammetric reconstruction. 12 lights ranging from 250 to 400 watts were attached to the ROV at a fixed angle 
in order to maintain consistent illumination within the field of view. ROV positioning data were recorded using 
a Sonardyne Ranger 2 Ultra Short Baseline (USBL) beacon which were further corrected by an IXBlue Doppler 
Velocity Logger (DVL). In order to capture the 3D nature of the CWC frameworks, the camera was mounted at 
an oblique angle and the ROV manoeuvred in a spiral survey design to ensure high image overlap [e.g.46]. The 
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Figure 1.   (i) map showing the location of the Porcupine Bank Canyon on the Irish continental shelf; (ii) 
bathymetric map showing the overall canyon geography; (iii) bathymetric map of the upper Porcupine Bank 
Canyon area showing main geomorphic features and study sites (a–g); (iv) close-up bathymetric data showing 
current-aligned scours in the lee of coral mound features; and (v) schematic adapted from Mazzini et al.65 
showing salinity profiles and water masses within the upper Porcupine Bank Canyon. The depth distribution of 
study sites is indicated by a double-sided arrow within the ENAW. Maps created using ArcGIS Desktop v10.6 
(www.arcgi​s.com).

http://www.arcgis.com
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ROV maintained a survey speed of approx. 0.4 knots. A set of laser scalers set at 10 cm apart, pointed at the field 
of view, were used as a scale reference. All video data were formatted and saved as *.mov.

Images were extracted at a rate of 1 image per second from the video data using Blender (v2.78). Image data 
for each site were imported to Agisoft Metashape. The process of generating a digital elevation model (DEM) 
and orthomosaic were carried out as specified by the Agisoft Metashape user manual and has shown accurate 
results in cold-water coral habitats72. Study-specific settings include “high-quality” for image alignment and 
“high-quality” for dense cloud reconstruction. Dense clouds were cleaned using the gradual selection toolbar 
and manual editing. Using a combination of laser-scales, USBL positioning and known sizes and positions within 
the images (e.g. the lander frame size and position), the dense clouds were scaled and georeferenced. Dense 
clouds were optimised and DEM’s and orthomosaics were generated at approx. 7 mm pixel resolution. DEM’s 
and orthomosaics were projected in UTM 28 N and saved as *.tif formatted images. Terrain variables (slope and 
aspect) were derived from the DEM’s using ArcGIS ToolBox.

Marine object‑based image analysis.  Object-based Image Analysis (OBIA) is a widely used and auto-
mated image analysis methodology that involves 2 main steps: the grouping of image pixels into homogenous 
regions based on digital numbers into segments of meaningful information (segmentation) and; the assigning 
of these polygons/segments to specified classes (classification). The method has already been applied to CWC 
habitat photogrammetric data with successful results73. As such, segmentation and classification carried out 
here closely follow the methods of Conti et al.73. All data (DEM’s, orthomosaics and slope) were imported to 
eCognition Developer. A segmentation algorithm was applied to the imported dataset, with a scale parameter of 
1400. Five classes were identified based on the aim of the study and classes identified by similar research74. The 
identified classes, henceforth termed facies, are Live Coral Framework (LCF), Dead Coral Framework (DCF), 
Soft Coral (Leiopathes sp.) (SC), Coral Rubble (CR) and Sediment (S). Each segment was individually inspected 
by an expert operator, who trained the data by manually assigning a minimum of 50 polygons to each class. The 
eCognition Nearest Neighbour classification tool was applied, which classified all segments based on their simi-
larity to the training samples. The classified segments were manually inspected to ensure consistency of results. 
An accuracy assessment was carried out using eCognition’s accuracy assessment tool and a subset of training 
samples, which showed an overall accuracy of 75.5%. Aspect, which was derived from the DEM within ArcGIS 
ToolBox, shows the azimuthal direction of the steepest slope within the analysis window75. The segments which 
were classified as LCF were then used to extract the aspect values within these LCF areas. The resulting segments 
show the azimuthal direction that the coral colonies and branches are facing.

Benthic monitoring.  To measure temperature, current speed and direction at the study sites, a Nortek 
1 MHz Aquadopp Acoustic Doppler Current Profiler (ADCP) was deployed at each site by ROV. ADCP’s were 
mounted on weighted negative buoyancy aluminium frames (“landers”). The landers were tested in a flume tank 
within a laboratory which showed that a current speed in excess of 110 cm s−1 was the threshold required to 
move the lander across a frictionless surface. The ADCP’s were upward-facing at approx. 1.5 m off the bottom and 
measured current speed (cm s s−1), direction (°), temperature (°C), tilt, pitch and roll at 10-min intervals ~ 1.4 m 
above the sensor head (~ 3 m above the bottom) from approx. May 15th 2019 to July 30th 2019. Current speeds 
can be measured from 0 to 10 m s−1 with an accuracy of ± 1% of measured value ± 0.5 cm s−1. Temperature can 
be measured from − 4 to + 40 °C with an accuracy of 0.1 °C. All ADCP data were imported to Nortek-specific 
ADCP processing software which removes low-quality data (only observed during deployment and retrieval 
periods) and anomalous data spikes. All data were added to an SQL database format where mean current speeds 
could be queried when the current was opposing the LCF segments aspect value at each study site (known as the 
coral-facing mean current speed). This differs from the mean current speed, which describes the overall mean 
current speed at that study site while the mean coral-facing current speed describes the mean current speed 
when the current is flowing directly towards the coral aspect.

Results
Canyon geomorphology.  The bathymetric coverage (Fig. 1) reveals the PBC covers an area of 2055 km2 
ranging from − 450 to − 3300 m water depth. The canyon has an asymmetrical morphology with a steeply slop-
ing eastern canyon flank, believed to be tectonically controlled, and a gently sloping western canyon flank. There 
are a number of slope-incising channels near the base of the north, east and western canyon flanks. There are two 
main sinuous channels that exist within the canyon. Although both channels are broadly parallel to the canyon’s 
orientation, the westernmost of these channels is considerably wider and deeper. At the south of the eastern 
canyon flank, the southern canyon branch, a feeder canyon, exits into the main canyon. Where it intersects the 
main canyon, the slope has a ‘step-like’ morphology. The eastern canyon wall is considerably steep (approx. 60 to 
70 degrees) and reaches up to 800 m in height and 35 km in length. Coral mound features exist between − 550 
and − 900 m water depth at the canyon head (north), the eastern canyon flank and the southern canyon branch. 
In the north, coral mound features exist as a series of elongate canyon-parallel ridges that range from 50 to 250 m 
in height. On the eastern canyon flank, coral mounds form a 30 m to 50 m tall multi-summited ridges of coral 
carbonates along the canyon extending for approx. 30 km. In addition to this ridge of coral carbonate, elongate 
coral mounds exist along the shelf at the eastern canyon flank. Although these elongate mounds are not physi-
cally connected, they have a linear north-east to south-west distribution. Large scour pits exist on the northern, 
lee-side of coral mound features on the canyon shelf. The southern feeder canyon has a dense cluster of coral 
mounds along the canyon break. Mound features range from 60 to 200 m in height and are typically elongated 
in an east–west direction. In some cases, these elongated mounds appear to intersect forming a more complex 
morphology.
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Habitat characterisation.  A total of 7 reconstructions were generated utilising ROV-image data from each 
study site (Table 1, Fig. 2). Reconstructions are typically 76 m2 with the exception of the models from study site 
“c” and “d” which are 309 m2 and 703 m2 respectively. Range in reconstruction size in the coral areas is a result 
of the rejection of low-quality data around the edges of the models or insufficient image data to expand recon-
struction range. An inspection of classification results showed no significant changes in results when reducing 
the reconstructions of models from study sites “c” and “d” to a similar sized area focussed around the immediate 
lander deployment spot within both study sites when compared to the full study site classification result. 

Derived digital elevation models (DEMs) and aspect maps for each study site are presented in Fig. 3. Descrip-
tions of the DEMs and aspect maps are presented by study site below (see Sects. 3.2.1 to 3.2.7).

Each study site orthomosaic is classified into facies using Object based Image Analysis (OBIA). The resultant 
map outputs are presented in Fig. 4 and their percentage facies composition is presented in Fig. 5. The data is 
descripted by study site below (see Sects. 3.2.1 to 3.2.7). Maps created using ArcGIS Desktop v10.6 (www.arcgi​
s.com).

The seven ADCP’s monitored current speed, direction and temperature for 1 min every 10 min during 
the period spanning the 13th of May 2019 to 31st of July 2019. All lander-mounted ADCP’s were successfully 

Table 1.   Model position, depth area and location within the canyon and live coral orientation. *not applicable 
as there is no coral at this location.

Study site Model reference Latitude Longitude Depth (m) Location Coral presence
Live coral 
orientation

a MS2_D3 52.004 − 14.98886 − 697 Eastern canyon flank Yes South east

b MS1_D10 51.9735 − 15.04167 − 606 Eastern canyon flank Yes North east

c MS1_D4 51.9832 − 14.999 − 645 Eastern canyon flank Yes North

d MS1_D8 51.8701 − 15.03356 − 685 Southern canyon 
branch Yes North east

e MS1_D2 52.2273 − 14.92565 − 719 Canyon head Yes West

f MS1_D5 51.9837 − 15.01927 − 720 Eastern canyon flank No not applicable*

g MS1_D1 52.244 − 14.87962 − 839 Canyon head No not applicable*

Figure 2.   Example of an orthomosaic created in this study and example facies: (a) close up example image from 
the SC (Leiopathes sp.) facies; (b) close up example image from the CR facies; (c) close up example image from 
the DCF facies; (d) close up example image from the LCF facies; (e) example of the Study Site “d” orthomosaic. 
Maps created using ArcGIS Desktop v10.6 (www.arcgi​s.com).

http://www.arcgis.com
http://www.arcgis.com
http://www.arcgis.com
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retrieved within their original location with the exception of those deployed at study site “a” study site “b” where 
the landers had fallen over due to high current speeds during the deployment period. Using the attitude data 
stored within the ADCP raw data file, the time and date that the sensor fell over was determined and therefore 
only data from before this period were included in the study.

Study site “a”.  Study site “a” occurs near the edge of the eastern canyon flank (Fig. 1). It is part of a larger, 
approx. 30 m tall ridge feature that extends north–south, parallel to the canyon edge. At − 697 m water depth, 
the site covers an area of 85 m2 (Fig. 3). The most common facies is the CR facies (82%), the highest proportion 
of CR facies within the study (Figs. 4, 5). Soft corals (Leiopathes sp.) were not observed at the study site. The site 
ranges from − 695 to − 698 m (Fig. 3a) water depth and has an aspect predominantly south to south-east. Simi-
larly, the LCF facies predominantly has an aspect to the south-east (Fig. 4; Table 1). The ADCP at study site “a” 
successfully recorded data for a period of 27 days, measuring a max current speed of 114.2 cm s−1, the strongest 
recorded from all the study sites, and average current speed of 31.3 cm s−1, also the highest, before falling over 
(Table 2). Currents here spend most time flowing in a certain direction where the flow > 30 cm s−1 (Fig. 6). The 
current flows at < 5 cm s−1 for 1.6% of the time, < 10 cm s−1 for 8% of the time and > 30 cm s−1 for 46% of the time. 

Figure 3.   Digital elevation models (DEM’s) and aspect maps of each study site.
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The effect of the tide is relatively low here, where the current flows predominantly in a southerly direction. The 
average recorded temperature during the deployment period is 9.4 °C (Table 2).

Study site “b”.  Study site “b” occurs near the edge of the eastern canyon flank (Fig. 1). It is part of the same 
ridge feature that study site “a” occurs on albeit considerably further south (10 km). However, study site “b” 
occurs near a break in the ridge feature. This break is orientated towards the canyon axis. At − 606 m water 
depth, the study site covers an area of 135 m2 (Fig. 3). It is characterised by approximately equal proportions of 
LCF facies (33.8%), DCF facies (28.3%) and CR facies (33.5%) (Figs. 4, 5). The site ranges from − 604 to − 608 m 
water depth (Fig. 3b). While the site has a range of aspect values, the LCF facies predominantly has an aspect 
to the north-east (Fig. 4; Table 1). The ADCP at study site “b” successfully recorded data for a period of 4 days, 
measuring a max current speed of 75.9 cm s−1 and average current speed of 24 cm s−1 (Table 2). Currents flow in 
all directions but the strong flows are predominantly in a westerly direction (Fig. 6). However, it flows in other 
directions with tidal flow. The current flows at < 5 cm s−1 for 5.4% of the time, < 10 cm s−1 for 28% of the time 
and > 30 cm s−−1 for 37% of the time. The average recorded temperature during the deployment period is 9.2 °C 
(Table 2).

Study site “c”.  Study site “c” occurs on an isolated coral mound feature on the eastern canyon flank (Fig. 1). The 
mound is slightly elongate in an east to west orientation. It is 320 m in length and 80 m in height at its summit. 
Although it is surrounded by flat seabed, it is part of a cluster of other coral mounds. At − 645 m water depth, 
the study site covers an area of 309 m2 (Fig. 3). It is characterised by LCF facies (45%), DCF facies (33.1%) and 
CR facies (21.9%) (Figs. 4, 5). The site ranges from − 641 to − 643 m water depth (Fig. 3c) and has a typical 
aspect of south-east. The LCF facies typically have a northern aspect (Fig. 4; Table 1). The ADCP at study site 
“c” successfully recorded data for a period of 66 days, measuring a max current speed of 49.9 cm s−1 and average 
current speed of 17.3 cm s−1 (Table 2). Currents here predominantly flow in a north north-easterly direction with 
no apparent tidal influence (Fig. 6). The current flows at < 5 cm s−1 for 3.5% of the time, < 10 cm s−1 for 16.7% of 
the time and > 30 cm s−1 for 5% of the time. The average recorded temperature during the deployment period is 
9.6 °C (Table 2).

Study site “d”.  Study site “d” occurs on a north-east to south-west coral ridge feature along the southern feeder 
canyon ridge (Fig. 1). The ridge extends from the head of the southern canyon branch, along the edge of the 
northern flank for approx. 9.7 km. From the canyon head, it can be traced back to escarpment features along the 
southern canyon flank. At − 685 m water depth, the study site covers an area of 703 m2 (Fig. 3). It is predomi-
nantly covered by LCF facies (77.9%) but also has CR facies (9.63%), DCF facies (5.24%) and SC (Leiopathes sp.) 
facies (7.23%) (Figs. 3, 4). The site ranges from − 681 to − 689 m water depth (Fig. 3d). Although the site has a 
range of aspect values, the live coral has a predominant aspect to the north-east (Fig. 4; Table 1). The ADCP at 
study site “d” successfully recorded data for a period of 67 days, measuring a max current speed of 66.3 cm s−1 
and average current speed of 25.4 cm s−1 (Table 2). Currents here predominantly flow in a north-westerly direc-
tion with no apparent tidal influence (Fig. 6). The current flows at < 5 cm s−1 for 1% of the time, < 10 cm s−1 for 
6% of the time and > 30 cm s−1 for 31% of the time. The average recorded temperature during the deployment 
period is 9.6 °C (Table 2).

Figure 4.   Object-based classification results of study sites (a–g) with the location of ADCP (x symbol) and 
aspect of the LCF facies (arrow). Maps created using ArcGIS Desktop v10.6 (www.arcgi​s.com).

http://www.arcgis.com
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Figure 5.   Map showing study site facies proportions created using ArcGIS Desktop v10.6 (www.arcgi​s.com).

Table 2.   ADCP data from each study site showing mean and max current speeds, the aspect of live coral 
frameworks, mean current speed when the current is flowing directly into these frameworks (‘coral-facing 
mean current speed’) and temperature data.

Study site
Dominant current 
direction (degrees)

Overall current 
speed (cm s−1)

Live coral orientation
Coral-facing mean 
current speed (cm s−1)

Temperature (°C)

Mean Max Mean Min Max

a South (185) 31.3 114.2 South east 21.9 9.4 8.9 9.8

b West (275) 24.0 75.9 North east 21.5 9.2 9.1 9.4

c North east (40) 17.3 49.9 North 9.0 9.6 8.8 10.0

d North west (325) 25.4 66.3 North east 7.0 9.6 8.6 10.1

e North east (45) 9.4 55.7 West 8.0 9.4 8.5 9.9

f North (5) 9.7 34.1 na na 9.5 8.7 9.9

g South (175) 18.2 56.4 na na 8.6 7.7 12.3

http://www.arcgis.com
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Study site “e”.  Study site “e” occurs on a coral mound feature at the canyon head (Fig. 1). The mound has an 
“s-shaped” morphology, which is elongate from north to south. It is separated from a similar mound-like feature 
by a defined north–south channel. The mound is 1.3 km in length and 120 m in height. At − 719 m water depth, 
the study site covers an area of 73 m2 (Fig. 3). It is predominantly covered by LCF facies (57.6%) but also has 
CR facies (2.96%), DCF facies (38.7%) and S facies (0.65%) (Figs. 4, 5). The site ranges from − 718 to − 719 m 
water depth (Fig. 3e). Although the site has a range of aspect values, the LCF facies has a predominant western 
aspect (Fig. 4; Table 1). The ADCP at study site “e” successfully recorded data for a period of 66 days, measuring 
a max current speed of 55.7 cm s−1 and average current speed of 9.4 cm s−1, the lowest average recorded (Table 2). 
Currents here have a bi-modal orientation where the stronger flow (mode 1) is to the north-east and the slightly 
weaker flow (mode 2) is to the south-west, presumably related to tidal energy. The current flows at < 5 cm s−1 for 
11% of the time, < 10 cm s−1 for 36% of the time and > 30 cm s−1 for 2% of the time. The average recorded tem-
perature during the deployment period is 9.4 °C (Table 2).

Study site “f ”.  Study site “f ” occurs in an off-mound setting on the eastern canyon flank ridge (Fig. 1). The 
seabed is largely flat and featureless, approximately 330 m north east from the canyon edge (Fig. 3). The area 
has previously been described as having compact or mobile sands (Mazzini et al.65). At − 720 m water depth, 
the study site covers an area of 34 m2 and is covered only by S facies (100%) with no coral (Figs. 4, 5). The site 
ranges from − 719 to − 720 m water depth (Fig. 3f). As the area is flat with no topographic expression, there is 
no prevailing aspect. The ADCP at study site “f ” successfully recorded data for a period of 66 days, measuring 
a max current speed of 34.1 cm s−1, the weakest maximum current speed from all the study sites, and average 

Figure 6.   Map-orientated current speed rose diagrams. Map created using ArcGIS Desktop v10.6 (www.arcgi​
s.com).
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current speed of 9.75 cm s−1 (Table 2). Currents here predominantly flow in a northerly direction but also flows 
to the south under the influence of the tide. The current flows at < 5 cm s−1 for 19% of the time, < 10 cm s−1 for 
58% of the time and > 30 cm s−1 for < 0.1% of the time. The average recorded temperature during the deployment 
period is 9.4 °C (Table 2).

Study site “g”.  Study site “g” occurs within a channel at the canyon head (Fig. 1). The channel is slightly bent 
from the north-east, exiting to the south, into the canyon head. It is flanked by ridge features on either side, 
which are parallel with the channel axis. At − 839 m water depth, the study site covers an area of 51 m2 (Fig. 3) 
and is only covered by S facies (100%) (Figs. 4, 5). The site ranges from − 838 to − 840 m water depth (Fig. 3g). 
As the area is flat with no topographic expression, there is no prevailing aspect. The ADCP at study site “g” suc-
cessfully recorded data for a period of 66 days, measuring a max current speed of 56.4 cm s−1 and average current 
speed of 18.22 cm s−1 (Table 2). Currents here have a bi-modal orientation where the stronger flow (mode 1) is 
to the north and the weaker flow (mode 2) is to the south presumably related to tidal effects. The current flows 
at < 5 cm s−1 for 4% of the time, < 10 cm s−1 for 15% of the time and > 30 cm s−1 for 7% of the time. The average 
recorded temperature during the deployment period is 8.6 °C, the lowest mean temperature and also the site 
with the highest variation in temperature with a maximum temperature of 12.3 °C reached (Table 2).

Discussion.  This research presents the findings of 7 ADCP’s deployed in the uPBC over a period of approx. 
75 days. At a depth range of − 606 to − 839 m and with a mean temperature range recorded during the deploy-
ment period of 8.6–9.6 °C, the study sites are located within the ENAW (Fig. 1; 700 m)65. At the Porcupine Bank 
Canyon, the ENAW regionally flows from the south to the north65,76. Large scour pits (Fig. 1) located on the 
northern, lee-side of coral mound features on the canyon shelf confirm this regional northerly current direction. 
The presence of such large scour pits likely reflect the long-term, net effect of the regional current in shaping 
the seabed. Moreover, the ADCP data from study site “f ” (Fig. 6), where there is no topographic steering clearly 
demonstrates this flow direction. However not all study sites show this regional trend as considerable variation 
between current speed and direction at each study site suggests a strong local control. Currents deviate from 
this regional flow direction in the presence of topographic features such as the canyon ridge (study sites “a”, “b” 
and “d”), coral mounds (study sites “c” and “e”) and channels (study site “g”). The areas that deviate most from 
this regional trend are all located along the edge of the canyon (study sites “a”, “b” and “d”) (Fig. 6). These study 
sites also have the highest mean flow speeds (24–31.3 cm s−1). This localised increase in flow speed and devia-
tion from the regional flow direction clearly demonstrates the ability of the canyon to steer and locally enhance 
flow speed77. The fact that study site “f ” is only 330 m from the canyon with relatively low mean and max cur-
rent speeds (9.7 cm s−1 and 34.1 cm s−1 respectively) and does not deviate from the regional trend suggests that 
although the influence of the canyon on hydrodynamics is not widespread, it is local and intense. It is also worth 
mentioning the scale of the observations within this study. Only study sites “f ” and “g”, which were not proximal 
to local bathymetric highs, flow with the regionally northerly flowing ENAW. All other study sites, which are on 
or proximal to local bathymetric features, deviate from this direction. This is to be expected, given how close the 
ADCP’s are to the seabed where local obstacles will have a stronger impact.

Study site “c” which occurs on a coral mound at the canyon flank has a moderate mean current speed of 
17.3 cm s−1 and flows directly to the north east (Fig. 6). This coral mound is likely generated by the growth of 
coral and subsequent baffling of current-suspended sediment, like many coral mound features on the Irish margin 
[e.g.22]. The deviation of the current from its regional northerly trend demonstrate the ability of the coral habitat 
to develop its own feedback cycle with the current.

The highest maximum current speeds recorded in the uPBC are 114 cm s−1 and 75.9 cm s−1 which occur at 
study sites “a” and “b” respectively, at the canyon ridge. Both ADCP lander frames fell over during the deploy-
ment period. During an initial sea acceptance trial of these systems, a current speed in excess of 110 cm s−1 was 
required to move these on a frictionless surface. Although the seabed was slightly sloping, the landers toppled 
upslope. As such, it is likely that both sites experienced current speeds greater than 110 cm s−1 to topple them.

Geophysical data shows that mound distribution in the uPBC is controlled largely by antecedent topography 
such as the canyon edges and escarpments65. Coral (study sites “a”, “b”, “c”, “d”, and “e”) and non-coral (study sites 
“f ” and “g”) habitats are clearly different in terms of surface facies coverage (Fig. 5). Non-coral bearing habitats 
in this study are exclusively covered with sediment (100%), while the coral habitats have live and dead coral 
frameworks, coral rubble, soft coral and sediment. While coral habitats themselves are qualitatively similar, 
quantitatively, they exhibit considerable variation (Fig. 5). Habitats are either “coral rubble dominated” (> 50% 
CR) e.g. study site “a”, “live coral dominated” (> 50% LCF) e.g. study sites “d” and “e” or have mixed surfaces (all 
components < 50%) e.g. study sites “b” and “c”. All study sites recorded similar mean temperatures (8.6–9.6 °C) 
and exist within the same water mass (ENAW; Fig. 1). However, average current speeds in coral bearing habitats 
are notably higher (21.5 cm s−1) than in non-coral bearing habitats (13.9 cm s−1, and even 9.75 cm s−1 when 
excluding study site “g” which occurs within a channel at the canyon head which may be prone to higher current 
speeds). The variation in coral habitats (Fig. 5) does not follow a gradational spatial pattern across the canyon 
(i.e. changes from south to north). Local-scale hydrodynamics have previously been shown to produce clear 
variation in coral mound size and morphologies20,39 while local current direction has a significant influence on 
coral distribution51. As such, it is most likely that local hydrodynamic processes such as topographic steering 
influence habitat variability in the uPBC. This is consistent with previously reported research that shows that 
CWC habitats can be linked with enhanced bottom currents at various other locations in the NE Atlantic which 
can be attributed to food supply, sediment supply and waste removal38,49,53,78,79. However, whilst many studies 
have observed a relationship between coral and enhanced current speed, this research suggests that although 
coral habitats can survive at higher flow speeds, more coral grows in areas with lower flow speeds.
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There is a general trend where study sites with the highest proportions of coral rubble exist at progressively 
higher mean current speeds (Fig. 7). Coral rubble is typically produced through exposure at the surface for long 
periods which may lead to bioerosion or weakening of the coral framework80. With these measured high cur-
rent speeds and evidence of mobile sands in the area65, it is likely that higher current speeds mean prolonged 
exposure of coral frameworks due to an inhibition of sedimentation. Thus, the increasing trend of coral rubble 
with increasing current speed may be explained by enhanced bioerosion weakening the frameworks and even-
tual physical erosion of the framework under high current speeds. The restricted cover of live coral at sites that 
were exposed to current speeds of 75 cm s−1 and beyond would also support this idea. Physical erosion of other 
CWC habitats by currents has been observed to expose underlying coral frameworks and produce coral rubble46. 
Dorschel et al.38 describe an “environmental window” for which CWC mounds develop: lower current speeds do 
not support dense accumulations of coral while excessively strong current speeds may hamper mound growth. 
A limitation of this interpretation is that the presence of more coral rubble at sites with higher current speeds 
may also be related to less sediment deposition which may then result in visually more coral rubble than at sites 
with lower current speeds.

However, not all live coral frameworks face directly into the current (Table 2). When considering current 
flow velocity directly towards the live coral aspect, mean current speeds are lower, even up to 72% lower at study 
site “d” (from 25 to 7 cm s−1). Figure 8 shows the general trend of increasing live coral framework with decreas-
ing current speed when the current is flowing directly into the aspect of the live coral. This may suggest that 
direct currents are too strong at some sites and thus sub-optimal for coral growth. Although previous studies 
[e.g.8,21,38,49,55,59] show that coral prefer enhanced bottom currents, both Purser et al.61 and Orejas et al.60 utilise 
flume tanks to show that corals capture food more effectively at lower flow speeds (zooplankton at 2.5 cm s−1 
and phytoplankton at 5 cm s−1 in Orejas et al.60 only) with polyp expansion greatest at speeds of 0.5–6.7 cm s−1. 
Mortensen et al.37 noted that coral polyps exposed to a higher flow velocity in aquaria had a higher mortality 
rate. In support of these aquaria studies, this research provides in situ field evidence showing that the live coral 
did not face directly into the prevailing current. Moreover, when the current does flow directly towards the live 
coral colonies and branches, larger quantities of live coral exist at the sites with lower coral-facing mean current 
speeds. This is consistent with other parts of the Irish margin where although the CWC habitats exist in areas 
with high peak current speeds, on average the currents range between 10 and 15 cm s−18. Furthermore, live coral 
has been observed growing on the current-sheltered lee-slope of coral mounds (e.g. the Piddington mound and 

Figure 7.   Facies proportion organised by maximum current speed.

Figure 8.   Live coral proportion organised by mean current speed when the current is flowing directly against 
the aspect of the coral based on currents facing the corals.
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the Hedge mounds)38,74. However, this is not always the case as coral has also been reported on mound summits 
e.g. Dorschel et al.49 as well as the current-facing side of the mound structure36,53,81 at other locations. Figure 8 
also shows the percentage of time the current flows toward the coral aspect at speeds (2.5 cm s−1 and 5 cm s−1) 
identified by Orejas et al.60 at which food capture is most effective. This shows a trend of increasing LCF with 
increasing percentage of time at which the current flows towards the coral at those food capture effective speeds. 
For the reasons above, it appears that the corals favour lower flow speeds but can survive at higher flow speeds. 
However, it is important to note that Purser et al.61 and Orejas et al.60 are laboratory experiments that have been 
completed in flume tanks with single colonies and may behave differently from a reef structure. It is also known 
from cold as well as tropical corals that the 3D structure will influence flow on local scales which can influence 
flow patterns as well as influence feeding behaviour and sedimentation patterns. Furthermore, living prey were 
used in both flume experiments whose swimming capacity may also increase the difficulty to prey capture dur-
ing high flow speeds60. In addition, it is still unclear what the corals are likely feeding on in the PBC. Moreover, 
as the laboratory studies have been completed in flume tanks, the current is unidirectional and will not change 
during tidal cycles. As such, comparison between the flume study and in situ results presented herein should 
be made with caution.

Many of the study sites show a tidal signature (a, b, e, f, g; Fig. 6). This is likely a semi-diurnal tidal current 
which has been measured at this side of the Rockall Trough8. These tidal currents may be of extreme importance 
to the corals and their orientation (growth direction). Firstly, the reduced velocity tidal ebb flow may contribute 
to lower flow speeds where there are otherwise higher flow speeds. This is especially true given that the site with 
the highest proportion of LCF (“d”) only flows at < 5 cm s−1 at < 1% of the time. Secondly, given the effect of local 
topography near the bottom where the corals grow, the change of flow direction may expose other parts of the 
reef to the current which may be otherwise sheltered. However, current speed and direction data from several 
parts of one CWC habitat would need to be acquired to confirm this.

While the corals here may feed at lower mean current speeds, overall speeds reported here show that live 
coral can survive exposure to notably high speeds (114 cm s−1 at study site “a”; 75.9 cm s−1 at study site “b” and 
66.3 cm s−1 at study site “d”) although presumably feeding during short window of slack water as the tide turns. 
In fact, at 114 cm s−1, this is the highest recorded current speed recorded for live CWC habitat. At Tisler reef, 
offshore Norway, current speeds of 99.8 cm s−1 have also been recorded51. The prevalence of CWC at sites where 
current velocities exceed their natural range to efficiently feed, is likely supported by the baffling of flow velocity 
by the 3D framework82.

Leiopathes sp. does not occur at all study sites (study sites “b” and “d” only). These sites have a mean current 
speed of 24 and 25.4 cm s−1 (maximum of 75 and 66 cm s−1) respectively and are the only study sites to occur 
within this range.

The results of this research provide a number of unique, wider-scale implications. The time, cost and resource-
intensive nature of sampling and surveying the deep-ocean make it uneconomically viable to map out the 
distribution of all cold-water coral habitats. Thus, predictive habitat suitability modelling is required and have 
previously been applied to cold-water coral habitats using terrain and environmental data in the north east 
Atlantic83, south Pacific oceans84 and on a global scale85. Pearman et al.42 and Bargain et al.43 show that inclusion 
of hydrographic variables such as current speed in predictive mapping clearly improves model performance. 
Our dataset endorses the inclusion of high-resolution hydrodynamic variables to improve predictive model 
performance, as clear linkages between flow strength and reef surface coverage (live, dead coral and coral rubble) 
was observed. The current speeds recorded in this study and, in particular, the highest current speed recorded 
within a CWC habitat (114 cm s−1), can be used to produce more accurate cold-water coral habitat suitability 
maps from local to regional scales through new knowledge of their distribution range.

An increasing trend in the global oceanic kinetic energy since the 1990′s associated with greenhouse warming 
indicates that ~ 76% of the upper 2000 m in the global ocean will incur a ‘substantial’ acceleration in global mean 
ocean circulation62. The results herein not only show that CWC habitats can tolerate considerably high current 
speeds, but that the results may provide a baseline/control for which CWC habitats may respond should current 
speeds increase under changing climate scenarios. We speculate that changes in the flow velocity at local sites, 
induced by larger climatic driven changes in circulation will have implications on CWC habitat composition, 
for example leading to environmental changes in favour of rubble production or live coral growth. This likely 
has implications for reef development and subsequently reef associated communities.

Whilst many studies show a relationship between coral and enhanced current speed, this research shows 
this relationship for the first time at a fine spatial scale (cm) using a quantified classification of high-resolution, 
photogrammetric data (SfM DEM’s and Orthomosaics) from a range of study sites within one segment of a 
submarine canyon. Such accurate quantification of coral cover can only be achieved by imaging large areas. This 
showcases the benefit of undertaking SfM surveys to quantify immediate habitat coverage and coral orienta-
tion, supplementing temporal current speed and direction datasets to build a holistic understanding of the local 
environment. Whilst data from five coral sites do not provide conclusive evidence, the trends are considerably 
strong and provide further insight into the finer-scale relationship between coral cover and flow velocity.

Conclusions
Results presented herein show that, although the ENAW flows northerly over the uPBC, locally it is steered and 
intensified by topographic expression. Combining Structure-from-motion outputs and Marine object-based 
image analysis allows for accurate classification of cold-water coral habitats. While qualitative analysis of these 
results shows differences in coral and non-coral habitats, only quantitative analysis shows variation between coral 
habitats. Analysis of 3D photogrammetric reconstructions coupled with benthic current data shows that live 
coral tends to not face directly into the current. When the current does flow directly towards the corals, sites with 



13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19433  | https://doi.org/10.1038/s41598-020-76446-y

www.nature.com/scientificreports/

lower flows speeds tend to have larger quantities of live coral, in line with flume tank observations. In situ current 
speeds show that live coral can exist in current speeds up to 114 cm s−1, higher than any other reported current 
speed in a CWC habitat. The high current speeds are also important in generating coral rubble and exposing 
adding to habitat heterogeneity. This research represents an example of the benefits in utilising high-spatial and 
temporal resolution datasets in deep marine research. Results herein can be used to increase the performance 
of predictive habitat suitability models. They can also serve as a control for how cold-water coral habitats may 
respond to changing deep water environmental conditions.
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