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Autoimmune diseases are increasingly linked to aberrant gut microbiome and relevant
metabolites. However, the association between vitiligo and the gut microbiome remains
to be elucidated. Thus, we conducted a case-control study through 16S rRNA
sequencing and serum untargeted-metabolomic profiling based on 30 vitiligo patients
and 30 matched healthy controls. In vitiligo patients, the microbial composition was
distinct from that of healthy controls according to the analysis on α- and β-diversity
(P < 0.05), with a characteristic decreased Bacteroidetes: Firmicutes ratio. Meanwhile,
the levels of 23 serum metabolites (including taurochenodeoxycholate and L-NG-
monomethyl-arginine) in the vitiligo patients were different from those in the healthy
individuals and showed significant correlations with some microbial markers. We
found that Corynebacterium 1, Ruminococcus 2, Jeotgalibaca and Psychrobacter
were correlated significantly with disease duration and serum IL-1β level in vitiligo
patients. And Psychrobacter was identified as the most predictive features for vitiligo
by machine learning analysis (“importance” = 0.0236). Finally, combining multi-omics
data and joint prediction models with accuracies up to 0.929 were established
with dominant contribution of Corynebacterium 1 and Psychrobacter. Our findings
replenished the previously unknown relationship between gut dysbiosis and vitiligo
circulating metabolome and enrolled the gut-skin axis into the understanding of
vitiligo pathogenesis.

Keywords: vitiligo, gut microbiome, 16S rRNA sequence, serum metabolomic, gut-skin axis

INTRODUCTION

Vitiligo is an autoimmune skin disease affecting 0.5 to 1% population worldwide. The disease is
characterized by the loss of pigment resulting from the massive melanocytes destruction (Dell’Anna
et al., 2007; Ezzedine et al., 2015; Bae et al., 2018).

Currently, adaptive immunity activated by melanocytes-specific antigens is the major focus of
the researches on vitiligo pathogenesis (Li et al., 2017). The autoreactive CD8+ T cells is appreciated
as the dominant player in melanocyte destruction. And the activation of CD8 is also modulated
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by various factors like the enhanced inflammatory
microenvironment precipitated by excessive proinflammatory
factors. IL-1β is such a cytokine. CD4+ T cells like Th1 and
Th17 cells are documented to assist the aberrant response of
CD8+ T cell in vitiligo (van den Boorn et al., 2009; Kotobuki
et al., 2012; Czarnowicki et al., 2019). Besides, declined frequency
and aberrant function of regulatory T cells (Tregs) give rise to
insufficient restraint on CD8+ T cells (Zhou et al., 2012). Recent
studies have demonstrated that serum level of soluble interleukin
(IL)-2 receptor a (CD25) reflects T-cell activation in vitiligo
(Speeckaert et al., 2016), whereas IL-17-induced secretion of
IL-1β from keratinocytes links with autophagic melanocytes
apoptosis (Zhou et al., 2018). These factors might synergistically
induce melanocyte paucity and perpetuate vitiligo, though the
exact trigger of autoimmune disorder in vitiligo is still ill-defined.
And these important serum molecules are also commonly used
as biomarkers for vitiligo activity (Speeckaert et al., 2016, 2017;
Bhardwaj et al., 2017).

Recent insights have defined the critical role of the gut
microbiome in keeping immune homeostasis and in the
development of autoimmune diseases (Cohen et al., 2019;
Dominguez-Bello et al., 2019). Although the interplay between
the intestinal microbiome and the autoimmune state has never
been investigated in vitiligo, a putative connection between
vitiligo and intestinal microbiome essentially exists. It has been
noted that vitiligo patients have a high rate of comorbidity
with inflammatory bowel disease (IBD) (Hadi et al., 2019),
another autoimmune disease associated with aberrant intestinal
microbiome (Gevers et al., 2014; Lloyd-Price et al., 2019).
Furthermore, the proposed concept of the gut-skin axis provides
a plausible correlation between gut microbiome and dermatoses,
which has been reiterated in two autoimmune skin diseases
including psoriasis (Hidalgo-Cantabrana et al., 2019) and atopic
dermatitis (Mahdavinia et al., 2019). Meanwhile, Dellacecca
et al. explored the changes in pigmentation of vitiligo mice
after the treatment of oral antibiotics (Dellacecca et al.,
2020). They found that ampicillin treatment correlated with
accelerated depigmentation, reduced bacteria in fecal pellets and
changed distribution of T cells in tissues and blood, suggesting
the association between gut dysbiosis and ampicillin-induced
depigmentation. Meanwhile, the important clue is that IL-1β,
which is closely related to vitiligo activity, not only participates
in the modulation of immune programs (Warnatsch et al., 2017;
Yao Y. et al., 2017), but also enhances local antimicrobial peptides
to potentiate microbiome remodeling (Yao X. et al., 2017).

Intestinal metabolite profiles are derived from microbe-
sourced compounds that dictate microbial-host interactions
(Donia and Fischbach, 2015; Dodd et al., 2017; Liu et al., 2017).
Small molecules produced by gut microbiome serve as critical
mediators that prime the maturation and postnatal adaption of
the host immune system (Fulde and Hornef, 2014) and even
trigger autoimmune diseases (Cianci et al., 2018; Haase et al.,
2018). Based on these previous findings, we hypothesized that
the gut-skin axis could be involved in the pathogenesis of vitiligo
via microbial metabolites. To testify this, 16S rRNA sequencing
and serum metabolome analysis through non-targeted liquid
chromatography-mass spectrometry (LC-MS) were performed in

fecal samples from a cohort of 60 individuals. The interaction
of vitiligo-related gut microbiome and serum metabolome was
investigated and their role in the immune pathogenesis of vitiligo
was further analyzed in the present study.

RESULTS

The study cohort encompassed 30 patients diagnosed with
advanced non-segmental vitiligo (12 men, 18 women, mean
age 37.2 ± 12.7 years old) as well as 30 age-, sex-, Body
Mass Index- (BMI-) and dietary habit-matched healthy controls
(12 men, 18 women, mean age 35.2 ± 12.5 years old) from
2018 to 2019. The severity of the disease is often evaluated
by calculating the white spot area [like Vitiligo Extent Score
(VES) (van Geel et al., 2018) and Vitiligo Area Scoring Index
(VASI) (Komen et al., 2015)] clinically. All patients underwent
VES evaluation. And the average VES of the patients was 6.2%.
Detailed clinical characteristics of the study population are
presented in Supplementary Table 1.

Vitiligo Patients Exhibit Gut Microbiome
Dysbiosis
To characterize the overall gut microbiota composition of vitiligo
patients, we sequenced the V4 region of the bacterial 16S
rRNA gene in fecal samples collected from our cohort. Reads
with ≥99% nucleotide sequence identification were grouped
into Amplicon Sequence Variants (ASVs). We measured α-
and β-diversity to delineate discrepancies between vitiligo
patients and healthy controls on gut microbiome composition.
The vitiligo microbiome samples had higher Shannon and
Simpson indexes than control ones (Kruskal-Wallis pairwise
test, P < 0.05, Figure 1A, Supplementary Figure 1 and
Supplementary Table 2), indicating increased gut microbial
diversity in diseased individuals. The patients are segregated
into two groups by their disease duration (5 years below and
5 years more, respectively). We found that the Shannon (Kruskal-
Wallis pairwise test, P = 0.020) and Simpson (Kruskal-Wallis
pairwise test, P = 0.038) indexes between the two groups showed
significant difference, and that the α-diversity for patients with
over 5-year disease course was significantly higher (Figure 1B).
In Principal Coordinate Analysis (PCoA) of the unweighted
UniFrac 3D plot chart, our samples were divided into two
groups (Figure 1C, PEMANOVA test, P < 0.05, also see in
Supplementary Table 2), with PCA1 contributing the most and
reaching 24.53%. To summarize, gut dysbiosis were detected in
vitiligo patients compared with healthy controls.

Several Bacterial Taxonomies
Significantly Contribute to Vitiligo Gut
Microbiome Dysbiosis
The taxonomic assignment of the ASVs predicted for all the 60
samples revealed the composition of their bacterial population
at the genus level. Back to the phylum level, vitiligo patients
showed a lower average representation of Bacteroidetes (54.4
vs 63.1%, P < 0.05) and higher rate of Firmicutes (35.0 vs

Frontiers in Microbiology | www.frontiersin.org 2 December 2020 | Volume 11 | Article 592248

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-592248 December 10, 2020 Time: 12:23 # 3

Ni et al. Gut Microbial Dysbiosis in Vitiligo

FIGURE 1 | Distinct gut microbial diversity in vitiligo. (A) Compared with the controls, gut microbial α-diversity, as estimated by the Shannon index and Simpson
index, was significantly increased in patients with vitiligo (P = 0.014, 0.027, respectively, Kruskal-Wallis pairwise test). (B) The Shannon and Simpson indexes in
≥5 years showed significantly higher than <5 years group (P = 0.020, 0.038, respectively, Kruskal-Wallis pairwise test). (C) Microbial clustering was shown based on
unweighted PCoA metrics using 3D plots, indicating a symmetrical distribution of gut microbial community among all the samples. Significant dissimilarity distances
were found (P = 0.015, PERMANOVA). Abbreviation: PCoA, Principal Coordinate Analysis; PERMANOVA, Permutational Multivariate Analysis of Variance.

27.2%, P < 0.05) according to Analysis of Variance (ANOVA),
as well as lower Bacteroidetes: Firmicutes ratio (1.6: 1) versus
healthy controls (2.3: 1). Besides, the mean raw abundance
of Negativicutes was higher and the mean raw abundance of
Bacteroidia was lower in patients with vitiligo at the class level. No
significant discrepancy was observed in the rest data (Figure 2A
and Supplementary Table 3).

We then separated the patients into 4 subsets according
to disease duration (<2, 2–4, 5–9, and 10–30 years) and
analyzed the composition of their gut microbiome species
at the class level. We found that the species alterations
were correlated with disease duration. Notably, the mean
raw abundance of Negativicutes showed a slow decline as
the disease course prolonged (Figure 2B), while the raw
abundance of the remaining classes was not considerably
changed. Moreover, we observed dynamic shifts according
to VES in the mean raw abundance of some class such
as Negativicutes, Bacteroidia, and Clostridia (Supplementary
Figure 2). LEfSe analysis revealed that Subdoligranulum,
Escherichia/Shigella, Ruminococcus 2, and Gemmobacter were
dominant biomarkers to distinguish vitiligo patients from healthy
controls at the genus level (Figure 2C and Supplementary
Table 4). To provide further insights into the microbial
community structure in vitiligo patients, Meanwhile, we set
up a co-occurrence network across the top microbial markers
(Linear Discriminant Analysis (LDA) score >2.20) via LEfSe and
observed 155 significant associations in the network (P < 0.05,
Supplementary Figure 3).

Subsequently, potential functions of the gut microbiome
in vitiligo were predicted via Tax4Fun analysis

(Asshauer et al., 2015) with a custom database. We identified
at least 265 Kyoto Encyclopedia of Genes and Genomes
(KEGG) orthologs (KOs) appearing in each sample, among
which 66 KOs differed in abundance between vitiligo patients
and healthy subjects (P < 0.05, Supplementary Table 5).
Of note, KEGG pathways marked with “Epstein-Barr virus
infection” involved in “infectious diseases: viral” were
highly enriched in the microbiome of vitiligo individuals.
Moreover, “regulation of actin cytoskeleton” involved in
“cell motility” and “NF-κB signaling pathway” in “signal
transduction” were significantly enriched in vitiligo patients
compared with controls, which merits follow-up research for
verification (Figure 2D).

Psychrobacter Is the Most Predictive
Features in Microbial Machine Learning
Model of Vitiligo
Regarding the observed particularity of gut microbiome in
vitiligo, we explored the potential of microbial taxonomy markers
to be diagnostic predictors of vitiligo. The machine learning
technique was adopted and the microbial composition displayed
a high prediction accuracy at the ASVs level (91.7%), which was
slightly higher than that at the genus level (83.3%) as depicted
in the confusion matrix (Figure 3A, Supplementary Figure 4
and Supplementary Table 6). Model accuracy approached
70% with modest fluctuations as the number of features
increased (Figure 3B). Data presented herein indicated that
gut microbiome could be employed to distinguish vitiligo from
healthy populations.
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FIGURE 2 | Taxonomy composition and Tax4fun predictive function results of gut microbiome in vitiligo. (A) Mean raw abundance of fecal microbiome at the phylum
level between vitiligo patients and healthy controls, for taxa with >1% mean raw abundance across all samples. Taxa with open bars show differential Bacteroidetes
to Firmicutes raw abundance ratio between cohorts. (B) Patterns of gut microbiome mean raw abundance at the class level dynamics with the duration of disease
were tracked using Sankey plots in vitiligo patients. (C) Microbial markers at the genus level in vitiligo by using LEfSe analyses. LEfSe analyses revealed that the
relative abundances of 11 genera were significantly different between vitiligo patients and the control group. The abscissa represents LDA score (log10). (D) Tax4fun
is used to infer the functional content of the gut microbiome based on 16S data. Fold change of the abundance of KEGG pathways between vitiligo patients and
healthy controls assessed by the Wilcoxon signed-rank test with FDR < 0.05. The relative abundance score of each differential pathway enrichment is reflected by
the color depth. The abscissa represents log2 fold change value of relative abundance score. Abbreviation: LDA, Linear Discriminant Analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes; FDR, False Discovery Rate.
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FIGURE 3 | Identification of microbial genus-based markers of vitiligo by machine learning method. (A) “Confusion matrix” heat map shows classifier accuracy
results at the ASV level. Numbers marked in the figure represent the size of the test set, which is randomly split by learning methods. This “Confusion matrix” shown
in figure was analyzed from a test set of 24 samples (11 vitiligo patients and 13 healthy controls) and a learning set of 36 samples. (B) The relationship between the
number of different features and the prediction accuracy is represented by a line graph. (C) Co-occurrence patterns of the most important feature selected from the
output of supervised learning methods at the genus level are visualized using network diagrams. Microbial taxa are represented by nodes and complex intertwined
lines denote positive co-occurrence relationships based on correlation. Each co-occurrence relationship had strong Spearman’s correlation coefficient (P < 0.05).
Circle size represents the importance score of selected features and circle color represents the class to which each genus belongs. Abbreviation: ASVs, Amplicon
Sequence Variants.

To determine the most predictive features in our
supervised learning model, we enrolled feature “importance”
scores as a parameter (Pedregosa et al., 2011). Features
at the genus level with reported higher “importance”
scores (Supplementary Table 7) contributed more to the
discrimination of vitiligo samples. The candidate genera
included pertaining to Psychrobacter with the highest score of
0.0240, followed by Escherichia/Shigella (“importance” = 0.0236),
Bilophila (“importance” = 0.0226) and Corynebacterium 1
(“importance” = 0.0218), as shown in the model. Intriguingly,
some of the most predictive genera in the screening also
performed well in the LEfSe analysis, such as Psychrobacter
(LDA = 2.955, P < 0.01), Escherichia/Shigella (LDA = 3.862,
P < 0.01) and Corynebacterium 1 (LDA = 2.896, P < 0.01,
Supplementary Table 4). Subdoligranulum, the most
potential vitiligo-associated genus as indicated by previous
LEfSe analysis, however, failed to be identified by our
machine learning model.

Then, we selected genera with relatively higher “importance”
scores (“importance” >0.015) and analyzed their co-occurring

network (Figure 3C). The numbers of significant associations
among these 12 genera markers were in equilibrium, with 128
significant ones altogether.

Corynebacterium 1, Ruminococcus 2,
Jeotgalibaca and Psychrobacter Are
Correlated With Disease Duration and
Serum IL-1β Level of Vitiligo
We calculated the relation between internal-external factors and
the gut microbiome composition of vitiligo patients. The results
revealed that multivariate response linear regression (Analysis
using “Gneiss” method) explained 12.26% of the community
variation, which was prototypical for data observed in the human
gut microbiome. Diet (Veg) identified in the covariate analysis
was the most remarkable explanatory factor, accounting for
1.78% of the variation (Figure 4A and Supplementary Table 8).

We identified 23 differential metabolites from 15 vitiligo
patients and 15 controls in the cohort (Variable Importance for
the Projection (VIP) >1 in Orthogonal Partial Least Squares
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FIGURE 4 | Clinical determinants correlate with the gut microbiome composition of vitiligo patients. (A) Contribution of each clinical covariate to gut microbial
variation calculated by the regression model show in Nightingale’s Rose Diagram. (B) Related clinical determinants of intestinal microbial richness and microbiome
composition in patients with vitiligo are shown. In the bar graph, the x-axis represents the interpretation variance for each phenotype consisting of the gut
microbiome (unweighted Unifrac). Black bars indicate statistical significance (FDR < 0.1). The heat map indicates a significant positive correlation (red, *P < 0.05) or
negative correlation (blue, *P < 0.05) between determinants and microbial richness (Shannon index) and bacterial gene richness (Simpson index). (C) Spearman’s
rank correlation between gut microbiome markers (LDA score >2.00 and “importance” >0.015) and serum differential metabolites selected by VIP score (VIP > 1)
with adjusted P < 0.05 are shown (*P < 0.05; **P < 0.01). The heat map indicates a significant positive correlation (red) or a negative correlation (blue).
(D) Correlation between clinical determinants and significantly different genera (LDA score >2.50 and “importance” >0.021) is shown in plot heatmap. Each plot
represents a significant coefficient (positive in red and negative in green, *adjusted P-value < 0.1 [after correction for the false discovery rate with Benjamini and
Hochberg procedure)]. Abbreviation: LDA, Linear Discriminant Analysis; MaAsLin, Multivariate Association with Linear models; FDR, False Discovery Rate; IL-1β,
Interleukin 1beta; VIP, Variable Importance for the Projection.

Discriminant Analysis (OPLS-DA) model, P < 0.05 in One-
way ANOVA test, Supplementary Table 9). Following that, we
measured the correlation between characteristics in our cohort
(Figure 4B, Supplementary Tables 10, 11). As a result, 10.9% of
microbial variance in vitiligo could be explained by IL-1β [False
Discovery Rate (FDR) = 0.005], and 6.4% by VES (FDR = 0.049).
Disease duration was responsible for 5.3% of the variance
(FDR = 0.093) and associated with an increase in microbial
evenness and richness (Shannon and Simpson indexes).

We conducted a correlation analysis between serum
metabolome and the gut microbiome and identified seventy-
seven strong correlations (P < 0.05, Figure 4C). In particular,
Psychrobacter was markedly linked to 13 differential metabolites,
with the highest correlation found with taurine (CC = 0.642,
P < 0.01) followed by uridine and nicotinamide (positive
correlation, P < 0.01). Association of Psychrobacter with the
previously mentioned serum differential metabolite L-NMMA,
which was significantly positively correlated with the Shannon
index, also reached 0.407 (P < 0.05). Moreover, we found that
11 genera, including Psychrobacter and Corynebacterium 1, were
significantly related to linoleic acid (P < 0.05), among which
Gemmobacter exhibited the strongest correlation (LDA = 3.66,
CC = 0.733, P < 0.01). More importantly, Psychrobacter,
Corynebacterium 1, and Gemmobacter, which were closely
related to serum metabolites, all had prominent performance
in the LEfSe analysis. These findings suggested that various
metabolites might be essential molecules for critical species in
vitiligo patients’ microbiome.

In order to reveal associations between clinical metadata
and microbial community abundance or function, we thus
performed MaAsLin analysis of the top genera taxonomy scored
by LEfSe (LDA score >2.50 and “importance” >0.021). Results
illustrated that smoking had the strongest correlation with
Bilophila (adjusted P < 0.1). Disease duration exhibited notable
negative correlations with Corynebacterium 1 and Psychrobacter
(adjusted P < 0.1). Disease duration also exhibited a positive
correlation with Ruminococcus 2 (adjusted P < 0.1). IL-
1β, a comparatively sensitive serological marker in vitiligo
progression (Bhardwaj et al., 2017), was negatively correlated
with Corynebacterium1, Jeotgalibaca, and Psychrobacter (adjusted
P < 0.1). Diet, sex, and sCD25 showed no remarkable association
with different genera (Figure 4D and Supplementary Table 12).
Our results showed that Corynebacterium 1, Ruminococcus 2,
Jeotgalibaca, and Psychrobacter were closely related to the disease
status of vitiligo. Other markers such as Subdoligranulum and
Escherichia/Shigella screened by LEfSe were not found to be
significantly associated with vitiligo disease status. The results of
LEfSe, MaAsLin and machine learning converged into the thesis
that Corynebacterium1 and Psychrobacter might be an important
prominent marker of vitiligo.

Combined Predictor Models Based on
Taxonomies and Serum Metabolites
Reach an Accuracy of More Than 0.9
We next selected genera from the accumulation of dominant
genera screened out by LEfSe (LDA score >2.00) and machine
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learning classifier (“importance” >0.015) to establish prediction
models. The Area Under Curve (AUC) in the Receiver
Operating Characteristic (ROC) represents accuracy of models
we established. The accuracy of prediction models of mono-
taxonomy got to maximum when based on Parasutterella
(AUC = 0.705, 95% CI 0.57 to 0.84), and models of two

taxonomies when based on Corynebacterium 1 and GCA-
900066575 (AUC = 0.788, 95% CI 0.67 to 0.91, and see in
Figure 5A, Supplementary Tables 13, 14).

We went on to explore whether serum metabolites associated
with differential microbial structures were better predictors
for disease classification. Intriguingly, more than 85% of

FIGURE 5 | The accuracy of gut microbiome feature joint model. (A) The smooth ROC curves model using 10-fold cross-validation for the predictions of microbial
genera in our cohort. (B) The AUC area of joint prediction models using 10-fold cross-validation combined serum differential metabolites with gut microbiome
markers are shown in the heat map. The higher AUC value is illustrated by a lighter color. ROC curves of two genera correspond to the blue line. Abbreviation: AUC,
Area Under Curve; ROC, Receiver Operating Characteristic.
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combined predictor models based on taxonomies and serum
metabolites manifested accuracy over 0.7, superior to models
based on merely one or two taxonomies. Notably, Psychrobacter
and TCDCA collaboratively showed a better prediction
accuracy (AUC = 0.929), approximately two-fold higher
than Psychrobacter alone (AUC = 0.466), which indicated a
sophisticated interplay between these two factors (Figure 5B).
Meanwhile, the prediction model combining Corynebacterium 1
and TCDCA also achieved high accuracy (AUC = 0.929).

MATERIALS AND METHODS

Study Population and Sample Collection
Advanced non-segmental vitiligo patients (n = 30, 12 males and
18 females, mean age 37.2 ± 12.7 years, body mass index/BMI,
21.89± 2.96 kg/m2) and healthy volunteers (n = 30, 12 males and
18 females, mean age 35.2± 12.5 years, BMI, 21.62± 2.23 kg/m2)
were recruited in the Department of Dermatology, Xijing
Hospital, Fourth Military Medical University from 2018 to 2019.
Sex, age, smoking status, and BMI were matched between the two
groups to avoid the effects of confounding variables.

All patients developed new lesions in recent 3 months. And
all patients developed vitiligo with significant disease activity
maintaining for over 3 months and average of disease duration
was 6.4 years in our vitiligo patients. Moreover, the VES (van Geel
et al., 2018) has been previously validated and it yielded excellent
evaluation outcomes. It means the disease becomes more severe
with higher white spot area. The results of the VES were 6.2% on
average in our study.

Basic information including age, sex and BMI, coupled
with a dietary survey was administered and collected from all
subjects in the form of questionnaires according to standard
procedures. Fecal samples from all participants were freshly
collected at hospital/home in MGI Easy Stool Sample Collection
kit and frozen at −80◦C in multiple aliquots immediately after
sampling. For participants, peripheral venous blood samples were
drawn in the morning the day after admission and collected as
standard venipuncture requested. Blood samples were processed
for preparation of serum and plasma samples to apply for
downstream metabolomic validations.

Serum IL-1β and sCD25 levels were determined via ELISA.
One data point for the result of IL-1β from the control group
was missing and we substituted it with the average value.
The results showed that serum IL-1β levels were significantly
higher in vitiligo group than those in controls, with a P-value
of 0.001, which were in agreement with previously reported
results. However, the sCD25 results showed no significant
difference between the two groups (see statistic data in
Supplementary Table 1).

Assessment of Different Ddietary Habits (Food Intake)
a. Vegetarians (n = 23)

Vegetarians were those who led a vegetarian lifestyle (i.e.,
eat animal food less than once a week), and they were marked
as “Veg.”

b. Balanced dieters (n = 28)

Balanced dieters mean “average omnivores.” These people
who ate what they enjoyed such as “average” Chinese diet had
a balanced diet of meat and vegetables.

c. Meat consumers (n = 9)

Meat consumers were respondents who lived a meat-eating
lifestyle (i.e., always eat animal food, occasionally vegetables).

By comparison, confounding dietary effects were eliminated
between patients and volunteers.

16S rRNA Gene Sequencing and Data
Analysis
Bacterial DNA derived from fecal samples was extracted by
means of phenol-chloroform extraction after storage at −80◦C.
High-throughput sequencing of bacterial 16S ribosomal RNA
gene (16S rRNA) amplicons encoding V4 region (150 bp
read length, paired-end protocol) was performed using MiSeq
Illumina Sequencer. The 16S rRNA sequencing data were
analyzed using the Quantitative Insights into Microbial Ecology2
(QIIME2) pipeline (version 2019.4) (Bolyen et al., 2019;
Supplementary Figure 5). The proportion of reads at the ASVs
or at the level of the genus was used as a measure of relative
abundance of each type of bacteria.

Raw sequence data of 16S rRNA gene were demultiplexed
and quality filtered using the q2-demux plugin followed by
denoising with Deblur (via q2-deblur) (Amir et al., 2017). All
ASVs were aligned with mask (Lane, 1991) (via q2-alignment)
and were used to construct a phylogeny with FastTree (Price
et al., 2010) (via q2-phylogeny). After the collection of samples,
α-diversity metrics (Simpson and Shannon indexes), β-diversity
metrics [unweighted UniFrac (Lozupone and Knight, 2005)],
and Principle Coordinate Analysis (PCoA) were estimated via
q2-diversity. Taxonomy was assigned to ASVs using the q2-
feature-classifier classify-sklearn naïve Bayes taxonomy classifier
against Silva (Quast et al., 2013) 132 99% OTUs from 515F/806R
region of sequences.

Gneiss (Morton et al., 2017)
Differential abundance analysis was performed by gneiss from
16S data with vitiligo patients. We employed unsupervised
clustering via Ward’s hierarchical clustering to obtain Principal
Balances. Then we performed the isometric log ratio (ILR)
transform which were computed the log ratios between groups
at each node in the tree. Next, we conducted a multivariate
linear regression on each balance separately and associated
microbial abundances with environmental variables. The model
is presented as follows:

Ey = β0→ + βGroup→ XGroup→ βsex→ Xsex→

+βage→ XAge→ βBMI→ XBMI→

+βSmoke→ XSmoke→ + βDiet→ X Diet→

(Where Ey represents the matrix of balances to be predicted,
βi→ represents a vector of coefficients for covariate i and Xi→
represents the measures for covariate i).
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To evaluate the explanatory model of a single covariate, a
leave-one-variable-out approach was used. One variable was
left out, and then the change in R2 was calculated. A 10-
fold cross-validation was performed to avoid overfitting. R2 in
the Supplementary Table 8 provided information about how
much variance that could be explained by the regression model
in the community.

Linear Discriminant Analysis Effect Size (LEfSe)
(Segata et al., 2011)
To evaluate the differences between groups of 16S data or
inferred metagenomes, we used LEfSe analysis in Galaxy
interface platform (Afgan et al., 2018). Features significantly
discriminating among groups were then subjected to the
linear discrimination analysis (LDA) model with a threshold
logarithmic LDA score >3.0, which were represented in
histogram, as produced by LEfSe with default parameters at the
genus level. All LDA values of top 20 microbes shown in our
figures were organized in the Supplementary Table 3.

Co-occurrence Network Inference
Building co-occurrence networks of the most abundant genera
intended to evaluate the microbiota community structure (>0.5%
mean relative abundance in the global dataset) using Sparse
Correlations for Compositional data (SparCC) (Friedman and
Alm, 2012) algorithm. Pseudo P-values were calculated through
a bootstrap procedure with 999 random permutations and
999 iterations for each SparCC calculation. It was defined as
significant association with positive SparCC correlation resulting
in a P-value < 0.05. The correlation among 177 genera denoted
from 614 key ASVs was calculated with a 100-time replication of
bootstrap procedure, and subsequently correlation matrices were
computed from the resampled data matrices. Closeness centrality
values (closeness function) serve to calculate node closeness
centrality (node opacity) and Kamada-Kawai layout algorithm
was carried out to achieve network visualization.

Prediction of Microbiome Functional Profiles
To determine the genomic potential of microbiome with vitiligo
patients, we computationally predicted the 16S rRNA gene
depending on Tax4Fun (Asshauer et al., 2015) algorithm in R.
This software tool takes advantage of obtained data sourced from
16S rRNA gene sequencing to predict the functional profile of
a bacterial community based on an existing reference genome
database. After normalization for 16S rRNA copy number
and total species count, Tax4Fun was used to estimate KEGG
Orthologs (KO) abundances.

Supervised Machine Learning (Pedregosa et al.,
2011; Bokulich et al., 2018)
We applied supervised learning classifiers to predicting the
categorical metadata classes of unlabeled samples by learning
the composition of labeled training samples. The input samples
were randomly split into 2 sets between training and test, which
aimed to verify accuracy on a set of samples that was not used
for model training. The “Confusion matrix” heat map shown
in Figure 3A was the result of one of these random learning

and prediction exercises. Our model was trained to predict
group classifier for each sample and 10-fold cross-validation
was performed during automatic feature selection as well as
parameter optimization steps to tune the model. Model accuracy
was calculated by comparing each test sample’s predicted value
to its true value. The feature selection of high ‘importance’ was
shown in Supplementary Table 12.

LC-MS and Data Analysis
The serum metabolomic profiles of participants were measured
using non-targeted LC-MS methods ranging from polar
metabolites (e.g., organic acids), lipids (e.g., triglycerides), free
fatty acids and bile acids. Metabolites were identified by accuracy
mass (<25 ppm) and MS/MS data were matched with our
standard database. SIMCA-P 14.1 (Umetrics, Umea, Sweden)
was used for Orthogonal Partial Least-squares-discriminant
Analysis (OPLS-DA) after Pareto-scaling. And OPLS-DA model
was estimated by even-fold cross-validation. Univariate analysis
was thereafter performed to validate the significant difference.

Serum samples were slowly thawed at 4◦C. Then 100 µL
of each sample was took out, 400 µL precooling methyl
alcohol/acetonitrile (1:1, v/v) was added and adequately vortexed.
The samples were incubated for 60 min at −20◦C to precipitate
the protein, and then were centrifuged (14000g, 4◦C, 20 min).
The supernatants were collected and dried under vacuum,
and then were stored at -80◦C as standbys. Next, they were
redissolved in 100 µL acetonitrile/water (1:1, v/v) and adequately
were vortexed, and thereafter were centrifuged (14,000 rpm,
4◦C, 15 min). The supernatants were collected for LC-MS/MS
analysis. Sample separation was performed through an UHPLC
(1,290 Infinity LC, Agilent Technologies) HILIC and RPLC.
Samples were detected in both ESI positive and negative
modes. Analyses were performed using an UHPLC coupled to
a quadrupole time-of-flight (AB SCIEX TripleTOF 5600). The
raw MS data (wiff.scan files) were converted to MzXML files
using ProteoWizard MS Convert and processed using XCMS for
feature detection, retention time correction and alignment. Single
dimensional statistical analysis includes Student’s t test, Mann-
Whitney U test and fold change. According to the OPLS-DA
model, VIP value was used to measure the expression pattern of
each metabolite on the affecting intensity and explanatory ability.
Consequently, different metabolites must reach the requirement
of VIP > 1 and P-value < 0.05.

Statistics Analysis
All statistical analyses were conducted in R (v 3.5.3), SPSS
(v 25.0.0.0), Galaxy platform and QIIME2 (Supplementary
Figure 6). The model was evaluated through ROC with the
calculation of the AUC. The smooth ROC curve was estimated
by 10-fold cross-validation and pictured by the pROC R package.

Unordered categorical variables were reported as counts
and proportions and analyzed by using the χ2 test or the
Fisher exact test, when appropriate. The student’s t-test was
used for analyzing simple associations in the cohort’s baseline
characteristics regarding differences in age and BMI (Age and
BMI had Gaussian distributions). And non-normally distributed
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data were tested using either two-sided unpaired Mann-Whitney
U-test or Kruskal-Wallis pairwise test.

α-diversity measured by Shannon and Simpson indexes was
used to quantify the evenness and richness of gut microbiome.
β-diversity that characterizes similarities between samples as
a function of microbial composition was used to analyze
potential impacts of vitiligo on the balance and recovery of
the entire gut microbial ecosystem (Lozupone and Knight,
2005). The correlation between metadata, metabolites and
Shannon or Simpson diversity was performed by the Spearman
coefficient. The proportion of variance of interpretation in each
phenotype on the various microbial composition dissimilarities
was measured using Adonis Permutational Multivariate Analysis
of Variance (PERMANOVA) (Anderson, 2001; Oksanen et al.,
2019) test in QIIME2 pipeline. Multivariate association with
linear models (MaAsLin), a multivariate statistical framework,
was employed to reveal associations between clinical metadata
and microbial community abundance or function (Morgan et al.,
2012). The association between microbiome features and disease
phenotypes were tested using linear models with Multivariate
Association with Linear Models (MaAsLin) in Galaxy platform.
In a univariate or multivariate predictive model, samples with
any missing values were independently removed in this study,
and multivariate logistic regression was used to construct the
prediction model. In order to improve the robustness of the
model, all samples were predicted by 10-fold cross-validation.
The sample population was randomly divided into 10 subsets: 1
for testing and the other 9 for training, and the operation was
repeated 10 times.

DISCUSSION

Our study represents the unique effort to validate vitiligo-
associated changes in the interaction between the human
gut microbiome and circulating metabolome. Together, our
discovery highlighted the implication of the gut-skin axis in
vitiligo pathogenesis.

Recently, Ganju et al. (2016) reported that vitiligo skin
lesions were in association with a particular distribution of skin
microbiome. However, skin microbiome is thought to be highly
variable and determined by multi-factors ranging from skin sites
and diverse microenvironments. Conversely, the composition
of gut microbiome tended to remain stable since the early
childhood, though it could change with high specificity in disease
state especially toward autoimmune disorders. Additionally, the
study of Dellacecca et al. (2020) may provide a clue that
ampicillin-induced depigmentation was more related to gut
dysbiosis rather than skin dysbiosis.

We tested the biodiversity of gut microbiome in vitiligo
and found that higher α-diversity was considered to be
vitiligo-specific (Figure 1A), contrasting with some other
autoimmune diseases with lower bacterial diversity (Vich
Vila et al., 2018; Hidalgo-Cantabrana et al., 2019). The
patients with disease duration beyond 5 years demonstrated
prominently increased α-diversity (Figure 1B), implicating that
the gut microbiome alteration might result from a long-term

inflammatory status. Combined with distinct β-diversity, we
concluded that the gut microbiome of vitiligo patients was
subject to dysbiosis (Figure 1C). The reduced Bacteroidetes:
Firmicutes ratio as a fecal microbial signature in patients with
vitiligo compared with healthy controls (Figure 2A) was in
line with the situation in IBD (Bamola et al., 2017) and
multiple sclerosis (MS) (Cosorich et al., 2017), the latter of
which may be attributed to high disease activity and increased
intestinal Th17 cell frequency. The Negativicutes class, which
showed a slow decline as the disease course prolonged, was
drastically reduced in ankylosing spondylitis patients (OTU
14148, adjusted P = 5.3 × 10–28) (Nayfach et al., 2019),
suggesting Negativicutes class may play a similar role in a variety
of autoimmune diseases. Moreover, Gammaproteobacteria class
including screened genera Escherichia/Shigella, Psychrobacter,
and Parasutterella displayed increased firstly and then decreased
(Figure 2B). Interestingly, it was also observed that the
enrichment of Gammaproteobacteria prompted the microbial
alteration in IBD women and even in their infants (Torres et al.,
2019), which may suggest the similar potential consequences
of abnormal early-life microbiome exposure for patients with
vitiligo. Our module of co-occurring genera might indicate
the profound imbalances in the inter-species relationship
of vitiligo microbial community (Supplementary Figure 3).
Subdoligranulum, Parabacteroides, Parasutterella, Azospirillum
Sp. 47, and Butyricoccus were the core nodes of the network,
acting as the central hub, indicating that these species had a
stronger symbiotic relationship with other species and were
more closely related to other species. However, genera such as
Psychrobacter and Corynebacterium 1 were at the edge of the
coexisting network. We speculated that the metabolic functions
of these species might be irrespective of the living conditions that
shared with other genera.

Survey of the patients’ gut microbiome might be an
essential part for vitiligo non-invasive screening and differential
diagnosis. The gut microbiome potentially operative in vitiligo
pathogenesis also have notable implications for development of
health checkups and health products directed at the dysbiosis.
Supervised machine learning enabled the prediction of vitiligo
with extremely high accuracy assisted by QIIME2 platform.
And characteristic microbes’ outputted by machine learning
could be viewed as vitiligo biomarkers. Distinguished gut
microbiome of vitiligo patients might be an essential part for
vitiligo non-invasive screening and differential diagnosis. The
gut microbiome potentially operative in vitiligo pathogenesis
also have notable implications for development of health
checkups and health products that direct at microbiome.
So far, we have obtained several attractive and promising
disease-related markers. Psychrobacter functions in pathways
such as fatty acid biosynthesis, degradation and metabolism
(Tribelli and Lopez, 2018), which are consistent with differential
metabolites identified in vitiligo patients’ serum metabolome
that also involves in fatty acid metabolism pathways (i.e.,
eicosapentaenoic acid). The characteristics of the vitiligo-
associated gut microbiome are shared by extensive autoimmune
diseases highly related to potential pathogenic microbes (Lloyd-
Price et al., 2019; Torres et al., 2019).
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A large number of clinical studies and epidemiological
investigations suggest that changes in the environmental status
of the host have an essential impact on the gut microbiome
(Dominianni et al., 2015; Tamburini et al., 2016; Zmora et al.,
2019; Leshem et al., 2020). Previously, internal and external
factors, like age, sex, dietary, smoking status, immune state,
metabolites and environment, were reported to affect gut
microbiome composition in the general population (Dominguez-
Bello et al., 2019). Our results support that the clinical variable
“Diet (Veg)” contributes the most to the changes in the gut
microbiome of the enrolled cohort (Figure 4A). Still, in-depth
analysis found that “Diet (Veg)” have no significant effect on the
gut dysbiosis in patients with vitiligo (Figures 4B,D). The reason
may be that the clinical variable “Diet (Veg)” is not a critical
factor in the formation of gut dysbiosis in patients with vitiligo.
Cohort studies with larger sample sizes may be needed in the
future to confirm this.

Most potential gut microbial markers in vitiligo were
significantly associated with differential serum metabolites
according to gut microbiome and serum metabolomics
association analysis. Currently, it’s widely accepted that
metabolites might serve as the preferred carbon source for
promoting growth of microbial species, or byproducts of species
metabolism released into the blood circulation (Franzosa et al.,
2019). Some elevated vitiligo-associated metabolites identified
in the present study (Figure 4C) are also reportedly to be risk
factors in IBD, including taurine, TCDCA, eicosapentaenoic acid
and linoleic acid (Dawiskiba et al., 2014; Lloyd-Price et al., 2019).
This indicates that gut microbiome and serum metabolome
might operate in similar mechanisms in vitiligo to those in IBD,
presumably via igniting immune response.

As a critical component of primary bile acids, TCDCA
participates in and affects the bile acid metabolism pathway
of microbes (Heinken et al., 2019). At the same time,
TCDCA can be biosynthesized into tauroursodeoxycholic acid
(TUDCA) (Song et al., 2017), which is an inhibitor of
endoplasmic reticulum stress (Keestra-Gounder et al., 2016).
Thus, TCDCA might be suppressive in the progression of
endoplasmic reticulum stress-induced vitiligo (Park et al.,
2019) through bile acid metabolism. The close relationship
between microbe and metabolite (Figure 4C) exhibited in
the present study might extend the notion of microbiome-
host interaction pattern in disease development. Moreover,
the integration of gut microbiome and circulating metabolites
signals greatly optimized the prediction accuracy of vitiligo
in a complementary way (Figures 5A,B). It is predicted that
the better microbes and metabolites in the models have the
potential to be new biomarkers of disease and may play an
important role in the follow-up study of vitiligo mechanism.
Nevertheless, microbial markers in vitiligo such as Psychrobacter,
Corynebacterium 1, and Gemmobacter are rarely reported in
other autoimmune diseases.

Several limitations should be marked when interpreting our
results. The deficiency of metagenomics sequencing data limited
the analysis of metabolites-relevant functions and assessing
the power of microbiome signature. Prospective study with a
large (multi-center) cohort and validation study is necessary to

verify the proposed biomarkers. Still, the relevancies that we
found based on bioinformatics have provided the foundation for
the study of cause-effect relationships, which warrants further
investigation in mouse models of vitiligo. To disentangle the
clear roles of these metabolites by experiment in the year
ahead, species should grow in associated metabolites and/or their
metabolites are required to be analyzed in a single culture. Of
note, the identification of altered gut microbiome composition
and functional pathway associated serum metabolites by the
present study build a complex etiology network with vitiligo.
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