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Abstract

Child physical abuse is a leading cause of traumatic injury and death in children. In 2017,

child abuse was responsible for 1688 fatalities in the United States, of 3.5 million children

referred to Child Protection Services and 674,000 substantiated victims. While large referral

hospitals maintain teams trained in Child Abuse Pediatrics, smaller community hospitals

often do not have such dedicated resources to evaluate patients for potential abuse. More-

over, identification of abuse has a low margin of error, as false positive identifications lead to

unwarranted separations, while false negatives allow dangerous situations to continue. This

context makes the consistent detection of and response to abuse difficult, particularly given

subtle signs in young, non-verbal patients. Here, we describe the development of artificial

intelligence algorithms that use unstructured free-text in the electronic medical record—

including notes from physicians, nurses, and social workers—to identify children who are

suspected victims of physical abuse. Importantly, only the notes from time of first encounter

(e.g.: birth, routine visit, sickness) to the last record before child protection team involvement

were used. This allowed us to develop an algorithm using only information available prior to

referral to the specialized child protection team. The study was performed in a multi-center

referral pediatric hospital on patients screened for abuse within five different locations

between 2015 and 2019. Of 1123 patients, 867 records were available after data cleaning

and processing, and 55% were abuse-positive as determined by a multi-disciplinary team of

clinical professionals. These electronic medical records were encoded with three natural

language processing (NLP) algorithms—Bag of Words (BOW), Word Embeddings (WE),

and Rules-Based (RB)—and used to train multiple neural network architectures. The BOW

and WE encodings utilize the full free-text, while RB selects crucial phrases as identified by

physicians. The best architecture was selected by average classification accuracy for the

best performing model from each train-test split of a cross-validation experiment. Natural

language processing coupled with neural networks detected cases of likely child abuse

using only information available to clinicians prior to child protection team referral with
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average accuracy of 0.90±0.02 and average area under the receiver operator characteristic

curve (ROC-AUC) 0.93±0.02 for the best performing Bag of Words models. The best per-

forming rules-based models achieved average accuracy of 0.77±0.04 and average ROC-

AUC 0.81±0.05, while a Word Embeddings strategy was severely limited by lack of repre-

sentative embeddings. Importantly, the best performing model had a false positive rate of

8%, as compared to rates of 20% or higher in previously reported studies. This artificial intel-

ligence approach can help screen patients for whom an abuse concern exists and stream-

line the identification of patients who may benefit from referral to a child protection team.

Furthermore, this approach could be applied to develop computer-aided-diagnosis plat-

forms for the challenging and often intractable problem of reliably identifying pediatric

patients suffering from physical abuse.

1. Introduction

Child abuse is a leading cause of traumatic injury and death in children [1]. In 2017, Child Pro-

tective Services (CPS) received 3.5 million referrals and substantiated concerns of maltreat-

ment in 674,000 children [2]. Child maltreatment was responsible for ~1700 fatalities in the

United States, 70% of which were under 3 years of age [2]. Identifying child abuse is critically

important for the prevention of escalating injury and death and represents a complex,

resource-intensive process, with little room for error.

While large referral hospitals can maintain teams trained in Child Abuse Pediatrics (CAP),

smaller community hospitals rarely have such resources, making the consistent detection of

and response to subtle signs and symptoms of abuse difficult. Inflicted injury recognition is

further complicated by the low margin for error [1]. False positive identifications can lead to

separation of a child from appropriate, caring family, while false negatives leave a child in a

dangerous situation. Unlike many diagnostic tasks where sensitivity is essential, but low speci-

ficity may be overcome by secondary testing, both sensitivity and specificity of abuse detection

are crucial.

Current algorithmic approaches for detection of child abuse are sensitive, but compromise

specificity. For example, using a clinical decision rule of 4 variables to classify abusive head

trauma, sensitivity was 0.96, while specificity was only .46 [3]. Another predictive risk model

to aid CPS call screeners respond to allegations of abuse reached area under the receiver opera-

tor characteristic curve (ROC-AUC) ~ 0.8, with a false positive rate ~0.2 [4]. Those approaches

with increased specificity (0.86) remain limited to single aspects of child maltreatment, such as

the clinical prediction of abusive head trauma [5].

Deep learning exhibits potential in diverse clinical tasks ranging from analysis of images to

natural language processing (NLP) of electronic medical records (EMR) [6]. For example,

deep learning has been used in tasks as diverse as the prediction of drug interactions, analysis

of cancer types, classification of radiological images, and stratification of diseased patients [7–

9]. The application of NLP to EMR free-text is particularly promising because the EMR is a

complete record, including clinical impressions, social and medical history, summaries of

diagnostic tests and studies, and longitudinal documentation of the patient’s course. A variety

of artificial intelligence (AI) platforms have utilized adult EMRs [10–16] for feature extraction

and NLP. However, to our knowledge, only one study utilized NLP of EMRs for abuse identifi-

cation, and employed conventional machine learning methods rather than the deep learning

approaches described here [17].
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We developed and evaluated NLP-based AI models utilizing free text from pediatric EMRs

to classify suspected child victims into abuse-positive and abuse-negative groups, for potential

work up by CAP team physicians. Importantly, we performed NLP using only the notes from

time of first encounter (e.g.: birth, routine visit, sickness) to the last record before child protec-

tion team involvement. This allowed us to develop classification algorithms using only infor-

mation available prior to referral to the specialized child protection team. We implemented 3

common NLP encoding techniques, Bag of Words–Term Frequency Inverse Document Fre-

quency (BOW-TFIDF), Word Embeddings (WE) and, Rules-Based (RB), to encode the rec-

ords, and applied the encodings to train Multi-Layer Perceptron neural networks (MLP). We

selected models with both high accuracy and high ROC-AUC. Finally, we compared different

encoding techniques and MLP models to assess their strengths and weaknesses.

2. Methods

Protocol number: H-44817, was approved by Institutional Review Board for Baylor College of

Medicine and Affiliated Hospitals (IRB). Waiver of consent granted by IRB.

2.1. Data selection and pre-processing

This retrospective study was conducted under a protocol approved by the Institutional Review

Board. All cases investigated by the Child Abuse Pediatrics (CAP) Team between 1/1/2015 and

5/1/2019 were identified. Cases are referred to the CAP Team by clinical departments and

social workers within the hospital, county Child Protective Services, and community pediatri-

cians from the hospital’s satellite referral sites at five locations (S1 Fig). The free text notes

from every encounter of these patients with staff, as well as radiology reports and summaries

of lab tests were selected. All identifying information including names of patients, siblings, and

associated adults, addresses, and phone numbers were stripped. For each patient, the note doc-

umenting the first encounter with a member of the CAP team was identified and discarded,

along with all subsequent notes, ensuring model training and testing using only information
available prior to CAP Team evaluation. This truncation was performed intentionally to repli-

cate the clinical circumstances and available data that referring providers and emergency

department clinicians have at their disposal when considering child maltreatment in their dif-

ferential diagnosis. Records with <2 notes remaining were excluded. All provider notes were

merged into a corpus for each patient, and cleaned of extraneous whitespace, single-character

words, numbers, punctuation, and the NLTK stop words (frequently occurring but semanti-

cally inconsequential English words, per the Natural Language Tool Kit [18]).

2.2. Multidimensional representation of data

Three representative NLP techniques (BOW-TFIDF), Word Embeddings (WE), and Rules-

Based (RB)) were selected for this study. Each encodes the corpora as numerical matrices.

BOW-TFIDF weights words by their number of occurrences in a given corpus relative to all

corpora [19]. High weights are given to those words frequent in the corpus being encoded but

infrequent overall.

WE uses a pre-trained “embedding” to assign an encoding vector to each word. The embed-

ding is trained on a reference corpus (ideally related to the specific text corpora). The embed-

ding consists of an n-dimensional vector for each word in the reference corpus; vectors

representing similar words are close together in n-space. This pre-trained embedding is then

used to encode the corpora to be used in the classification task. Words in the corpora that

appear in the embedding are assigned the corresponding vector; words that do not appear in

the embedding are assigned random vectors. The vectors representing the encoded document
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can then be used as inputs to a classifier [20, 21]. There is no publicly available text corpus

related to pediatric abuse case analysis, therefore two embeddings were selected for this study:

the publicly available GloVE embedding (WE-GLOVE, Global Vectors for word representa-

tion) utilizing 100 dimensional representations of words trained on the entirety of Wikipedia

[22], and an in-house embedding based on the MIMIC-III database (WE-MIMIC, Medical

Information Mart for Intensive Care) trained on the notes in the MIMIC-III database, a set of

adult ICU records from Beth-Israel-Deaconess Medical Center [23]. We speculated that the

MIMIC-III database could yield a more representative embedding than GloVE due to its med-

ical context.

In the RB approach, a CAP team physician selected 88 phrases that were likely to indicate

providers’ concerns for abuse. This approach incorporates clinician knowledge, and is similar

to that often applied in the biomedical literature where specific features from the medical

record are used as classifier inputs rather than all unstructured text [24]. Each patient-level

corpus was encoded with these phrases to create a vector of length 88 indicating the applica-

tion of each rule to the corpus, with 1 indicating the presence of a phrase associated with posi-

tive concerns for abuse and 0 indicating the presence of a phrase associated with negative

concern for abuse. A score of -1 was assigned if the phrase was not found in the record, to pre-

vent biasing the vector if a rule was merely inapplicable (i.e., the absence of a phrase associated

with positive abuse concerns does not mean negative abuse concerns). Substantially more pos-

itive inflicted injury rules than negative rules were enumerated, since the absence of a finding

is rarely recorded (e.g., if a rib fracture is present “rib fracture” will likely appear in the record,

but if there is no rib fracture observed then the phrase generally does not appear).

2.3. Network design and training

MLP’s were implemented in Python 3 using the Keras environment [25]. Model weights were

optimized using the ADAM optimizer and binary cross-entropy loss. Cross-validation was

used across the study, to ensure that results were not biased by coincidental gathering of cor-

pora that could be considered easily interpretable, and that each model was tested on unseen

test data [26]. This process partitioned the dataset into 10 subsets, each with a distinct training

and test-set of patients, with a random 10% of the training set used for internal validation dur-

ing each training epoch. To prevent overfitting, the final model weights were chosen from the

epoch with highest internal validation accuracy rather than automatically selecting the final

epoch. After training, the model was evaluated on the held-out 10% test set. Initially, 4 archi-

tectures were chosen to test different numbers of hidden layers and dropout layers. For WE,

accuracies were poor for all 4 architectures, so training was ceased. For BOW-TFIDF and RB,

these results were used to create 4 additional architectures similar to the best-performing one

from the original 4; allowing for further optimization. A total of 24 architectures were thus

designed and trained on corpora: 8 each for BOW-TFIDF and RB, 4 each for WE-GLOVE and

WE-MIMIC. The selected training parameters and architectures are shown in S1 Table and S2

Fig. Each model was trained and tested 10 independent times for each of 10 train-test splits,

and classification results were compared to ground truth (the multi-disciplinary CAP Team

assessment). The architecture within each encoding strategy with highest average test-set accu-

racy across the best model in each split was chosen.

For each chosen architecture, we calculated the average, standard deviation, and maximum

accuracy and ROC-AUC for the best performing model weights from each split. The difference

in the length of corpora between correct and incorrect classifications using BOW-TFIDF and

RB models was tested for statistical significance. For the RB model, the difference in the num-

ber of invalid rules between correct and incorrect classifications was also tested. We also
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compared the results of the MLP using BOW and RB to those from a logistic regression using

BOW and RB, in order to confirm the utility of a deep learning approach.

A saliency-frequency analysis for the best performing BOW-TFIDF model [27] was per-

formed: for each test-set record, the numerical gradient across the network for each word in

the corpus was calculated. Then the 50 words with the highest gradient were selected, and the

frequency distribution of the 50 most frequently salient words for positive-abuse patients and

negative-abuse patients in the test-set was constructed.

A leave-one-out sensitivity analysis for the best performing rules-based model was per-

formed: each rule was invalidated in succession for all test-set records, and the change in accu-

racy for both the best and worst performing train-test splits was calculated.

The best performing BOW-TFIDF and RB models were applied to corpora created from

MIMIC-III, using records of length similar to the mean length of abuse corpora. MIMIC is an

adult ICU database, all records should have a negative classification for child abuse, and a posi-

tive model classification must be a false positive. The occurrence of each rule in MIMIC cor-

pora was recorded, to identify reasons for false positives.

3. Results

From the initial 1123 patients, 49 were excluded with<2 notes after truncation. The remaining

1074 patients had 3–2145 notes (median = 21.5). The CAP team failed to classify 167 patients,

leaving 898 for further processing. The median number of words was 6167.5 ranging from 0 to

994901. To accommodate memory requirements for MLP training, 30 patient corpora

with> 100k words were excluded. One corrupted record was empty after data processing, and

excluded, resulting in 867 patient records, 478 positive for physical abuse (55%) and 389 nega-

tive (45%) (Fig 1). This distribution of findings illustrates a methodical practice pattern in

interpreting data to identify an unsafe caretaking environment despite the potential referral

bias to the child abuse pediatrics service. Of these 867, the interval between first note and the

truncation point (pre-CAP-Team-encounter) was 0–3381 (median 15) days. 8 of these patients

were over the age of 5 years at CAP encounter, representing a more diverse age range than that

used in other published study groups, such as those used to derive clinical prediction rules for

abusive head trauma [3, 5].

The chosen model architectures and hyperparameters are summarized in S1 Table. The

BOW-TFIDF and RB MLPs were run for 25 epochs (S2 Fig), while WE MLPs were run for 50

epochs, beyond which no improvements in accuracy were observed. The results of 10 repeti-

tions of the chosen model architectures for each of 10 train-test splits are shown in Fig 2. The

mean accuracy and AUC for the best performing model in each split (n = 10) are summarized

in Fig 3. For the best model from each split by accuracy, the average accuracy (n = 10) was

89.9% (2.6% SD, max 93.1%) for BOW-TFIDF, 76.6% (3.7% SD, max 81.6%) for RB, 65.8%

(SD 2.8%, max 70.1%) for WE-GLOVE, and 66.4% (SD 3.8%, max 71.2%) for WE-MIMIC.

The average ROC-AUC was 93.1% (2.2% SD) for BOW-TFIDF, 81.4% (5.2% SD) for RB,

68.3% (SD 3.5%) for WE-GLOVE, and 64.5% (SD 7.5%) for WE-MIMIC. The WE results are

limited by the lack of representative embedding–only 51% and 46% of words in the corpora

were contained in the WE-GLOVE and WE-MIMIC embeddings, respectively. For BOW-T-

FIDF and RB, the ROC plots and associated AUC, along with Sensitivity, Specificity, Accuracy,

and Positive Predictive Value (PPV) for the best performing model from each train-test split

are shown in Fig 4.

The logistic regression models on average across the 10 different train-test splits had 1%

lower accuracy, and 5% lower AUC for BOW than the MLP models (S2 Table). These differ-

ences were even larger for RB, with 4% lower accuracy and 10% lower AUC on average for
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logistic regression as compared to MLP (S2 Table). While the differences in accuracy between

logistic regression and deep learning may seem minor, the AUC differences are quite large.

For our application, where sensitivity and specificity are crucial, the large AUC improvement

shown with deep learning demonstrates its greater utility as compared to logistic regression.

The frequency distribution of the top 50 most salient words from the positive-abuse and

negative-abuse test cases for the best performing BOW-TFIDF model (by accuracy) is shown

in S3 Fig. Fig 5 shows the results of the leave-one-out sensitivity analysis for the best-perform-

ing RB model, with the invalidation of the phrase “history domestic violence” corresponding

to the greatest decrease in accuracy. A two-tailed t-test for difference of means on the best per-

forming model in each train-test split showed no significant difference in length of records for

Fig 1. Schematic of patient record selection and processing. (a) The records were processed to extract only those notes written before the first note from a Child Abuse

Pediatrics team MD or NP, hence allowing for prediction using only information available before the decision to refer a patient to the CAP team. (b) 1123 records for

patients evaluated for suspected abuse between 1/1/2015 and 5/1/2019 were identified. Several were excluded for reasons listed in the figure, leaving 867 records for deep

learning. (c) Schematic of cross-validation procedure used to create 10 distinct train-test splits.

https://doi.org/10.1371/journal.pone.0247404.g001
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either the BOW-TFIDF models (p = .095) or RB models (p = .71) (S4 Fig). No significant dif-

ference appeared in the number of invalid rules (rules whose phrase was not found in the

record) between the patients correctly and incorrectly classified by the RB models (p = .97) in

a two-tailed t-test for difference of means (S5 Fig). However, the distribution of predicted

probability of abuse between incorrectly and correctly classified patients differed significantly

for both the BOW-TFIDF and RB techniques (p = 7.17e-7 for BOW-TFIDF classifications and

p = .0002 for RB classifications) by a chi-squared contingency test. For correctly classified

patients the predicted probabilities fall in a bimodal distribution, whereas probabilities for

incorrectly classified patients distribute uniformly (S6A and S6B Fig).

When run on the MIMIC database of adult ICU patients with records between 5000 and

7000 words in length (which must all be negative for the physical abuse of a child), the

BOW-TFIDF model classifies 3740 out of 4611 (81.1%) as positive. The RB model classifies

3210 out of 4611 (69.6%) as positive. Analyzing the applicability of the rules to the MIMIC

database shows that the majority of the rules are present in greatly different proportions of the

MIMIC records than the maltreatment records, and that the phrases have different meanings

in the context of adult ICU patients versus pediatric abuse patients (S7 Fig).

4. Discussion

The BOW-TFIDF and RB approaches resulted in high classification accuracy and high

ROC-AUC (Figs 3 and 4). The accuracies and AUCs are similar across train-test splits (Fig 2),

Fig 2. Cross- validation. Boxplots showing accuracy for n = 10 trials for each of 10 train-test splits, with our chosen model architecture in

each strategy. The orange line shows the median, while the edges of the box show the 1st and 3rd quartile. The whiskers extend to 1.5

times the interquartile range, while points greater than 3rd quartile + 1.5�IQR or less than 1st quartile– 1.5�IQR are shown as discrete

points.

https://doi.org/10.1371/journal.pone.0247404.g002
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demonstrating that selected model architectures are consistently suitable—even with different

training and test set partitions—and the training procedure is robust and reproducible despite

the stochasticity inherent in deep learning. The WE based models had substantially weaker

results than BOW-TFIDF and RB, likely due to the small percentage of words embedded (Figs

2 and 3).

For an additional assessment of misclassifications, we selected 25 cases randomly out of

those misclassified by the BOW model for expert physician assessment. Here, we noted 4 rea-

sons for misclassification. Among the 6 false negative cases, all were in patients under 7

months with minimal medical records requiring further substantiation. Among the 19 false

positive cases, all were in three groups: (1) The abuse finding was based on neglect, (2) There

was no documented mechanism of injury in the notes prior to CAP team involvement, making

the dataset presented to the algorithm incomplete, or (3) There were multiple injuries and evi-

dence collected did not support all the injuries; therefore, more information was requested

after CAP Team involvement which was not presented to the algorithm. These reasons all

reflect complicated circumstances beyond concrete physical abuse, and in our assessment

would also be difficult for clinicians to make an accurate determination. For many of these

cases, the network predicted an intermediate probability reflective of relative uncertainty in

the prediction (S6C Fig).

Moreover, our BOW-TFIDF models have comparable or better accuracy to previously

reported models [17] despite our decision to eschew terminology normalization or ensembling

with a feature selection model. This ensures that our methods are easily deployable without

time-intensive, often manual pre-processing steps. While the study with records from the

Fig 3. Performance of the best model in each of 10 train-test splits. A) the average accuracy of ten repetitions, B) the average area under the ROC curve

(AUC) of ten repetitions.

https://doi.org/10.1371/journal.pone.0247404.g003
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Netherlands employed conventional machine learning methods (random forest, support vec-

tor machines etc.) and we employed deep learning techniques (MLP), both studies found

BOW-TFIDF to be a successful encoding technique. This utility of BOW-TFIDF across rec-

ords from both the Netherlands [17] and the United States (present study) utilizing different

natural languages (Dutch vs. English) indicates the robust nature of the encoding technique.

This previous study reported a best AUC of .914 with an accuracy of .822 for a single

ensembled model that used both structured and unstructured features. In contrast, our single

best performing BOW-TFIDF model (unstructured features only) achieved both higher AUC

(.95) and accuracy (.93). Of particular note, our model maintains high sensitivity and specific-

ity (0.94 and 0.92), which corresponds to an 8% false positive rate. This is a substantial

improvement over prior work with a ~20% FPR [4].

4.1. Strengths and limitations

The saliency-frequency map (S3 Fig) of the BOW-TFIDF network demonstrates several inter-

esting features. The word “no” had high saliency regardless of classification, since the inclusion

or exclusion of the word “no” directly reverses meaning. Other words, like “trauma,” “head,”

and “negative” were highly salient in both abuse-positive and abuse-negative records for the

same reason–their presence is important to the network’s classification. In contrast, some

terms like “CPS” and “weight” or “kg” were highly salient only in positive maltreatment

Fig 4. ROC curves, AUC, accuracy, PPV, sensitivity, specificity, and F1 score for the best performing model in

each train-test split for BOW-TFIDF and rules-based approach. For each model category the receiver operator

(ROC) curve, AUC, Accuracy, PPV, Sensitivity, Specificity, and F1 Score for the best model in each train-test split is

shown. The ROC curve shows the sensitivity-specificity tradeoff for different classification thresholds, while the tables

show the AUC for the ROC curve, as well as accuracy, PPV, sensitivity, specificity, and F1 score at the .5 threshold used

in our classification algorithm. (a,c) BOW-TFIDF, (b,d) Rules-Based. The BOW models have highest AUC, with a

characteristic ROC plot shape, and high sensitivity, PPV, specificity, and F1 Score.

https://doi.org/10.1371/journal.pone.0247404.g004
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records. Since saliency measures how changing a given word would change the classification,

reliance on clearly relevant words shows promise for this model.

The RB approach is also encouraging–while the accuracy and ROC-AUC are lower than

BOW-TFIDF, it has the advantage of incorporating clinician input in determining the rules.

This could refine practice by tailoring rules for community-network hospitals, and taking into

account the expertise of CAP-trained physicians. However, formulating and validating these

rules takes manual time and effort in contrast to BOW-TFIDF, which provides an end-to-end

automated pipeline with comparable or better results.

A significant drawback of the RB approach is its potential to emphasize socioeconomic

biases in the diagnosis of child abuse, through its inclusion of rules reflecting clinicians’ per-

ceptions of a child’s social circumstances. However, our sensitivity analysis (Fig 5) showed that

“history domestic violence” had the most significant impact on classification. Importantly,

interpersonal violence has been well described as a multi-directional phenomenon within a

Fig 5. Leave-one-out sensitivity analysis of rules used in rules-based approach. (a) The change in percentage accuracy that occurs when each rule is in invalidated (set to

-1 for each record) for the best performing model from the best train-test split by maximum accuracy, and the best performing model from the worst train-test split by

maximum accuracy. For the best split, the invalidation of each rule has no change or lowers the accuracy, with the phrase “history domestic violence” having the greatest

impact and reducing accuracy by 0.11 from 0.82 to 0.7. For the worst split, the invalidation of each rule can have no change, or can raise or lower the accuracy. The phrases

“history domestic violence” and “rib fracture” have the largest negative impact and reduce accuracy by 0.05 from 0.7 to 0.65, while the phrases “Inconsistent”,

“unwitnessed”, “altered mental status”, “employment” and “witnessed” have the largest positive impact and increase accuracy by 0.02 to 0.72. (b) Alphabetical list of rules

which do not change accuracy during leave-one-out sensitivity analysis.

https://doi.org/10.1371/journal.pone.0247404.g005
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household, putting not only partners but minor household members at risk for harm [28–30].

Therefore, it captures an important adverse childhood experience associated with abuse, with-

out relying on potentially biased racial, ethnic, or socioeconomic linkages. Invalidation of this

rule reduced accuracy by 0.11 from 0.82 to 0.7 for the best performing model in the best train-

test split and reducing accuracy by 0.05 from 0.7 to 0.65 for the best performing model in the

worst train-test split.

BOW-TFIDF and RB techniques are highly context-specific to exclusively patients for

whom there is already a concern for abuse. Application of the best-performing BOW-TFIDF

model to the MIMIC Adult ICU patient records yielded an 81.1% false-positive rate. TFIDF

calculations performed on the records of suspected abuse patients during the training of the

model did not appear to apply to the records of Adult ICU patients, where similar words could

be used in different contexts. Using the best-performing RB model on the MIMIC Adult ICU

patient records led to an 69.6% false-positive rate. We suspect this occurred because rules for-

mulated in the child maltreatment context were confusing in the adult ICU context. For exam-

ple, a phrase like “vertebral fracture” frequently occurred in both sets; however, that clinical

finding is more likely to raise concern for abuse in pediatric settings. Moreover, some phrases

worrisome for child maltreatment such as “illicit drug use” and “limited motion,” occur in a

far greater percentage of MIMIC records than pediatric records (S7 Fig), further illustrating

that the MIMIC records are not well suited for evaluation using a model explicitly trained on

child abuse records and intended to be used as an aid for identifying pediatric patients for

referral to the CAP team.

Only ~50% of the words in our corpora were represented in the WE-GLOVE and WE-MI-

MIC embeddings. This demonstrates the importance of utilizing embeddings trained on a cor-

pus with a vocabulary representative of the corpora which are being classified (Wikipedia and

Adult ICU notes vs. pediatric injury notes, in the present study). Word Embeddings are gener-

ally regarded as a top-performing NLP encoding technique; therefore, the lack of a suitable

embedding is a significant limitation to the utilization of the technique in this context.

Another limitation of this study is the lack of cross-institutional validation. Due to the con-

text-specific nature of the encoding techniques, it will be important to test and refine this pipe-

line in the context of EMRs from other institutions, which likely contain syntax specific to

their clinical teams and specific patient populations. However, in the context of this work, we

demonstrate that a natural language processing and deep learning pipeline can be effectively

utilized to develop an abuse detection system for patients seen at both the main clinical loca-

tion and satellite referral sites.

In the future, the development of representative embeddings will be required to harness the

power of word embeddings for child physical abuse classification. This may be done with a

larger corpus of pediatric electronic medical records, separate from the records concerning

child abuse. Incorporating direct reports from laboratory and imaging data into the deep

learning approach offers another opportunity to use the objective findings to improve the

accuracy and transferability of the network. Innovative approaches to combine BOW-TFIDF

inputs with word embeddings, or to use phrases rather than individual words as inputs hence

preserving more syntactical meaning, may also yield improvements to algorithmic perfor-

mance. Finally, alternative deep learning models can also be used to increase classification

accuracy—these include alternative architectures such as Long Short-Term Memory (LSTM)

and Recurrent Neural Networks (RNN) that have shown promise in text classification applica-

tions [31, 32]. Finally, efforts to implement, utilize and refine these deep learning approaches

in a clinical setting will be crucial to improving performance and applicability.
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5. Conclusions

This study was aimed at creating a screening algorithm for pediatric trauma cases in order to

identify those children whose safety could be improved by a more extensive consideration of

child maltreatment as a cause of their presenting injuries. In order to re-create a practice envi-

ronment in which inclusion of child physical abuse is not commonly included in the differen-

tial diagnosis, deep learning approaches to classify inflicted injury to children were developed

using only the portions of the electronic medical record before referral to a CAP team. These

analyses achieved average accuracy of 0.90 and average ROC-AUC of 0.93 (for the best per-

forming NLP processing technique, BOW-TFIDF), a combination that represents a significant

advance over those obtained by non-deep learning approaches and other published studies of

clinical prediction rules focused on an age group or specific diagnosis within the category of

physical abuse [3–5, 17, 33–35]. The application of deep learning approaches to natural lan-

guage processing of the free-text provider notes in electronic medical records could be used as

a computer-aided diagnosis system, to identify patients with a high likelihood of abuse for a

referral to trained CAP physicians, and may offer the potential to identify children at risk for

abuse proactively and in real time. Such an approach could help providers act more readily to

identify occult injuries in the index patient and also could assist in recruiting community part-

ners for early involvement both in home assessments and safety evaluations for other children

sharing the care environment where the injury occurred.
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