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Abstract: In today’s world, the problem of “white pollution” is becoming more and more serious,
and many countries have paid special attention to this problem, and it has become one of the most
important tasks to reduce polymer waste and to protect the environment. Due to the degradability,
safety, economy and practicality of biodegradable packaging film materials, biodegradable packaging
film materials have become a major trend in the packaging industry to replace traditional packaging
film materials, provided that the packaging performance requirements are met. This paper reviews the
degradation mechanisms and performance characteristics of biodegradable packaging film materials,
such as photodegradation, hydrodegradation, thermo-oxidative degradation and biodegradation,
focuses on the research progress of the modification of biodegradable packaging film materials, and
summarizes some challenges and bottlenecks of current biodegradable packaging film materials.
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1. Introduction

Plastic was once hailed as one of the greatest inventions of the 20th century, because of
its light weight, good processing performance, low price and many other advantages that
make the global plastic industry has been rapid development [1]. According to statistics, the
total global production of plastic products exceeds 300 million tons [2–4], with 13 million
tons entering the water [5]. However, only 6–26% of plastic products are recycled, which
means that at least 74% of plastic waste ends up in landfills or enters the environment
every year [3,6], of which about 46% comes from the packaging industry, especially food
packaging films, which are largely non-recyclable [7]. Since most plastics are now made
from non-biodegradable materials, it often takes one to two hundred years to degrade these
plastic products [8–13].

Plastic is the most commonly used packaging material [14,15], especially packag-
ing film material. However, the packaging industry generates about 141 million tons of
plastic waste each year [16], and most of the packaging film materials are composed of
non-degradable materials, which obviously leads to many environmental problems, such
as “white pollution” [17–19]. General purpose plastic packaging films such as polyethylene
(PE), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC) [20,21] film mate-
rials undergo a long period of aging under the current common waste disposal method of
sanitary landfill conditions. Under the action of abiotic factors (such as solar radiation, high
temperature, wave impact, gravel abrasion) or biotic factors (such as ingestion, colonization,
degradation) [22,23], physical or chemical property changes, molecular weight reduction
and molecular weight distribution changes, but its decomposition is not complete, the
majority of decomposition into microplastics (particle size < 5 mm) or nanosized-plastics
(particle size < 0.1 µm) [24,25]. At present, microplastics have been widely detected in
oceans [24,26], sediments [27], rivers [28–30], lakes [20], atmosphere [31–33], soil [34,35]
and organisms [36], disrupting the normal metabolism and energy balance in organisms,
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thus affecting the normal growth and reproduction of organisms and causing potential
harm to human health [37,38].

To solve these problems, it has become important for biodegradable packaging film
materials to replace traditional packaging film materials [39,40]. However, biodegradable
plastics currently account for less than 1% of total plastics production [41]. Compared with
traditional packaging film materials, biodegradable packaging film materials are more
expensive to produce and have poor mechanical properties and their barrier properties,
which are the main reasons for their limited applications [42].

This paper reviewed the degradation mechanism of different packaging films and the
research progress of biodegradable films, and provided outlook on the future development
trend of packaging film materials.

2. Degradation Mechanism of Degradable Packaging Film Materials

Degraded plastics are plastics that have been subjected to defined environmental
conditions for a period of time and contain one or more steps that result in significant
changes in the chemical structure of the material resulting in loss of certain properties (such
as integrity, molecular mass, structure or mechanical strength) and/or fragmentation [43,44].
As shown in Table 1, the degradation degree can be divided into complete and incomplete
degradation, and different degradation mechanisms can be divided into photodegradation,
water degradation, thermal oxidative degradation and biodegradation [45].

Table 1. The classification and characteristic of degradable plastics.

Classification Category Features

By degradation principle

Biodegradable plastics Similar performance to traditional plastics,
good degradability, high safety

Photodegradable plastics Simple and low cost production process
Thermal oxidative degradation plastics Requires oxygen and heat

Hydrodegradable plastics Short degradation time, no trace,
no pollution, low cost

By degradation characteristics Fully degradable plastics Completely disintegrates and leaves no trace
Incomplete degradable plastics Partial degradation

2.1. Photodegradation

Photodegradable materials are degraded to low molecular weight compounds that are
relatively safe for the environment by photo-initiated fracture and free radical oxidative
fracture reactions under the action of sunlight (mainly UV light) [46]. Photodegradable
film materials can be mainly divided into photodegradable materials obtained by copoly-
merization and photodegradable materials with composite photosensitizers [47].

In sunlight, UV light with a wavelength of 290 nm–400 nm only accounts for about
5%, and it is the UV light that causes photodegradation of the film. Figure 1 shows the
photodegradation mechanism. The molecular chains react under certain conditions of
oxygen, temperature and humidity, and the long molecular chains are decomposed into
peroxides and eventually achieve photodegradation [48].

Figure 1. The mechanism of photodegradation.

Christensen et al. [49] investigated the photodegradation properties of polymers with
a 1:1 mass ratio of polycaprolactone to polyvinyl chloride by monitoring CO2 emissions
during UV exposure. The results showed that the interaction of the two components in the
polymer reduced the photodegradability. Najaf et al. [50] used polyaniline modified TiO2
as a photocatalyst and then combined it with polyvinyl chloride to make photodegradable
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films. The results showed that the quality of polyaniline decreased by 67% when the molar
ratio of polyaniline to TiO2 was 10:1 under the condition of 30W UV lamp irradiation for
720 h, decreased by 12% compared with the pure polyvinyl chloride (PVC) film, and its
photodegradation performance was greatly improved.

Photodegradable materials must be exposed to light and have a long degradation
period, while most film materials are not exposed to natural light for a long time after
disposal and it is difficult to ensure the degradation conditions required for photodegrad-
able film materials, which greatly limits the large-scale application of photodegradable
film materials.

2.2. Hydrodegradation

Hydrodegradable plastic is a kind of plastic that can self-degrade by hydrolysis. The
essence is the presence of hydrolyzable covalent bonds in degradable plastics, such as esters,
ethers, anhydrides, amides, carbamides or ester-amide groups [45], which can achieve
dissolution when the plastic encounters water [51,52]. Water activity, temperature, pH and
time are the key factors affecting the efficiency of hydrolysis [53].

Polyvinyl alcohol (PVA) is a water-soluble polymer with a carbon chain as the main
chain and a large number of hydroxyl groups on the side chain [54,55]. It is non-toxic,
easily processed, biodegradable, has good mechanical properties [56,57], and can be mixed
with natural polymeric materials such as polysaccharides and proteins to improve its
properties [58–60]. Mainly used in the packaging of water-soluble products, the buyer can
do not touch the product in the process of using the product, safe and at the same time
make the use of the product more convenient. However, the resistance of PVA film to
water is very low, usually in a very short period of time can be completely dissolved [61];
therefore, if it is widely used in the field of packaging needs, it needs to be modified for
water resistance.

Lv et al. [62] investigated the time-dependent hydrolysis behavior of polylactic acid
(PLA) and starch/PLA composites. The results showed that the presence of starch may
induce hydrolysis to occur at the interface between starch and PLA. In addition, starch can
slightly slow down PLA hydrolysis without affecting the degree of PLA hydrolysis. Table 2
shows the water degradation of several common biodegradable polyesters in different
water environments.

Table 2. Hydrologic degradation of several typical biodegradable polyesters in different water
environments. Data from [63].

Material Conditions Weight Loss % Number-Average Molecular
Weight (Mn) Mechanical Properties

Polylactic acid (PLA) Seawater <2 96.60 × 103 to 83.85 × 103
No significant change

Germicidal water <2 96.60 × 103 to 67.98 × 103

Poly (butyleneadipate-co-
terephthalate) (PBAT)

Seawater <2 46.67 × 103 to 20.31 × 103
Total lossGermicidal water <2 46.67 × 103 to 16.02 × 103

Poly (butylene succinate) (PBS) Seawater <2 41.56 × 103 to 30.11 × 103
Total lossGermicidal water <2 41.56 × 103 to 18.63 × 103

Polycaprolactone (PCL) Seawater 32 77.79 × 103 to 77.09 × 103
Total lossGermicidal water <2 77.79 × 103 to 14.82 × 103

2.3. Thermal Oxidative Degradation

Thermally oxygen degraded plastic is that subjected to heat and/or oxidation over
a period of time and contains one or more steps that result in significant changes in the
chemical structure of the material, resulting in loss of certain properties (such as integrity,
molecular mass, structure or mechanical strength) and/or fragmentation [64,65]. Heat
can change the oxidation mechanism of plastics, and higher temperatures can improve
the degradation of plastics [66,67]. Figure 2 shows the mechanism of thermal oxidative
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degradation. Thermally oxygen degraded plastic is also very difficult to degrade completely
in most cases due to the conditions.

Figure 2. Auto-oxidation scheme of polymer. Reprinted from Ref. [68]. Copyright (2016), with
permission from Elsevier.

Gaurav et al. [69] prepared two high-density polyethylene/polylactic acid blends with
and without the addition of a compatibilizer and a pro-oxidant using a melt blending
technique. The results showed that the addition of the compatibilizer led to a significant
improvement in the mechanical properties of the blends and the addition of the pro-oxidant
led to an improvement in their oxidative degradation properties.

2.4. Biodegradable

Biodegradable plastics are those degraded by naturally occurring microorganisms
under natural conditions such as soil and/or sand, and/or specific conditions such as
composting or anaerobic digestion or aqueous cultures, and ultimately degrade to environ-
mentally benign biomass, CO2, CH4 and H2O [70–72]. Figure 3 shows the biodegradation
mechanism. Biodegradable plastics have stable performance and can be completely de-
graded and returned to nature in a short period of time under composting conditions [73].

Figure 3. The mechanism of biodegradation.

Current research shows that animals, plants, microorganisms and enzymes all have
some ability to degrade plastics [74,75]. Table 3 shows the biodegradation of common plas-
tics. Among the many ways to change the properties of plastics, biodegradation of plastics
is one of the inevitable environmental processes for plastics to enter the environment, and
it is also an in situ, green, relatively low-cost and low-technology way to treat plastic waste.

Among various degradable mechanisms, biodegradation is more complete and faster
than other degradation mechanisms, and the degradation products are harmless. Biodegrad-
able plastics can be composted together with organic waste, thus eliminating the manual
sorting step compared to general plastic waste, greatly facilitating waste collection and
disposal, thus making composting and harmless disposal of organic waste into reality [80].
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Biodegradable packaging film materials are green, environment-friendly and resource-
saving compared with traditional film materials, thus gradually becoming a research
hotspot in the packaging industry, the development of biodegradable packaging film is an
effective way to fundamentally solve “white pollution”.

Table 3. Biodegradation of common plastics.

Material Conditions The Result of Degradation References

Polyethylene
Degradation of high-density

polyethylene with Aspergillus flavus
PEDX3 strain for 28 days

Molecular weight reduction [76]

Polypropylene Degradation of polypropylene with
microalgae Spirulina sp. for 112 days

Decrease in mechanical strength
and relative molecular weight [77]

Polystyrene Degradation of polystyrene with
Achatina fulica for 4 weeks

The mass loss was 30.7% on
average, forming a functional

group of oxidation intermediates
[78]

Polyethylene terephthalate
Degradation of polyethylene

terephthalate with microalgae
Spirulina sp. for 112 days

Decrease in mechanical strength [77]

Polylactic acid Degradation in accordance
with ISO 17556 15% of Polylactic acid is degraded [79]

3. Biodegradable Film Materials

Biodegradable film materials can be divided into three categories according to raw
materials and processing methods: natural polymer-based films, petroleum-based film
materials and bio-based film materials.

3.1. Natural Polymer-Based Films
3.1.1. Starch-Based Film Materials

Starch is a natural degradable polymer [81], available from a wide range of plant
species [82], the long chain molecules can be broken into glucose monosaccharides and
other small molecules by the action of microorganisms, and eventually metabolized to CO2
and H2O [83]. Starch-based films are one of the most productive biodegradable films in
the world, with high flexibility, good oxygen barrier, colorless, environmentally friendly
and other characteristics [84], but its film also has a difficult to process, physical properties
and poor water resistance as well as other disadvantages [85], so in practical use, they
usually need to be modified [86]. Surface modification [87,88], blending with reinforcement
fillers [89–91], and blending with other polymers [92,93] are the three most commonly
applied reinforcement strategies. Table 4 shows the different modifications of starch-based
film materials.

Table 4. The different modifications of starch-based film materials.

Modification Conditions Result References

Blending with
other polymers

Modified starch-based film materials
with natural fibers in blends

Tensile strength and modulus of elasticity
were improved, but the elongation at

break was not as good as that of ordinary
starch-based films

[92]

Blending with
other polymers

Modified barley hulls (BH) by grafting palmitic
acid and then blended with cross-linked polyvinyl

alcohol (PVA)/starch

The physical properties of the composite
film could be effectively improved, and

the air and water resistance were
substantially enhanced

[93]

Surface modification
Acetylated corn starch (AS), acetylated sugarcane

fiber (AcSF) and glycerol were used to make
biodegradable film materials

Mechanical properties and water
resistance have been improved [87]

Blending with
reinforcement fillers

Different contents of metakaolin were blended
with cassava starch to make film materials

The mechanical tensile strength and
properties increased significantly and the

elongation at break decreased
[91]
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3.1.2. Cellulose-Based Film Materials

Cellulose is a highly reactive biopolymer with a large amount of hydroxyl group in
its structure [94–97], which can be chemically modified through various reactions such
as esterification, etherification and oxidation to give cellulose new properties while en-
suring its degradable properties [98,99]. As a packaging material, cellulose also has good
biodegradability and excellent physical and mechanical properties, which makes it one of
the most suitable natural polymers for use in films [98,100]. However, cellulose also has
some limitations, such as high water absorption and poor interfacial adhesion [101]. Cellu-
lose is also converted into various derivatives, which can be mainly classified as: cellulose
acetate (CA), cellulose sulfate (CS), cellulose nitrate (CN), carboxymethyl cellulose (CMC),
ethyl cellulose (EC), methyl cellulose (MC), cellulose nanocrystals (CNC) and nanocellulose
(NC) [98]. Table 5 shows examples of cellulose derivatives film formation.

Table 5. Examples of cellulose derivatives film formation.

Material Conditions The Result of Degradation References

Cellulose acetate (CA)
The film material was produced by mixing CA,
sodium alginate (SA) and carrageenan (CG) by

solution casting method

The tensile strength, thermal stability
and antimicrobial activity of

the films were improved
[102]

Nanocellulose (NC) Nanocellulose is used as filler for melt blending
and blown film with PLA

The mechanical strength, crystallinity
and wettability are improved [103]

Cellulose nanocrystals
(CNC)/ Carboxymethyl

cellulose (CMC)

CMC films containing various contents of CNC
were prepared by solution casting method

Compared with pure CMC films,
CMC/CNC composite films have better
UV barrier, mechanical strength, water

vapor barrier and thermal stability

[104]

Ethyl cellulose (EC)
Preparation of PVA/EC/tea polyphenol (TP)

nanofiber films by blending
electrospinning technique

The thermal stability, surface
hydrophobicity, water resistance, water

vapor barrier capacity and tensile
properties of the composite nanofiber

films were improved

[105]

3.1.3. Chitosan-Based Film Materials

As the second most abundant polysaccharide in nature after cellulose [106,107], chi-
tosan (CS) is not only widely available and biodegradable, but also has good film-forming,
biocompatible and antibacterial properties [108,109], and is one of the ideal materials for
packaging films. However, its poor mechanical properties, weak water resistance and
poor thermal stability also limit the application in packaging [110,111]. Properties can
be improved by cross-linking [112,113], graft copolymerization [114,115], blending with
reinforcement fillers [116] and blending with other polymers [117]. Table 6 shows the
different modifications of chitosan-based film materials.

Table 6. The different modifications of Chitosan-based film materials.

Modification Conditions Result References

Cross-linking
Preparation of a chitosan/bacterial cellulose

membrane treated by multiple
cross-linking methods

Mechanical strength and elongation at
break increase, but its antimicrobial

efficiency decreases
[112]

Graft copolymerization
Chitosan (CS) was grafted with
caffeic acid (CA-g-CS) through

carbodiimide coupling and cast into films

CA-g-CS films have higher tensile
strength, elongation at break and

oxidation activity, and better barrier
properties to water vapor and oxygen

[114]

Blending with
reinforcement fillers

Nickel oxide nanoparticles (NiONPs)
were doped into chitosan-based films

to fabricate composite films

The composite film has improved water
resistance, tensile strength, thermal

properties and surface hydrophobicity,
and has ideal photocatalytic and

antibacterial activity

[116]

Blending with
other polymers

Biodegradable chitosan-based film
containing micro ramie fiber and lignin was

prepared by the casting method

Significant improvement in mechanical,
water resistance, thermal and oxidation

resistance properties
[117]
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3.2. Petroleum-Based Film Materials
3.2.1. Poly (Butylene Succinate) Film Materials

Poly (butylene succinate) (PBS or PBSu), an aliphatic polyester, can be contained
in petrochemical-based biodegradable polymers [118,119], but the important novelty is
that PBS can be produced from renewable resources such as sugarcane, cassava and
corn [120,121]. PBS has similar properties to PE, so it is often compared to PE and ap-
pears as a biodegradable alternative [122]. PBS has excellent properties, such as elongation
at break of over 200% and good barrier properties [7,123]. However, the relatively high cost
still limits its application. Therefore, many strategies are being developed to reduce costs,
on the one hand, and improve its performance to meet the specific requirements of packag-
ing, on the other. Blending with other polymers [124–127], synthetic copolymers [128,129]
and blending with reinforcement fillers [130,131] are commonly used to improve their
properties. Table 7 shows the different modifications of PBS film materials.

Table 7. The different modifications of PBS film materials.

Modification Conditions Result References

Blending with
other polymers

The PBS and plasticized whey
protein (PWP) blend makes the film

Significant increase in modulus of
elasticity, tensile strength and

elongation at break
[124]

Blending with
other polymers

Preparation of PCL/PBS co-blended
film by immersion precipitation

Improved hydrophilicity and
biodegradability, in addition to

higher pollution inhibition index
[127]

Synthetic copolymers
Synthetic poly (butylene

succinate-co-diethylene glycol succinate)
(P(BS-co-DEGS)) copolymer

Crystallinity, tensile modulus,
thermal stability slightly reduced and

water degradation rate increased.
[129]

Blending with
reinforcement fillers

Preparation of PBS/graphene nanoplatelets
(GnP) nanocomposites

Improved barrier properties to
water and oxygen [131]

3.2.2. Poly (Butyleneadipate-co-Terephthalate) Film Materials

Poly (butyleneadipate-co-terephthalate) (PBAT) is an aliphatic-aromatic copolyester
mainly made by condensation of benzodimethyl (C8H6O4), adipic acid (C6H10O4) and
butylene glycol (C4H10O2), etc. [132–134]. In addition to biodegradability, PBAT has
high flexibility, high strength and good tear resistance, and is widely used in various
industries, especially in food packaging [135,136]. Pure PBAT films have higher costs and
lower mechanical properties than traditional film materials [133,137,138], so blending with
reinforcement fillers [139–142] or blending with other polymers [134,143] is an effective
way to reduce prices and improve performance. Table 8 shows the different modifications
of PBAT film materials.

Table 8. The different modifications of PBAT film materials.

Modification Conditions Result References

Blending with
reinforcement fillers

Starch/PBAT nanocomposite films with
high starch content were prepared by

extrusion blow molding

Significant increase in mechanical strength,
flexibility and hydrophobicity [141]

Blending with
reinforcement fillers

Preparation of PBAT/lignin composite films
by extrusion hot-pressing

Significantly improved flexibility
and mechanical properties [140]

Blending with
other polymers

Compression molded biodegradable films
based on PBS and PBAT at varying

weights were prepared

Elongation at break increased with increasing
PBAT content, and gas barrier properties
decreased with increasing PBS content.

[143]

Blending with
reinforcement fillers

Preparation of PBAT/TiO2
biodegradable films

The addition of TiO2 leads to the improvement
of the overall barrier properties, thermal stability

and tensile strength of PBAT composite film
materials, but its elongation at break decreases

[142]
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3.2.3. Polycaprolactone Film Materials

Polycaprolactone (PCL) is a green, non-toxic synthetic aliphatic polyester material [144]
with numerous advantages, including: (1) faster crystallization rate and higher crystal-
lization [145]; (2) rubbery state at room temperature, elongation at break hundreds of
times higher than PLA [146,147]; (3) better rheology, viscoelasticity, good flexibility and
processability [148]; (4) outstanding resistance to UV radiation, wear resistance, anti-aging
properties, longer degradation half-life than PLA [127,149]; (5) excellent biocompatible
and biodegradable, non-toxic and harmless, EU and FDA certified for implantation into
human body [150]; (6) strong hydrophobicity and drug passage [151]. However, it has
the characteristics of poor water solubility, slow degradation, low melting point and poor
mechanical strength, so it needs to be modified in the actual use process. Table 9 shows the
different modifications of PCL film materials.

Table 9. The different modifications of PCL film materials.

Modification Conditions Result References

Cross-linking

Polycaprolactone (PCL) was cross-linked by
adding different amounts of organic

peroxides, such as
di-(2-tert-butylperoxyisopropyl)-

benzene (BIB)

PCL branching and cross-linking have
significant effects on the mechanical properties
of PCL 0.5 pbw (part by weight) BIB-modified

PCL has better mechanical properties, and
higher BIB content can lead to degradation and

excessive cross-linking of PCL

[152]

Compound modification Prepared PCL/polyvinyl chloride
(PVC)/organoclay nanobioblends film

Enhanced mechanical and barrier properties,
exhibiting some antibacterial activity [153]

Blending with
other polymers

PCL/PLA is mixed and green tea extract (GTE)
is used as an antioxidant to make the film

Reduced hydrophilicity and enhanced barrier
and mechanical properties [154]

3.3. Bio-Based Film Materials
3.3.1. Polyhydroxyalkanoates Film Materials

Polyhydroxyalkanoate (PHA) is a general term for a class of biopolyester produced
by microbial fermentation engineering technology, which has good biocompatibility and
biodegradability [155,156], and has the thermoplastic processability of petrochemical resins,
which can be processed by injection molding, extrusion blow molding film, extrusion
calendering, extrusion hollow molding, compression molding, etc., and manufactured into
films and containers that are widely used in packaging [157,158]. PHAs are classified into
short chain length and medium chain length PHAs, which depend on the amount of carbon
in the monomeric fraction [159,160]. Its main varieties are poly-β-hydroxybutyric acid
(PHB), poly-β-hydroxyvalerate (PHV) and their copolymers poly (β-hydroxybutyrate-β-
hydroxyvalerate) (PHBV), etc. [161]. Besides having some advantages, it is limited by poor
mechanical properties, high susceptibility to thermal degradation and high production
cost in practical applications [162], so it needs to be modified. Table 10 shows the different
modifications of PHA film materials.

Table 10. The different modifications of PHA film materials.

Modification Conditions Result References

Copolymerization
modification

Four cross-linkers (citric acid, adipic acid, borax
and boric acid) with polycarboxyl or polyhydroxy

structures were used in the preparation of the
starch/polyhydroxyalkanoate (PHA) films

With higher relative crystallinity, but
hinders the formation of intercalation

structures in the polymer matrix,
improving light transmission and

barrier properties

[163]

Blending with
reinforcement fillers

Lignin nanoparticles homogeneously dispersed in
poly-β-hydroxybutyric acid (PHB) matrix to form
nanocomposites with improved properties using

oil-in-water emulsion method

Improved mechanical properties, lower
crystallinity, higher glass transition

temperature and better barrier properties
[164]

Compound modification Preparation of PHA/PLA nanocomposite films
under different levels of montmorillonite

Better thermal stability and
electrical conductivity [165]
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3.3.2. Polylactic Acid Film Materials

Polylactic acid (PLA) is a type of degradable polymer material with lactic acid as
raw material [166,167], which is renewable and has the characteristics of non-toxicity, non-
irritation, good biocompatibility, processability, excellent mechanical properties, complete
biodegradability and environmental friendliness [168,169], and is considered as the main
alternative to petroleum-based plastics [170].

The degradation of PLA in nature occurs first by water degradation and then by
biodegradation, and the hydrolysis of PLA films is mainly caused by the hydrolysis of the
ester bond of the main chain into molecules of low relative molecular mass [171–174], and
the hydrolysis process is shown in Figure 4 [175].

Figure 4. Hydrolysis mechanism of PLA. Reprinted from Ref. [175]. Copyright (2016), with permis-
sion from Springer.

The biodegradation of PLA is greatly influenced by environmental factors [176]. The
start of hydrolysis at room temperature takes six months, while biodegradation takes one
year, and microorganisms play almost no role in the beginning of hydrolysis, which is one
of the characteristics of PLA [176,177].

PLA is one of several biodegradable plastics with large global production, PLA has
sufficient raw material sources, is renewable and has good hardness, gloss and thermoplas-
ticity, as well as good tensile strength and processing properties, but it also has deficiencies
such as poor blending properties and expensive [178]. Currently, the comprehensive per-
formance of PLA is mainly improved by copolymerization modification, blending with
reinforcement fillers, blending with other polymers and compound modification [179–181].
Table 11 shows the different modifications of PLA film materials.

Table 11. The different modifications of PLA film materials.

Modification Conditions Result References

Blending with
reinforcement fillers

Add bamboo cellulose nanowhiskers
(BCNW) to PLA as a filler and make a film

by solution casting method

Mechanical properties, glass
transition temperature, cold

crystallinity increase and microcrystal
size increase significantly

[180]

Compound modification
Introduction of glass fibers (GF) modified

with silane coupling agent (GF-S) into PLA to
make PLA-based composites

Improved mechanical and
thermodynamic properties [179]

Blending with
reinforcement fillers

Halloysite nanotubes (HNT) and chitosan as
fillers were blended with PLA to make films

Mechanical strength and mechanical
properties have been improved, with

excellent barrier to water and UV
light, and some antibacterial ability

[166]

Blending with
other polymers

Cinnamic acid (CA)/PLA films obtained by
casting or thermal processing

Greatly improves the mechanical
properties of the film and improves

the barrier to oxygen and water
[182]

copolymerization
modification

PLA is blended with polydecalactone
(PDL)-grafted cellulose copolymer (CgPD)

and made into films

Improved mechanical properties and
mechanical properties [183]
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PLA film is the most cost-effective biodegradable film material. Its mechanical proper-
ties and transparency are similar to those of polystyrene (PS) or polyethylene terephthalate
(PET) films, and it has good processability and stable performance, making it a promis-
ing biodegradable film. Compared with other materials, there are many PLA materials
that are already used in business. R. J. Reynolds Tobacco Products (US) has developed
a new tobacco packaging film coated with a metal oxide layer consisting of aluminum
oxide, titanium oxide and/or aluminum-titanium oxide that retains some moisture barrier
capability at the fold after folding [184]. Suzhou Xinghuo Fengying Environment Prot
Package Co Ltd. has developed a blown film process using PLA, PBAT, antioxidants and
poly (N-propionylethylenimine) blended extrusion, according to which the garbage bags
produced by this process have high elongation at break [185]. Perak Biochemicals has de-
veloped a method for producing polylactic acid (PLA)-shaped products by thermoforming
and such thermoformed PLA products. Purac Biochem Bv (NL) Perak Biochemicals has de-
veloped a method for producing polylactic acid (PLA)-shaped products by thermoforming
and such thermoformed PLA products [186].

4. Summary and Outlook

This review focuses on the degradation mechanism of packaging films and the prop-
erties and performance of several common biodegradable film materials available today.
This includes natural polymer-based film materials, petroleum-based film materials and
bio-based film materials. With the global “plastic ban”, the development of biodegrad-
able packaging films is one of the important research directions to solve the resource and
environmental problems. However, biodegradable packaging films also have poorer per-
formance than traditional packaging films, insufficient degradation controllability and
higher production costs. How to reduce the material production cost by improving the
synthesis and process is an urgent issue for the massive use of biodegradable films. In
response to the disadvantages of poor performance of biodegradable films, the develop-
ment of modification technologies such as cross-linking modification, hybrid modification,
copolymer modification and composite modification has become one of the key research
directions at present. The degradation performance of biodegradable packaging film is
also an important factor affecting its use, and either too fast or too slow degradation will
limit its use. To master the degradation mechanism of biodegradable packaging films and
then realize the controlled degradation of packaging films is a challenge that needs to be
overcome by the efforts of researchers.

At present, the misuse of biodegradable film materials in the market places a great
burden on the environment. Since they are expensive, some manufacturers usually add
some petroleum-based plastics to biodegradable products to improve durability as well as
reduce cost. However, this can lead to “pseudo-degradation” and can result in microplas-
tics entering the environment, causing a greater burden on the environment. Therefore,
developing biodegradable standards for the packaging industry will also be a priority.
The global outbreak of the coronavirus disease (COVID-19) in 2019 has gradually started
to bring antibacterial and antiviral packaging films into the limelight, and food safety
issues have become too important to ignore, and the development of antibacterial and
antiviral biodegradable packaging films will be an important research direction. Research
and development of biodegradable packaging films with better performance, economy and
convenience is the main task of the packaging industry all over the world, replacing tradi-
tional packaging films with biodegradable packaging films to achieve green development
in the packaging field.
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