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Abstract: Foodborne illnesses represent high costs worldwide in terms of medical care and produc-
tivity. To ensure safety along the food chain, technologies that help to monitor and improve food
preservation have emerged in a multidisciplinary context. These technologies focus on the detection
and/or removal of either biological (e.g., bacteria, virus, etc.) or chemical (e.g., drugs and pesticides)
safety hazards. Imprinted polymers are synthetic receptors able of recognizing both chemical and
biological contaminants. While numerous reviews have focused on the use of these robust materials
in extraction and separation applications, little bibliography summarizes the research that has been
performed on their coupling to sensing platforms for food safety. The aim of this work is therefore
to fill this gap and highlight the multidisciplinary aspects involved in the application of imprinting
technology in the whole value chain ranging from IP preparation to integrated sensor systems for the
specific recognition and quantification of chemical and microbiological contaminants in food samples.

Keywords: imprinted polymers; food safety; biomimetic sensor

1. Introduction

With the increasing globalization of food trade and supply, food safety is an issue
able to trigger health emergencies with international impact, for example the Listeriosis
outbreak in South Africa (2017–2018), Europe (2018) and Spain (2019) [1], which required a
multinational collaboration. The World Health Organization estimates about 600 million
cases of foodborne diseases (FBD) every year [2]. FBD can range from diarrhea to cancers
and affects nearly 1 out of 10 people globally [3]. Apart from the impact on human
well-being, economic costs related to FBD include productivity losses, treatment of the
diseases, domestic market disruption and costumer product avoidance [4]. Therefore, strict
controls and tools able to assess that all foods remain safe, wholesome and fit for human
consumption are essential.

A hazard, in terms of food safety, is any agent that can cause an adverse health effect,
and can be classified by its physical, chemical or biological nature [5]. The prevention and
accurate identification of these agents in the food supply chain is fundamental for avoiding
FBD. Food needs to go through a multistep process with a variable number of actors from
production to consumption [6]. Such a dynamic system requires adequate technologies
for the detection of chemical (e.g., pesticides or drug resides) and biological contaminants
(bacteria, viruses and parasites). Analytical methods used for detecting chemical agents in
food are gas and liquid chromatography, often in combination with mass spectrometry [7].
Biological detection, on the other hand, can be performed using traditional microbiological
culturing, electrophoresis and polymerase chain reaction-based methods. These techniques
can be costly and/or time-consuming, emphasizing the need for reliable, cost-effective
and fast detection technologies [8]. Sensors, which possess these characteristics, are also
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suitable for detecting both chemical and biological agents and could be adapted to the
requirements of each step of the food supply chain [9].

Sensing platforms can be described as two-component systems consisting of: (i) a
recognition element, able to bind and provide a response when the targeted analyte is
present; and (ii) a transducer, which converts the interactions derived from the binding
of the recognition element with the target into analytical signals [10,11]. Sensors based
on biological recognition elements (e.g., enzymes, nucleic acids, antibodies, cells, etc.)
are the most researched not only in terms of food safety, but also for medical diagnostics
and environmental monitoring [12]. Biological receptors, however, are fragile; require
carefully regulated operational conditions such as pH values, ionic strength or temperature;
and have a limited shelf life [13]. Biomimetic or synthetic receptors, as alternatives, are
able to attain the affinity of biological receptors and overcome stability and durability
issues [14–16].

Imprinted polymers (Ips) have attracted attention due to their simplicity in prepara-
tion and affinity attained as recognition element. The versatility of Ips enables detection of
small molecules (Molecularly Imprinted Polymers, MIPs) [17–19] and whole cells (Surface
Imprinted Polymers, SIPs) [20–22]. Furthermore, they can be coupled to different trans-
ducing elements such as microgravimetric [23–25], optical [26,27], thermal [28–30] and
electrochemical [31–34] read-out platforms, among others.

FBD are certainly foreseen to rise in the upcoming years due to the increased com-
plexity of food supply chains. Factors such as the globalization in food trade, changes
of patterns in human consumption and climate change are only some of the underlying
reasons more diseases related to harmful organisms and chemicals are expected [27,28].
Even though biomimetic sensors are suitable to detect these agents and have proven to
possess several advantages over biosensors, their specific application in food safety has
barely been reviewed [35,36].

This work covers the types of imprinted polymers that have been developed for the
detection of chemical and biological hazards in food, their preparation strategies, coupling
to different readout platforms and application in real food samples.

2. Imprinted Polymers

As mentioned above, biosensors are receptor–transducer devices defined as “chemical
sensors in which the recognition system utilizes a biological element” [37]. This system
involves specific receptor–ligand interactions, where complementarity of geometry and
chemical functionality (e.g., covalent interactions, hydrogen bonds, van der Waals forces,
etc.) define selectivity [38]. Decades of efforts using natural recognition elements as
inspiration have resulted in diverse strategies for preparing synthetic receptors that mimic
the function of biological receptors [39–41]. Furthermore, with the first report of artificial
antibodies [42], the interest in molecularly imprinted polymers (MIPs) increased [15,43,44].
Imprinted polymers are excellent candidates for bio(mimetic) sensing platforms due to
their simplicity in preparation, attained affinity and stability compared to their natural
counterparts [15,17,38,44–48]. Moreover, imprinted polymers are robust materials that
can be coupled to a transducer surface to exhibit sensitive and reliable signals, which has
enabled their application in clinical [18,19,49,50], environmental [51,52], agricultural and
food diagnostics [53].

2.1. Imprinted Polymers: Preparation Strategies According to the Template’s Size
2.1.1. Molecularly Imprinted Polymers

MIPs are functional materials with specific recognition sites that, in a general view, are
synthesized via the polymerization of functional monomers in the presence of a molecular
template. The general procedure for synthesizing a MIP is illustrated in Figure 1. Firstly,
the monomer and template are dissolved in an appropriate solvent (porogen). Due to
intermolecular interactions that can be of covalent, noncovalent, semi-covalent or coordina-
tive nature, the template and monomers self-assemble, forming a complex [15,17,54,55].
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Subsequently, the monomers are polymerized and the material is cross-linked. Upon the
removal of the template molecule, defined three-dimensional micro- or nano-cavities will
remain in the polymer, able to recognize the original template. The supramolecular events
of interaction (e.g., covalent or non-covalent) and shape complementarity resemble the
natural mechanism of natural receptors toward their targets [55,56].
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Even though self-assembly is the general principle by which MIPs are prepared,
several experimental strategies leading to materials with different physicochemical charac-
teristics can be followed. These preparation methods are briefly described in this section.

Bulk imprinting method is the oldest and most commonly reported strategy due to
its simplicity. It typically employs free radical polymerization (FRP), which is carried
out in solution with the aid of a thermal or UV initiator [57,58]. The use of FRP has the
advantages of mild reaction conditions as well as suitability for various monomers (vinyl-
containing molecules) and templates [42]. The solid monolith obtained after polymerization
is subsequently ground and sieved to obtain MIP particles. Even though “bulk” preparation
of MIPs is versatile and easily scalable, some disadvantages such as polymer loss and low
binding kinetics as result of crushing the imprinted monolith have been identified [59,60].

Precipitation polymerization is a strategy that allows the synthesis of polymeric micro-
or nano-spheres with a controlled morphology. As in bulk preparation of MIPs, FRP of
the monomers is most commonly employed, with the experimental variant of using an
excess of solvent in which the precursors (template and monomers) are soluble, but the
forming polymer is not. As the reaction proceeds, polymer nuclei form, and, by growing,
they segregate from the solution to form micro- or sub-micrometer-sized beads [61,62]. In
contrast to the preparation of MIPs in the bulk, the polymer obtained does not require
additional grinding steps.

Emulsion polymerization enables the formation of homogenous imprinted polymer
particles. Similar to the two previously mentioned strategies, emulsion usually employs
FRP. The reaction mixture, however, consists of a biphasic (typically aqueous and organic)
system and a surfactant, which enables the formation of an emulsion and, thus, the growth
of the polymer in the dispersed phase in a core–shell manner [63,64].

Solid-phase synthesis consists of the immobilization of the initiator or the template
onto a solid support in order to carry out the polymerization directly from it. When
immobilizing the template, it is possible to remove low affinity imprinted polymer as well
as unreacted monomer after the synthesis [65]. On the other hand, when immobilizing
the initiator, diverse controlled free radical polymerization techniques such as reversible
addition fragmentation chain-transfer polymerization (RAFT) and atom transfer radical



Biosensors 2021, 11, 46 4 of 29

polymerization (ATRP) can be used with the advantages of obtaining more homogeneous
polymer networks and thus higher target affinities in comparison to the traditional free
radical polymerization [66–68].

Electro-polymerization consists of the oxidation of conjugated monomers and the
deposition of a conductive polymer film onto a substrate. The synthesis system for these
layers consists of a solution containing the monomer(s), the template, an electrolyte and
three electrodes (working, reference and counter) [69]. Typically, the working electrode
serves as deposition substrate for the material, and a wide variety of electrochemical
techniques can be employed for the electrosynthesis (galvanostatic, potentiostatic and
voltammetric). By adjusting the experimental conditions for electro-polymerization, it is
possible to adjust the thickness, topology and morphology of the imprinted films [70–72].

Numerous reviews deal with the aspects of MIP synthesis and processing [17,61,73].
Although these biomimetic receptors have successfully proven their applicability for de-
tecting low molecular weight compounds, larger molecules such as enzymes, proteins and
cells turned out to be more challenging. The steps of template removal and rebinding are
especially difficult since macromolecules cannot penetrate the small porous network in a
straightforward manner [45,74–76]. These issues have been overcome by using different
imprinting strategies, creating surface imprinted polymers (SIPs) [10,22,75,77].

2.1.2. Surface Imprinted Polymers

Synthesis of SIPs involve the fundamentals of MIP preparation; however, in SIPs
the recognition sites are located at or near the surface of the forming polymeric material,
facilitating the imprinting of macromolecular targets such as proteins, microorganisms or
whole cells. Compared to traditional MIPs, SIPs exhibit higher binding capacity, faster mass
transfer and binding kinetics [76]. Depending on how the polymer cavities are formed,
SIPs can be classified as follows (Figure 2) [10]:
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Self-assembly method: A polymerization mixture containing the functional monomers
and template is prepared. The reaction is performed in a similar way as in traditional MIP
synthesis, with the difference that, upon template removal, the only functional cavities
formed are the ones situated on the surface of the material [78,79]. A variant for this
method is the directed self-assembly of the monomer around the template driven by an
applied physical force (electro-polymerization), which was introduced before for MIP
preparation [80].

Molding technique: The template is immobilized on a solid substrate and the reaction
mixture with monomers is added on top of it. The polymerization and crosslinking
reactions are carried out, and, upon peeling off the polymer and removing the template,
the cavities on the material’s surface are obtained [81,82].

Stamping or micro-contact printing technique: The functional monomers are semi-
polymerized, and this material is applied onto a solid substrate. Separately, a monolayer of
template particles is fixed on the surface of a stamp, which is subsequently pressed onto
the semi-cured material. The cross-linking is completed in the presence of the stamp, such
that, when this stamp is removed, the template has been transferred to the material, and,
by taking it out, cavities are formed [50,83,84].

Mini-emulsion polymerization: The polymerization is performed in a colloidal system
with the aid of a surfactant. Derived from this, the polymer grows in the physical form of
small spheres, and, because the template particles arrange in the interphase of the colloid,
the cavities are formed on the surface of the beads [85,86].

These methods have allowed MIPs/SIPs to be used for different purposes such as
sample preparation, solid phase extraction and reaction catalysis, among others [87,88].
Moreover, these applications have been researched for application in the agricultural and
food sectors due to the constant need of analytical techniques that aid to ensure food
quality and safety, meeting the consumer’s requirements and avoiding FBD [89]. Although
sensing based on biomimetic receptors has the potential of being a highly selective and
useful tool in the detection of food safety hazards, reviews of IP in food science have
focused mostly on extraction and separation applications [90–93]. Our aim is to fill this
gap and highlight the multidisciplinary aspects involved in the application of imprinting
technology in the whole value chain ranging from IP preparation to integrated sensor
systems for the specific recognition and quantification of chemical and microbiological
contaminants in food samples.

3. Chemical Food Hazards

A wide variety of chemical compounds can be the cause of FBDs. These substances
can be naturally present in food, such as allergens, or can result from the production and
processing steps. Agricultural chemicals (pesticides, fertilizers and veterinary drugs) are
the most common chemical hazards from food production. Moreover, some compounds
migrating from packaging, food additives and contaminants produced during storage also
have the potential of causing health damage [94]. Due to the broad variety of food chemical
hazards, this work focuses mainly on the imprinting strategies to recognize pesticides and
drugs (agricultural chemicals) in food samples (Tables 1 and 2), while an additional section
briefly summarizes other chemical food contaminant categories (Table 3).

Agrochemicals are used worldwide. Pesticides, for example, have the purpose of
preventing and destroying any unwanted species of plant or animal (e.g., weeds and insects)
in foods in order to regulate their growth and prevent their deterioration [95]. Another
class of chemicals frequently used in agriculture are pharmacologically active compounds,
or drugs, which aim to ensure the health of animals involved in food production. Despite
the beneficial role that pesticides and drugs have, inadequate use can cause short- or
long-term adverse health effects. Pesticides (e.g., carbamates, organophosphates and
pyrethroids) can have carcinogenic, cytotoxic and mutagenic effects [96–98]. On the other
hand, administering drugs (antibiotics) to animals intended for human consumption can
have negative effects such as the emergence, spreading and persistence of antimicrobial-
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resistant bacteria among humans [99]. Furthermore, the illicit use of these compounds in
animals can turn into severe poisoning outbreaks, such as the ones originated in France
(1990) and Spain (1992) due to the consumption of clenbuterol [100].

The detection of chemical residues in food is essential in the prevention of FBDs, and it
often requires the accurate detection of trace concentration. Pesticides are usually quantified
using gas chromatography–mass spectroscopy (GC-MS), while drugs are detected with
liquid chromatography due to their more polar chemical nature [101]. However, analysis
of agricultural chemistry in food safety remains a challenge due to the broad diversity in
chemical compounds and their presence at low concentrations in complex matrices [102].
Due to their specificity, IPs have been developed to recognize pesticides and drugs in real
food samples. Research efforts studying these receptors are aimed at the selection of the
target chemical contaminant, selection of functional materials and choosing an imprinting
strategy. The specific synthesis protocol of IPs has a huge influence on their selectivity, a
fundamental aspect of technologies for food hazard detection [103].

3.1. Imprinting Technology for the Recognition of Chemical Food Hazards

Most chemical food hazards are low-molecular-weight compounds, which is the
main reason MIPs have been extensively used for their detection. However, some surface
imprinting techniques have also been adapted to create receptors for the recognition of these
small analytes. This section aims to summarize how these diverse preparation strategies
for IPs have been applied to the recognition of these analytes in real food samples.

3.1.1. Pesticides

Abdel-Ghany et al. illustrated in their work how you could exploit traditional bulk
preparation for the imprinting of dinotefuran insecticide using acrylamide and methacrylic
acid as monomers with ethylene glycol dimethacrylate as cross-linker. Different compo-
sitions of these building blocks were tested. The obtained MIP powder was integrated
into membranes with the aid of a plasticizer and then embodied into the sensing device,
which was evaluated for the detection of the insecticide in cucumber and soil samples.
Before the recognition experiments, samples were pre-treated by chopping and blending
them, followed by sonication and centrifugation, steps that were performed with the aim
of ensuring the extraction of the target. The recognition ability of the polymer was assessed
by recovering the analyte from the real samples, obtaining average values in the range
of 7.9–106.4%. Furthermore, the integration of the IP into the sensing device allowed
the determination of dinotefuran with a limit of detection (LoD) of 0.35 µg L−1. Apart
from these experiments, selectivity experiments against some related substances were
performed [104].

Motaharian et al. presented a similar technique for recognition of diazinon. They used
imprinted polymer beads, which were prepared by carrying out polymerization of the
monomers (methacrylic acid and ethylene glycol dimethacrylate) in a biphasic system of
chloroform and silicon oil. To incorporate the obtained spheres (<100 nm) into the sensor,
the beads were mixed with graphite and paraffin oil as binder to prepare a carbon paste
electrode. The synthetic receptor was employed to recognize the analyte in blended apple
solutions, from which recovery values in the range of 92.5–100.8% were obtained. When
combining the spherical receptors to the sensor, detection of the analyte was achieved with
an LoD of 7.9 × 10−10 mol L−1 [105].

Li et al. demonstrated the use of electro-polymerized MIPs for the electrochemical
detection of the pyrethroid pesticide cypermethrin. Dopamine and resorcinol were investi-
gated in order to take advantage of the synergic affinity of the two different monomers.
The imprinted polymer films were deposited by cyclic voltammetry on a glassy carbon
electrode using phosphate buffer as electrolyte. The sensor obtained was a hybrid material
composed of the IP and a support layer of doped zinc oxide, which was prepared on
the surface of the electrode previously to the electrodeposition. The recognition element
was then tested on mackerel and crayfish, samples from which the abdominal meat was
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homogenized, centrifuged and extracted in ethanol. The accuracy of the prepared sensor
in these complex samples was verified with the observed recoveries from 96.2% to 100.4%.
As for the application of the polymer film in the sensing platform, the LoD obtained was
6.7 × 10−14 M [106]. Over the years, a wide variety of similar MIP-based sensors have been
developed for the detection of pesticides, which are summarized in Table 1.

Table 1. Summary of recent publications for the recognition of pesticides using IPs in food samples.

Analyte (s)
Template/

Monomer(s)/
Crosslinker

IP Preparation Food Sample LoD Readout
Technique Ref.

Malathion
Malathion/

Acrylamide/
Bisacrylamide

Thermal: Bulk Olive fruits, oils 0.06 pg/mL Electrochemical [107]

Cyromazine Cyromazine/
MAA/EGDMA

Thermal:
Precipitation

Agricultural
waste water, soil 2.6 × 10−6 M Electrochemical [108]

Dinotefuran Dinotefuran/
MAA/EGDMA Thermal: Bulk Cucumber, soil 0.35 µg/L Electrochemical [104]

Diazinon Diazinon/
MAA/EGDMA

Thermal:
Suspension Apple, well water 7.9 × 10−10 mol/L Electrochemical [105]

Dicloran Dicloran/
MAA/EGDMA Thermal: Bulk Water 4.8 × 10−10 mol/L Electrochemical [109]

Lindane Lindane/
MAA/EGDMA

Thermal: From
MWCN surface

Orange, grape,
tomato, cabbage 1.0 × 10−10 M Electrochemical [110]

Carbaryl Carbaryl/
MAA/EGDMA

Thermal: From
QD surface

Chinese cabbage,
rice 1.47 × 10−7 mol/L Optical [111]

Metolcarb Metolcarb/
MAA/EGDMA Thermal: Bulk Apple juice, pear,

cabbage 2.309 µg/L Acoustic
wave [112]

Cyanazine
Cyanazine/

Acrylamide/
EGDMA

Thermal: Bulk Onion, tomato,
lettuce 3.2 nM Electrochemical [113]

Phosalone Phosalone/
APTES/TEOS

Thermal:
Sol-gel

Cucumber,
orange, wheat,

water, soil
0.078 nM Electrochemical [114]

Trichlorfon Trichlorfon/
Vinylidene difluoride

Pre-synthesized
polymer Lettuce 4.63 ppb Acoustic

wave [115]

2,4-dichlorophenol 2,4-dichlorophenol/
3,4-EDOT

Electrochemical:
Deposition Water 0.07 nM Electrochemical [116]

Carbendazim Carbendazim/
o-phenylenediamine

Electrochemical:
Deposition

Diverse fruits and
vegetables 6.7 × 10−13 M Electrochemical [117]

Cypermethrin Cypermethrin/
Dopamine, resorcinol

Electrochemical:
Deposition

Soil, mackerel,
crayfish, water 6.7 × 10−14 M Electrochemical [106]

Methyl-parathion Methyl-parathion/
Resorcinol, quercetin

Electrochemical:
Deposition Fruit surfaces 3.4 × 10−10 mol/L Electrochemical [118]

MAA, Methacrylic acid; EGDMA, ethylene glycol dimethacrylate; APTES, (3-aminopropyl) triethoxysilane; TEOS, Tetraethyl orthosil-
icate; EDOT, Ethylenedioxythiophene; TRIM, Trimethylopropane trimethacrylate; MAGA, Methacryloylamidoglutamic acid; HEMA,
Hydroxyethyl methacrylate; APBA, 3-aminophenylboronic acid, QD, Quantum dots; MWCN, Multi-walled carbon nanotubes; MNP,
Magnetic nanoparticles.

As pesticides are low-molecular weight compounds, the literature is focused on the
creation of MIPs rather than SIPs. Bulk polymerization has been demonstrated to be suseful
and has even led to the development of sensitive platforms that can compete in LoD with
sensors using MIPs created via more advanced routes. This offers the benefit of being
able to make proof-of-concept platforms in a fast manner. Suspension and precipitation
polymerization platforms are in general a bit more sensitive but are also more suitable for
upscaling due to their increased homogeneity. In terms of scalability, electro-polymerized
MIPs offer a very interesting approach in constructing MIP-based sensors but, as evidenced
by the results in Table 1, are often only combined with electrochemical detection platforms
and require a long process of fine-tuning.
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3.1.2. Drugs

In addition to pesticides and insecticides, a wide range of MIP sensors that focus on
the detection of drugs in food samples has been developed in the past few decades. In 2013,
Chen et al. made use of core–shell imprinted particles that were prepared for the detection
of metronidazole antibiotic. The IP was synthesized using (3-aminopropyl)triethoxysilane
and tetraethyl orthosilicate as monomers. The polymerization reaction was carried on the
surface of silica coated Fe3O4 nanoparticles, which were employed as solid support due
to their chemical stability and magnetic properties. The obtained IP particles were drop
casted onto a magnetic glassy carbon electrode. The receptor was tested for the recognition
of the antibiotic in milk and honey samples, which were prepared by homogenization,
centrifugation and filtration before the rebinding experiments. The performance of the
synthetic receptor in these samples was assessed with the recovery percentages, which
were 93.5–102.2%. The magnetic particles were further tested in a sensing platform, which
attained a LoD of 1.6 × 10−8 M [119].

Wei et al. demonstrated the use of electro-polymerized MIPs for the detection of the
antibacterial agent sulfadimine in 2019. Electrodeposition of the conjugated monomer
polypyrrole was performed on the surface of NiCo2O4 nanoneedle arrays in order to con-
struct a highly selective MIP-sensor. The nanoneedles were selected for their use with IP
due to their high specific surface area, which enables them to enhance the performance
of detection. These arrays were synthesized and decorated onto a graphene electrode,
which was subsequently used as working electrode in the electropolymerization via cyclic
voltammetry using tetrabutylammonium perchlorate as supporting electrolyte. The fab-
ricated electrode was employed for the detection of this drug in milk. The food samples
were pre-treated to remove protein and dissolve organic substances with acetonitrile and
trichloroacetic acid. Recovery values from these samples were of 92.3–102.2%. Addition-
ally, the application of the nanoneedle array/pyrrole in a sensing device led to a LoD of
0.169 ng mL−1 [120]. Other examples of MIP-based drug detection in food samples are
summarized in Table 2.

Looking at the summary in Table 2, the same conclusions that apply for pesticides can
also be drawn for MIP-based drug detection in food products. Bulk imprinted MIPs offer
a fast track solution to constructing a first prototype sensor that is surprisingly sensitive
and can compete with more advanced systems incorporating for instance MWCNs into the
synthetic receptor layer. This does boost the sensitivity of an electrochemical sensor but
not by multiple orders of magnitude. Electro-deposition again proves to be an excellent
match for electrochemical detection of drug molecules offering fast synthesis, immediate
deposition and therefore scalability.
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Table 2. Summary of recent publications for the recognition of drugs using IPs in food samples.

Analyte (s)
Template/

Monomer(s)/
Crosslinker

IP Preparation Food Sample LoD Readout
Technique Ref.

Amantadine and
rimantadine

Amantadine/
MAA/EGDMA Thermal: Bulk Chicken, pork 1.0 pg/mL Optical [121]

Chloramphenicol Chloramphenicol/
MAA/EGDMA Thermal: Bulk Milk 2.0 × 10−9 M Electrochemical [122]

Chloramphenicol Chloramphenicol/
MAA/EGDMA Thermal: Bulk Milk 10 µM Electrochemical [123]

Clenbuterol Clenbuterol/
MAA/EGDMA Thermal: Bulk Bovine liver 0.2 nM Electrochemical [124]

Sulfonamides Sulfabenz/
MAA/EGDMA Thermal: Bulk Chicken, pork 1–12 pg/mL Optical [125]

Kanamycin Kanamycin/
MAA/EGDMA

Thermal: From
MWCN surface

Chicken, pig,
milk 2.3 × 10−11 mol/L Electrochemical [126]

Sulfaguanidine Sulfaguanidine/
MAA/EGDMA Thermal: Bulk Fish 2.8 × 10−10 mol/L Optical [127]

Quinolones Enrofloxacin/
MAA/EGDMA Photo: Bulk Fish 4.06 × 10−7 µmol/L Optical [128]

Benzimidazoles
Mebendazole,
fuberidazole/

MAA/EGDMA
Thermal: Bulk Mutton, beef 21 pg/mL Optical [129]

Chloramphenicol Chloramphenicol/
MAA/TRIM Thermal: Bulk Prawns 7.8 × 10−8 µM/mL Acoustic wave [130]

Oxytocin
Oxytocin/

MAGA,2-HEMA/
EGDMA

Thermal: Bulk Milk 0.003 ng/mL Optical [131]

Estradiol Estradiol/Aniline Thermal: Bulk Milk powder 2.76 nmol/L Electrochemical [132]

Diethylstilbestrol Diethylstilbestrol/
APBA

Thermal: From
MNP surface Milk 2.5 × 10−10 mol/L Electrochemical [133]

Metronidazole Metronidazole/
APTES/TEOS Thermal: Bulk Milk, honey 1.6 × 10−8 M Electrochemical [119]

Vitamin K3
Vitamin K3/

3,4-EDOT
Electrochemical:

Deposition
Poultry drug

powder 3.1 × 10−4 µM Electrochemical [134]

Tobramycin Tobramycin/Pyrrole Electrochemical:
Deposition Egg, milk 1.4 × 10−10 M Electrochemical [135]

Oxfendazole Oxfendazole/
Pyrrole

Electrochemical:
Deposition Milk 10 µg/Kg Electrochemical [136]

Sulfadimidine Sulfadimidine/
Pyrrole

Electrochemical:
Deposition Milk 0.169 ng/mL Electrochemical [120]

Streptomycin Streptomycin/
o-phenylenediamine

Thermal:
Suspension Milk, honey 10 pg/mL Electrochemical [137]

MAA, Methacrylic acid; EGDMA, ethylene glycol dimethacrylate; APTES, (3-aminopropyl) triethoxysilane; TEOS, Tetraethyl orthosil-
icate; EDOT, Ethylenedioxythiophene; TRIM, Trimethylopropane trimethacrylate; MAGA, Methacryloylamidoglutamic acid; HEMA,
Hydroxyethyl methacrylate; APBA, 3-aminophenylboronic acid; MWCN, Multi-walled carbon nanotubes; MNP, Magnetic nanoparticles.

3.1.3. Other Chemical Contaminants

In addition to pesticides, insecticides and drugs, other chemical agents such as aller-
gens can also pose a health risk (Table 3). In 2018, Ashley and coworkers demonstrated the
use of imprinted nanoparticles for the detection of casein, a naturally occurring allergen
in dairy products. Casein molecules were immobilized on glass beads, and solid-phase
polymerization was used for the preparation of the imprinted receptors on these solid
substrates. The monomers selected for the receptor were N-isopropylacrylamide, N-tert-
butylacrylamide, acrylamide, N-(3-aminopropyl)-methacrylamide and N,N’-methylenebis
(acrylamide), and the obtained particles exhibited physical dimensions from 235 to 457 nm.
The nanoparticles were tested on washed samples from cleaning in place systems used
in food processing equipment, from which recoveries ranged 87–120%. When employing
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the recognition ability of the nano-MIPs in a sensing device, the authors reported a limit
of detection of 0.127 ppm. Remarkably, this LoD is superior to the sensitivity typically
encountered in commercial ELISA kits [138].

Table 3. Summary of recent publications for the recognition of other chemical contaminants using IPs in food samples.

Category Analyte (s)
Template/

Monomer(s)/
Crosslinker

IP Preparation Food Sample LoD Readout
Technique Ref.

Naturally
occurring α-Casein

α-Casein/
NIPAm, TBA,

AA, APM/BIS

Thermal: From
glass beads

CIP from dairy
ice cream 0.127 ppm Optical [138]

Additives Sudan dyes PN/MAA/
EGDMA Photo: Solution Egg yolk 1 pg/mL Optical [139]

Additives Sudan I
Sudan I/

2-vinylpyridine/
EGDMA

Thermal: From
attapulguite

NC

Tomato sauce,
sausage, water 0.01 ng/mL Optical [140]

Naturally
occurring Histamine Histamine/

MAA/EGDMA
Thermal: from

SPR chip Carp 25 µg/L Optical [141]

Naturally
occurring Histamine Histamine/

MPTES/TEOS Sol-gel Fish 7.49 × 10−4 mg/kg
Acoustic

wave [142]

Production,
packaging Bisphenol A Bisphenol A/

TEOS/APTES Sol-gel Water, milk 1.46 × 10−11 M Optical [143]

Production Acrylamide Bisphenol A/
APTES/TEOS Sol-gel Potato chips 0.028 µg/mL Electrochemical [144]

Production Acrylamide Propionamide/
HEA/EGDMA

Thermal: From
GO electrode Potato chips 0.01 µg/mL Optical [145]

Production Melamine Melamine/
MAA/EGDMA

Photo: From
Au electrode Milk 3.1 × 10−10 mol/L Electrochemical [146]

Production Melamine Melamine/
para-ABA

Electrochemical:
Deposition Milk 0.36 µM Electrochemical [147]

Production Melamine Melamine/Pyrrole Electrochemical:
Deposition Milk 0.83 nM Electrochemical [148]

CIP, Clean in place; NIPAm, N-isopropylacrylamide; TBA, N-tert-butylacrylamide; AA, Acrylic acid; APM, N-(3-aminopropyl)-
methacrylamide; BIS, N,N’-methylenebis (acrylamide); MAA, Methacrylic acid; EGDMA, ethylene glycol dimethacrylate; 3-MCPD,
3-chloro-1,2-propanediol; ABA, Aminobenzoic acid; APTES, (3-aminopropyl) triethoxysilane; TEOS, Tetraethyl orthosilicate; HEA, Hydroxy
ethyl acrylate; PN, 1-(2-pyridinylazo)-2-naphthol;MPTES, 3-mercaptopropyltriethoxysilane; NC, Nanofibrillar clay; SPR, Surface plasmon
resonance; GO, Graphite oxide.

MIP-based sensors for other chemical contaminants such as endocrine disruptors,
toxins or chemicals typically employ more advanced imprinting technologies. This might
be explained by the fact that bulk imprinting has already been done on these types of
molecules in the more distant past, demonstrating the concept but also the limitations.
The sensors in Table 3 offer a lot of benefits in term of mass-scale production as both
electro-deposition and direct grafting onto gold or graphene electrodes allow for upscaling
of production, which might be the biggest challenge when commercializing imprinting
technology. Direct grafting onto electrodes offers the benefit of extending the potential
transduction mechanisms used from electrochemical to optical or gravimetric techniques.

4. Biological Food Hazards

Diarrheal and gastroenteritis diseases account for the majority of the yearly estimated
600 million cases of foodborne illnesses around the world [149,150]. The mentioned
disorders are primarily caused by biological contaminants present in food, which can be
organisms such as parasites, microorganisms such as fungi and bacteria or viruses [151].

Among biological food hazards, bacteria are the most recurrent cause of disease [152],
with Salmonella species, Campylobacter jejuni and Escherichia coli some of the most commonly
involved foodborne pathogens [3,153]. The detection of these microorganisms is typically
carried out via culture and colony counting, polymerase chain reaction (based on the
amplification and quantification of the microorganism’s DNA) and immunology-based



Biosensors 2021, 11, 46 11 of 29

methods [154–157]. The disadvantages of these strategies are that colony counting can
be highly time-consuming and error-prone, while polymerase chain reaction methods
usually require expensive equipment and reactants as well as specialized technical skills
for performing them [158,159]. Finally, immunology techniques may require from hours to
days to provide a result [160].

Certain types of bacteria are able to produce toxins, molecules that are also secondary
metabolites of some fungi and represent a food safety hazard [161–163]. Their adverse
health effects can vary; while some toxins such as staphylococcal can cause enteric illness,
aflatoxins (produced by fungi) are known for being carcinogenic [164,165]. The detection of
these agents is thus crucial for preventing foodborne outbreaks. Typically, these biological
derived contaminants are detected via protocols that consists of time consuming extraction
from the food matrix followed by pre-concentration steps and liquid or gas chromatography
for their quantification [166].

Foodborne viruses are capable of infecting intestinal cells and are shed in the stool [167].
Noroviruses and Hepatitis A are the most common cause of viral foodborne disease, caus-
ing gastroenteritis and hepatitis, respectively [168]. Typically, they are detected by the
scanning of a stool suspension under an electron microscope. This protocol, however, is
insensitive and labor-intensive [169]. Immunoassays are available for the detection of some
viruses [170,171], as well as transcriptase-polymerase chain reaction [172,173]. Nonetheless,
the drawbacks of these techniques have been already discussed.

New technologies have been developed to overcome the disadvantages of analytical
methods for biological food hazards detection. Imprinted polymers have been extensively
researched for the extraction of toxins, which has also led to the application of these
synthetic receptors in sensors [174–177]. Furthermore, bacteria detection using IPs in
sensing devices has also been exploited [28,30,178–180]. The use of synthetic receptors as
recognition element in food safety sensing exhibits the potential of becoming a fast, sensitive
and cost-effective technology in contrast to the traditional analytical methods [181–183].

4.1. Imprinting Technology for the Recognition of Biological Food Hazards

As mentioned above, the affinity of imprinted polymers relies on a combination
of functionality and geometry between the targeted analyte and the receptor. In the
recognition of biological targets, geometry plays a crucial role in the selection of the
material to be employed for IP preparation. While some biological analytes allow the use
of classical molecularly imprinting strategies due to their small sizes and low molecular
weights (e.g., toxins and viruses), larger ones represent a challenge. Bacteria, for instance,
are microorganisms with dimensions up to several microns depending on the taxonomic
groups [184]. To ensure these template’s removal and rebinding, the synthesis of the
receptor should allow the surface imprinting of the material [185].

This section is subdivided into the biological food hazards categories that have been
detected using IPs. A summary of these agents, as well as the exemplification of the
imprinting technologies employed for their recognition in food samples, is discussed.

4.1.1. Toxins

The most straightforward method of detecting microbial contamination in food is the
detection of the toxins they produce as, these are often relatively small molecules which
makes it possible to detect them with MIPs (Table 4). Sergeyeva et al. created functional
polymeric membranes that functioned as synthetic receptors for the mycotoxin Aflatoxin B1.
Ethyl-2-oxocyclopentanecarboxylate was employed as dummy template in the preparation
of the imprinted materials, which were obtained via the photo-polymerization of diverse
monomers between two glass slides. From the tested building blocks, 2-acrylamido-2-
methyl-1-propanosulfonic acid and acrylamide exhibited optimal performance for the
recognition of the toxin. Recoveries of the analyte from the real samples wheat and maize
flower ranged 87–96%. The prepared membranes were further assessed as recognition
element in a sensing device, which attained an LoD of 20 ng/mL [186].
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Turan et al. made use of imprinted magnetic particles for the detection of ochra-
toxin A mycotoxin. For the preparation of the IPs, Fe3O4 nanoparticles were synthesized
and surface-modified in order to act as polymerization initiators. Oligo(ethylene glycol)
monomethyl ether methacrylate and ethylene glycol dimethacrylate were then polymer-
ized from the particles in the presence of the template (Figure 3). The receptor was tested
on spiked grape juice samples, observing a recovery of 97.1–97.5%. Additionally, sensing of
the toxin was reported to be possible from 0.374 µg mL−1. Selectivity of the IP was tested
using aflatoxin and vomitoxin as competitive mycotoxins, for which they observed lower
adsorption capacities in comparison to the targeted ochratoxin A [187].
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Table 4. Summary of recent publications for the recognition of toxins using IPs in food samples.

Analyte (s)
Template/

Monomer(s)/
Crosslinker

IP Preparation Food Sample LoD Readout
Technique Ref.

Staphylococcal
enterotoxins

A,B

S. enterotoxin
B/APTES,

OTES/TEOS
Sol-gel Milk 7.97 ng/mL Acoustic wave [188,

189]

Patulin 2-oxin/
APTES/TEOS Sol-gel

Apple and pear
juice, haw

flakes
3.1 × 10−3 µg/mL Acoustic wave [190]

Patulin 2-oxindole/
ρ-aminothiophenol

Electrochemical:
Deposition Apple juice 7.57 × 10−13 mol/L Electrochemical [191]

Patulin 6-Hydroxynicotinic
acid/ APTES/TEOS Sol-gel Apple juice 0.32 µmol/L Optical [192]

Ochratoxin A Ochratoxin A/
Pyrrole

Electrochemical:
Deposition Beer and wine 0.0041 µM Electrochemical [193]

Ochratoxin A Ochratoxin A/
OEGMA/EGDMA

Thermal: From
MNP surface Grape juice 0.374 µg/mL UV-Vis [187]

Zearalenone Zearalenone/Pyrrole Electrochemical:
Deposition Corn 0.3 ng−1 Optical [194]

Zearalenone CDHB/MAA/
EGDMA Thermal: Solution Corn, rice and

wheat flour 0.002 µmol/L Optical [195]

Deoxynivalenol Deoxynivalenol/
o-phenylenediamine

Electrochemical:
Deposition Corn 0.3 ng/mL Electrochemical [196]

Aflatoxin B1
ethyl-2-OPC/AA,

allylamine, DEAEM,
MBAA, AMPSA

Photo: Solution,
semi-

interpenetrating
networks

Maize flour 20 ng/mL Optical [186]

APTES, (3-aminopropyl) triethoxysilane; TEOS, Tetraethyl orthosilicate; OTES, Triethoxy (octyl) silane; OEGMA, oligo (ethylene glycol)
monomethyl ether methacrylate; EGDMA, ethylene glycol dimethacrylate; OPC, oxocyclopentanecarboxylate; DEAEM, 2-(diethylamino)
ethyl methacrylate; AMPSA, 2-acrylamido-2-methyl-1-propansulfonic acid; MBAA, N,N’-methylenebisacrylamide.
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The results in Table 4 are in line with the findings described in Section 3, which makes
sense as toxins are typically low-molecular weight molecules similar to drugs, pesticides or
hormone disruptors. Electro-deposition is again demonstrated to be a very interesting and
well-researched approach due to its scalability and its combination with electrochemical
transducers leading to sensitive sensor platforms.

4.1.2. Bacteria

The detection of whole bacterial cells was demonstrated on several occasions over the
past few years. In 2019, Zhao et al. used a Pickering emulsion polymerization approach
for imprinting polymers with Listeria monocytogenes. The reaction mixture consisted of
an oil–water system, in which the aqueous phase contained a bacteria–chitosan network,
prepared with acryloyl-functionalized chitosan and quantum dots (CdTe). On the other
hand, the oil phase contained the monomers (trimethylolpropane trimetharylate, N,N-
dimethylaniline and divinylbenzene) and the initiator. Solid polymer beads with imprints
on the surface were obtained, as can be seen in Figure 4. To assess the adsorption of the
particles, binding experiments were performed, from which the adsorption capacities of the
IP (355.6 CFU mg−1) exhibited a 4.5-fold increase in comparison to the non-imprinted poly-
mers. Regarding the limit of detection, the sensor achieved a performance of 1 × 103 colony
forming units per milliliter. Furthermore, selectivity against S. aureus was visually con-
firmed. Application to real samples was carried out by inoculating milk and pork with the
bacteria, homogenizing with the IPs and sedimenting for 3 min [197].
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Figure 4. Scanning electron microcopy (SEM) images of (i) non-Imprinted particle and (ii) imprinted
particle; and corresponding magnified images of (iii) non-imprinted and (iv) imprinted beads. Figure
adapted from [197] with permission under open-access copyright agreement.

Cornelis et al. took a different approach in the construction of their bacterial sensor.
They made synthetic E. coli receptors by micro-contact imprinting. The monomers em-
ployed were bisphenol A, phloroglucinol and 4, 4′-diisocyanatodiphenylmethane, which
were partially polymerized before spin coating solid substrates. The surface imprinting
of these polymers was performed with polydimethylsiloxane bacterial stamps. After full
curing of the films in the presence of the template, functionalized polyurethane films
were obtained. The films were incorporated into a sensing platform, which was able of
detecting 1 × 102 CFU mL−1. Cross-sensitivity was assessed with four coliform species of
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the Enterobacteriaceae family and the receptor was further tested with non-cleared spiked
apple juice samples [198].

Tokonami et al. achieved recognition of Pseudomonas aeruginosa by preparing an IP via
the electropolymerization of pyrrole (Figure 5). The constant potential electrodeposition
of the polymer was performed in phosphate buffer using a quartz crystal microbalance
electrode as deposition substrate, same that was employed as sensor component for mea-
surements of the bacteria in apple juice. The receptors, besides recognizing P. aeruginosa
with a LoD of 1 × 103 CFU mL−1, were able to discriminate the analyte against E. Coli and
other bacterial species [80].
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A summary of publications reporting on bacterial recognition employing IPs can be
found in Table 5. As bacteria are whole-cell microorganisms, they require a different ap-
proach as compared to the sensor systems described above for small molecules. Although
it is possible to use emulsion polymerization in MIP-like fashion [197], most platforms
are based on SIP-based detection. Micro-contact imprinting offers the possibility of cre-
ating proof-of-concept platforms with surprisingly low detection limits, but upscaling
would require a highly advanced roll-to-roll coating device. Electro-deposition in this
sense is a valuable alternative leading to ultra-sensitive detection of bacteria in solution
but requires voltammetry parameter optimization and is mainly interesting for electro-
chemical detection, while micro-contact imprinting is more broadly combinable with other
readout technologies.

Table 5. Summary of recent publications for the recognition of bacteria using IPs in food samples.

Analyte (s) Template/Monomer(s)/
Crosslinker IP Preparation Food

Sample LoD Readout
Technique Ref.

Listeria
monocytogenes

L. monocytogenes/
TRIM/DMA

Thermal: Pickering
emulsion

Milk,
pork 1 × 103 CFU/mL Optical [197]

Salmonella paratyphi S. paratyphi/
MAH/EGDMA

Photo:
Micro-contact

Apple
juice 1.4 × 106 CFU/mL Optical [199]

Escherichia coli E. coli/MAH,
HEMA/EGDMA

Photo:
Micro-contact

Apple
juice 1.5 × 106 CFU/mL

Optical/
Acoustic wave [200]

Escherichia coli E.coli/4,4′-MDI,
PG/BPA

Thermal:
Micro-contact

Apple
juice 1 × 102 CFU/mL Thermometric [198]

Escherichia coli E. coli/Dopamine Electrochemical:
Deposition Water 8 CFU/mL Electrochemical/

optical [77]

Pseudomonas
aeruginosa P. aeruginosa/Pyrrole Electrochemical:

Deposition
Apple
juice 1 × 103 CFU/mL Electrochemical [80]

TRIM, Trimethylopropane trimethacrylate; DMA, N, N-dimethylaniline; MAH, acrylate N-methacryloyl L-histidine methyl ester; EGDMA,
ethylene glycol dimethacrylate; 4,4′-MDI, Diisocyanatodiphenylmethane; PG, Phloroglucinol; BPA, Bisphenol A.
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4.1.3. Viruses

To our knowledge, Yang et al. are the only group to report on the recognition of
a virus in terms of food safety. In this research, silica nanoparticles were synthesized
and used for molding imprinting of hepatitis A. Self-polymerization of the monomer
(dopamine) was carried out in Tris buffer (Figure 6). The obtained imprinted particles
were tested in human serum, from which they obtained recoveries in the range of 94–96%.
The spherical IP proved to be able of sensing the analyte with a LoD of 8.6 pmol per liter.
Moreover, selective recognition against other viruses (rubella, rabies and measles) viruses
was performed [201].
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5. The Role of Transducers in Designing a Sensor for Application in Food Safety

In the previous sections, we mainly focus on the different potential contaminants
and how different imprinting strategies can be exploited to create sensitive receptors
for both sensing and separation/purification purposes. When constructing integrated
sensor devices, however, the transducer principle used is equally important to the receptor
design as the sensitivity of a sensor depends on both the recognition element and the
transducer. The transducer possesses the key role of converting the recognition event into a
measurable signal, typically proportional to the number of interactions between the analyte
and the receptor (Figure 7) [37,202]. In this section, we describe the most representative
readout techniques that have been combined with IPs in the detection of chemical and
microbiological food contaminants.
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5.1. Electrochemical Detection

Sensors based on electrochemical transducers are the most frequently reported in
biosensing applications due to their relatively high sensitivity and selectivity at a low
cost [203,204]. The possibility of miniaturization and the suitability that these platforms
possess for being used in complex matrices are two additional key advantages for food
analysis [205]. In this regard, IPs have been coupled with electrochemical transducers to
sense food safety hazards. Upon the binding of the specific targets to the receptor, electrical
changes are observed. These changes can be amperometric/voltammetric (in currents) or
potentiometric (in potentials or accumulated charge). Additionally, impedimetric changes
(in resistance or capacity) have also been researched [206]. Since electrochemical trans-
ducers rely on measurable electrical changes, the electron transfer ability between the
recognition sites of the receptor and the surface of the electrode employed determines the
sensitivity of the sensor [207]. Therefore, conductive materials such as conjugated polymers
or conductive additives as nanoparticles (carbon, gold, etc.) are typical components of
these platforms.

For example, Bougrini et al. used voltammetry to quantify tetracycline, using an
imprinted layer composite of poly(thioaniline) and gold nanoparticles onto a gold elec-
trode for the measurements. The sensor attained a limit of detection of 0.22 fM and was
successfully tested on honey samples, proving the suitability of the sensor in complex food
matrices [208]. Apart of high sensitivity, rapid detection is a desirable characteristic in sen-
sors for food safety, where toxin accumulation during time poses a risk. This challenge was
addressed by Idil et al. for the real time detection of E. coli, using a capacitive transducer
coupled to a vinyl based imprinted polymer onto a gold electrode. This sensor yielded a
detection limit of 70 CFU/mL and was tested on apple juice samples (Figure 8) [209]. Other
related publications that cover electrochemical platforms coupled to imprinted polymers
are summarized in Table 6.
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Table 6. Imprinted polymer-electrochemical sensors for food safety.

Analyte Sensor Composition
IP/Electrode Food Sample Limit of

Detection
Response

Time Ref.

Melamine Poly (aniline-co-acrylic acid)/GCE Milk 17.2 pM 20 min [210]

Phosalone Poly (APTES-co-TEOS)/Pt-UiO-66,CPME Lake water, soil, wheat,
cucumber orange 78 pM 2 min [114]

Carbendazim Poly(O-phenylenediamine)/S-Mo2C, GCE Grape, apple, tomato,
eggplant, cucumber 0.67 pM 6 min [117]

Tetracycline Poly (P-aminothiophenol)/Au Honey 0.22 fM 30 min [208]
Melamine Polyaniline, Au/GCE Milk, feed 1.39 pM 40 min [211]

Diethylstilbestrol Poly (APTES-co-TEOS co-OTOMS)/AuNP,
MWCNT, GCE Milk 24.3 fg/mL 15 min [212]

Fumonisin B1 Poly (MAA-co-EGDMA)/GO-CdS, ITO Milk, maize meal 4.7 pg/mL 15min [213]

Fumonisin B1 Poly (MAA-co-EGDMA)/Ru, SiO2, CS, Au
NP, GCE Milk, maize meal 0.35 pg/mL 15 min [214]

Escherichia coli Poly (MAH-co-HEMA-co-EGDMA)/Au Apple juice 70 CFU/mL Real-time [209]

GCE, Glassy carbon electrode; APTES, (3-aminopropyl)triethoxysilane, TEOS, Tetraethyl orthosilicate; Pt-UiO-66, metal–organic framework
catalyst; CPME, Carbon paste microelectrode; Au, gold; SG, Sulfonated graphene; MWCNT, Multi-walled carbon nanotubes; OTOMS,
Octyltriethoxysilane; MAA, Methacrylic acid; SPE, Screen printed electrode; CS, Chitosan; NP, Nanoparticles; EGDMA, Ethylene glycol
dimethacrylate; GO, Graphene oxide; ITO, Indium tin oxide; MAH, N-methacryloyl-L-histidine methylester; HEMA, 2-Hydroxyethyl
methacrylate.

5.2. Optical Detection

The core process of these sensors is the conversion of optical properties (e.g., photons)
into an electronic signal, related to a receptor–target binding event. Reports of IP sensors
exploit optical properties such as refractive index, optical absorbance or fluorescence [215].
Other well-known examples of optical biosensing platforms include Surface Plasmon
Resonance (SPR) and Surface Enhanced Raman Scattering (SERS). In terms of MIPs and
food hazards detection, fluorescence and SPR are the most investigated readout platforms
(Table 7).

Fluorescence is often used due to its simplicity and high sensitivity. Sensors based on
fluorescence, however, present the drawback of requiring a label when the analyte does
not possess intrinsic optical properties (e.g., absorption or photoluminescence). One of the
most representative fluorescent labels are quantum dots (QD), which can be incorporated
into the synthetic receptor to enable the use of this readout method [36,216]. An example
within food hazard detection is the sensor employed by Liu et al. for methamidophos, a
pesticide. The imprinted polymeric receptor is based on methacrylic acid, ethylene glycol
methacrylate and QDs as label. The obtained fluorescent probe showed a limit of detection
of 0.092 µM, and the setup was tested on real food matrices such as apples and pears [217].

Under specific incident light illumination, SPR measures changes in the refractive
index of a medium near a metal surface (e.g., Au or Ag). This optical phenomenon is
exploited for biosensing, where receptors are immobilized on the surface. Upon binding to
their specific targets, a change in mass will be observed and, thus, a change in refractive
index that can be analyzed in real time [218,219]. Zhang et al. demonstrated the use of an
SPR biomimetic sensor for the detection for the antibiotic kanamycin in 2018. They obtained
a limit of detection of 0.043 µM in complex food samples, e.g. milk and honey [220].

Table 7. Imprinted polymer-optical sensors for food safety.

Analyte Sensor Composition
IP/Electrode Food Sample Limit of Detection Response

Time Ref.

Kanamycin Poly 4-vinylphenylboronic
acid-co-PEGDA)

Milk,
honey

0.0433 µM
0.0120 µM - [220]

Methamidophos Poly (MAA-co-EGDMA),QD Apple, pear, kidney
bean, leek, cucumber 0.0916 µM 3 h [217]

Escherichia coli Poly(HEMA-co-EGDMA-co-MAH) Apple juice 1.54 × 106 CFU/mL 113 s [200]

PEGDA, Poly (ethylene glycol) diacrylate; MAA, Methacrylic acid; EGDMA, Ethylene glycol dimethacrylate; QD, Quantum dots; MAH,
N-methacryloyl-L-histidine methylester; HEMA, 2-Hydroxyethyl methacrylate.
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5.3. Acoustic Wave Transducers

As these sensors detect small changes in mass, they are also known as mass-sensitive
sensors. They typically comprise a piezoelectric crystal, onto which the receptors (in this
case, imprinted polymers) are immobilized. The crystal will vibrate at a certain frequency
under the influence of an electrical field, achieving resonance at a very high frequency.
When the target binds to the receptor, it will produce a measurable change in the crystal’s
vibration frequency. This change correlates with the added mass on the crystal surface [221].
Some of its advantages lie in the possibility to perform several assay formats as well as
on-line analysis of receptor–target interactions [219]. Nevertheless, the relatively long
incubation times required as well as the number of washing and drying steps can be
drawbacks in terms of application for food safety.

There are two major types of mass-based biosensors: Bulk Acoustic Wave (BAW) and
Surface Acoustic Wave (SAW) devices. BWV is also known as Quartz Crystal Microbalance
(QCM), and, as shown in Table 8, it is the piezoelectric transducer most exploited for
the detection of food safety hazards of both chemical and microbiological nature in real
samples. Some of these sensor platforms have been proven to be very sensitive and highly
interesting for application in food safety screening (Table 8). Yola et al., for example, used a
QCM-based biomimetic sensor for the real-time detection of the antibiotic tobramycin in
chicken egg white and milk in concentrations in the low picomolar concentration range
(Figure 9) [222].

Table 8. Imprinted polymer-piezoelectric sensors for food safety.

Transducer Analyte Sensor Composition
IP/Electrode Food Sample Limit of Detection Response

Time Ref.

SPR/QCM Escherichia coli Poly(HEMA-co-EGDMA-co-
MAH) Apple juice 3.72 × 105 CFU/mL 56 s [200]

SPR Tobramycin Poly (HEMA-co-MAGA) Chicken egg
white, milk 5.7 pM Real time [222]

QCM Methimazole Poly(MAA-co-EGDMA),silica Pork, beef and
milk 3 µg/L 8 min [25]

QCM Estradiol Poly (MAA-co-
Vinylpyrollidone-DHEBA) Bread 2 µg/L 5–10 min [23]

QCM Trichlorfon
(TCF) Poly (Vinylidene difluoride) Lettuce 15.77 ppb 6 h [115]

QCM Metolcarb Poly(MAA-co-EGDMA) Apple juice,
pear, cabbage 2.309 µg/L 12 min [112]

PEGDA, Poly (ethylene glycol) diacrylate; MAA, Methacrylic acid; EGDMA, Ethylene glycol dimethacrylate; QD, Quantum dots; MAH,
N-methacryloyl-L-histidine methylester; HEMA, 2-Hydroxyethyl methacrylate.

Biosensors 2021, 11, x FOR PEER REVIEW 18 of 29 
 

IP/Electrode 

Kanamycin 
Poly 4-vinylphenylboronic 

acid-co-PEGDA) 
Milk, 
honey 

0.0433 µM 
0.0120 µM 

- [220] 

Methamidophos 
Poly (MAA-co-
EGDMA),QD 

Apple, pear, kidney 
bean, leek, cucumber 

0.0916 µM 3 h [217] 

Escherichia coli 
Poly(HEMA-co-EGDMA-

co-MAH) 
Apple juice 1.54 × 106 CFU/mL 113 s [200] 

PEGDA, Poly (ethylene glycol) diacrylate; MAA, Methacrylic acid; EGDMA, Ethylene glycol dimethacrylate; QD, Quan-
tum dots; MAH, N-methacryloyl-L-histidine methylester; HEMA, 2-Hydroxyethyl methacrylate. 

5.3. Acoustic Wave Transducers 
As these sensors detect small changes in mass, they are also known as mass-sensitive 

sensors. They typically comprise a piezoelectric crystal, onto which the receptors (in this 
case, imprinted polymers) are immobilized. The crystal will vibrate at a certain frequency 
under the influence of an electrical field, achieving resonance at a very high frequency. 
When the target binds to the receptor, it will produce a measurable change in the crystal’s 
vibration frequency. This change correlates with the added mass on the crystal surface 
[221]. Some of its advantages lie in the possibility to perform several assay formats as well 
as on-line analysis of receptor–target interactions [219]. Nevertheless, the relatively long 
incubation times required as well as the number of washing and drying steps can be draw-
backs in terms of application for food safety. 

There are two major types of mass-based biosensors: Bulk Acoustic Wave (BAW) and 
Surface Acoustic Wave (SAW) devices. BWV is also known as Quartz Crystal Microbal-
ance (QCM), and, as shown in Table 8, it is the piezoelectric transducer most exploited for 
the detection of food safety hazards of both chemical and microbiological nature in real 
samples. Some of these sensor platforms have been proven to be very sensitive and highly 
interesting for application in food safety screening (Table 8). Yola et al., for example, used 
a QCM-based biomimetic sensor for the real-time detection of the antibiotic tobramycin 
in chicken egg white and milk in concentrations in the low picomolar concentration range 
(Figure 9) [222]. 

 
Figure 9. QCM detection of tobramycin using a molecularly imprinted polymer: (i) AFM image of 
MIP film. (ii) The effect of concentration on QCM response of target: (1) adsorption; (2) desorp-
tion; and (3) regeneration. Reprinted from [222]. Copyright (2014), with permission from Elsevier. 

Table 8. Imprinted polymer-piezoelectric sensors for food safety. 

Transducer Analyte 
Sensor Composition 

IP/Electrode 
Food Sample Limit of Detection Response Time Ref. 

SPR/QCM Escherichia coli Poly(HEMA-co-
EGDMA-co-MAH) 

Apple juice 3.72 × 105 CFU/mL 56 s [200] 

SPR Tobramycin 
Poly (HEMA-co-

MAGA) 
Chicken egg white, 

milk 
5.7 pM Real time [222] 

Figure 9. QCM detection of tobramycin using a molecularly imprinted polymer: (i) AFM image of MIP film. (ii) The effect
of concentration on QCM response of target: (1) adsorption; (2) desorption; and (3) regeneration. Reprinted from [222].
Copyright (2014), with permission from Elsevier.



Biosensors 2021, 11, 46 19 of 29

5.4. Thermometric: Heat Transfer Method

A relatively novel class of transducer principles are thermal detection techniques. Tra-
ditionally, thermal sensing principles are usually based on calorimetry, but, in recent years,
the Heat Transfer Method (HTM) has emerged as an interesting biosensing technique [10].
HTM monitors the thermal transport across a solid-liquid interface where the IP receptors
are immobilized. Moreover, a temperature gradient is applied over the receptor layer
which is monitored in time. The thermal resistance of the interface changes in function of
the amount of target molecules bound to the receptor layer, blocking the heat flow through
the interface and changing the gradient. It is a low-cost and homemade setup with a low
detection limit (nM range) that has a wide range of applications. Additionally, it can be
easily scaled down in terms of point-of-care sensing and any electrode that enables heat
flow through IP layer can be incorporated into the device [10,178,223].

In food hazard detection, the only report to our knowledge utilizing HTM as readout
platform employs a polyurethane bacteria-imprinted layer (Table 9). The samples were
tested on apple juice samples and sensor exhibited a low limit of detection of 100 CFU/mL,
which further emphasizes the application potential of the methodology.

Table 9. Imprinted polymer-thermometric sensors for food safety.

Analyte
Sensor

Composition
IP/Electrode

Food Sample Limit of
Detection Response Time Ref.

Escherichia coli Polyurethane Apple juice 100 CFU/mL Real time [198]

6. Outlook and Conclusions

Currently, most industrial food plants still rely on external laboratories (some of them
located abroad) for risk assessment of product’s safety. These laboratories make use of
highly sensitive but expensive and time-consuming bench detection technologies (e.g.,
gas chromatography, PCR, media-based metabolic tests, etc.). During the testing time,
companies need to either store the product until the results are obtained or distribute and
recall the product in case of hazard detection, which translates to extra costs. Furthermore,
developing countries and rural areas have no access to these technologies [224]. Conse-
quently, there is a high demand of cost-effective and robust analytical devices to monitor
food safety on-site, which would enable effective prevention and control strategies at the
different processing steps.

In this context, an on-site testing device that is Affordable, Sensitive, Specific, User-
friendly, Rapid and robust, Equipment free and Deliverable to end users (ASSURED)
could have significant scientific and commercial impact [225]. IP-based technology is
mainly interesting because of its affordable, user-friendly, robust nature and the fact it
is equipment-free. The examples highlighted in the current review are often still in the
laboratory phase of development, but, as technology becomes more advanced, they will
get closer and closer to market penetration. In this respect, paper- and chip-based devices
have gained a lot of interest as potential immobilization platforms for IPs in sensors that
are able to detect food hazards in real samples. Paper-based platforms, for example, have
been used for optical and thermal detection of pesticides, hormones and toxins [225–228]
and are particularly interesting because of their low-cost, user-friendly mode of operation
and equipment-free process. Another promising candidate for on-site testing are chip-
based devices. They offer advantages such as small size, simplification of instruments,
capability of multiplex assays, small amount of samples with precise control and high
throughput analysis. They are a bit more expensive than paper-based assays, but they
offer a higher degree of robustness. Chip-based devices have been combined with various
read-out principles including colorimetric and SPR for the detection of the whole range of
food contaminants, from drugs to insecticides and even whole-cell bacteria [199,228,229].
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Devices such as these could accelerate the application of imprinting technology in the
food-safety value chain from a technological perspective.

IPs also have a large benefit from a chemical and logistical perspective as they have
an improved performance compared to their biological analogues in terms of shelf life,
resistance to matrices (pH, ions, oxidizing conditions, etc.), LOD and response time. Ad-
ditionally, traditional antibody-based sensors are more expensive because they require
animals for the antibodies production. Animal storage, target compound isolation and
purification, animal inoculation, purification and storage of the antibodies are all costs that
IPs do not have. Therefore, the overall cost of producing IPs sensors is cheaper and it can be
easily scaled up or down depending on the customers need. Despite these advantages and
the fact that they are low-cost, user friendly-devices, no commercial IP-based sensors have
been developed until date. One of the major issues yet to be overcome is the large-scale
production of homogenous batches of IPs.

New advances in commercial MIP production could overcome this bottleneck in
the future. Traditionally, commercial IP synthesis by big chemical companies such as
Sigma-Aldrich mainly focuses on the development of IPs for separation purposes. In
recent years, new players have entered the market such as MIP Diagnostics Ltd. They
focus on designing homogenous batches of high-affinity MIPs specifically designed for
biosensing. By collaborating with partners focusing on the integration of these MIPs in
technically advanced readout platforms, huge steps towards valorization can be made
in coming years [230,231]. Furthermore, in a globalized food chain, it has proven to be
challenging to prevent foodborne outbreaks, and finally consumers are starting to get more
interested in knowing how safe the food that they consume is. Easy IP-based test kits (e.g.,
colorimetric paper-based strips) could provide consumers more confidence in the food
that they buy. IP technology can offer the consumer a way to accurately determine if their
food is spoiled or contains compounds outside the regulatory limits, rather than having
to trust the expiry date. In addition, such technology could also prevent food waste as
a lot of food products are thrown away because the expiry date has passed while there
might be nothing wrong with them. The work by Sergeyeva et al. illustrates what such a
sensor might look like [186]; imprinted membranes can be designed for the detection of
spoilage indicators and attached to food packaging. Rebinding of the indicator to the MIP
membrane will then lead to a signal that the customer can read-out using, for instance, a
smartphone. Similar studies further emphasize the potential impact of such a sensor on
the food industry of the future [232,233]. In conclusion, further research on similar on-site
IP-based test kits could lead to the development of smart sensing tools that are beneficial
for every member belonging to the farm-to-fork production chain in coming decades.
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187. Turan, E.; Şahin, F. Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A.
Sens. Actuators B Chem. 2016, 227, 668–676. [CrossRef]

http://doi.org/10.1016/j.ijfoodmicro.2006.11.005
http://www.ncbi.nlm.nih.gov/pubmed/17275116
http://doi.org/10.1038/ismej.2008.19
http://www.ncbi.nlm.nih.gov/pubmed/18309361
http://doi.org/10.1146/annurev-food-030713-092431
http://doi.org/10.3390/toxins2071751
http://www.ncbi.nlm.nih.gov/pubmed/22069659
http://doi.org/10.1080/0265203031000065827
http://www.ncbi.nlm.nih.gov/pubmed/12775482
http://doi.org/10.1016/S0168-1605(03)00169-7
http://www.ncbi.nlm.nih.gov/pubmed/9282391
http://doi.org/10.1128/CMR.14.1.15-37.2001
http://www.ncbi.nlm.nih.gov/pubmed/11148001
http://doi.org/10.1093/infdis/168.2.369
http://www.ncbi.nlm.nih.gov/pubmed/8335973
http://doi.org/10.1016/S0166-0934(99)00039-7
http://doi.org/10.1016/j.jviromet.2005.08.004
http://doi.org/10.1128/JCM.40.9.3256-3260.2002
http://doi.org/10.1080/02652030902788920
http://www.ncbi.nlm.nih.gov/pubmed/19680963
http://doi.org/10.5740/jaoacint.16-0113
http://www.ncbi.nlm.nih.gov/pubmed/27214609
http://doi.org/10.1016/j.snb.2006.09.042
http://doi.org/10.1016/j.talanta.2017.07.030
http://doi.org/10.1021/acssensors.6b00435
http://doi.org/10.1039/C7AN02057K
http://www.ncbi.nlm.nih.gov/pubmed/29379911
http://doi.org/10.1016/j.phmed.2018.05.001
http://doi.org/10.1016/S0165-9936(04)00102-5
http://doi.org/10.1016/j.talanta.2018.04.024
http://doi.org/10.1016/j.bios.2015.07.013
http://www.ncbi.nlm.nih.gov/pubmed/26189406
http://doi.org/10.1101/cshperspect.a019216
http://www.ncbi.nlm.nih.gov/pubmed/26054743
http://doi.org/10.1016/j.talanta.2019.04.016
http://www.ncbi.nlm.nih.gov/pubmed/31122412
http://doi.org/10.1016/j.snb.2015.12.087


Biosensors 2021, 11, 46 28 of 29

188. Liu, N.; Li, X.; Ma, X.; Ou, G.; Gao, Z. Rapid and multiple detections of staphylococcal enterotoxins by two-dimensional
molecularly imprinted film-coated QCM sensor. Sens. Actuators B Chem. 2014, 191, 326–331. [CrossRef]

189. Liu, N.; Zhao, Z.; Chen, Y.; Gao, Z. Rapid Detection of Staphylococcal Enterotoxin B by Two-Dimensional Molecularly Imprinted
Film-Coated Quartz Crystal Microbalance. Anal. Lett. 2012, 45, 283–295. [CrossRef]

190. Fang, G.; Wang, H.; Yang, Y.; Liu, G.; Wang, S. Development and application of a quartz crystal microbalance sensor based
on molecularly imprinted sol-gel polymer for rapid detection of patulin in foods. Sens. Actuators B Chem. 2016, 237, 239–246.
[CrossRef]

191. Guo, W.; Pi, F.; Zhang, H.; Sun, J.; Zhang, Y.; Sun, X. A novel molecularly imprinted electrochemical sensor modified with carbon
dots, chitosan, gold nanoparticles for the determination of patulin. Biosens. Bioelectron. 2017, 98, 299–304. [CrossRef] [PubMed]

192. Zhang, W.; Han, Y.; Chen, X.; Luo, X.; Wang, J.; Yue, T.; Li, Z. Surface molecularly imprinted polymer capped Mn-doped ZnS
quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chem. 2017, 232, 145–154. [CrossRef]

193. Pacheco, J.G.; Castro, M.; Machado, S.; Barroso, M.F.; Nouws, H.P.A.; Delerue-Matos, C. Molecularly imprinted electrochemical
sensor for ochratoxin A detection in food samples. Sens. Actuators B Chem. 2015, 215, 107–112. [CrossRef]

194. Choi, S.W.; Chang, H.J.; Lee, N.; Kim, J.H.; Chun, H.S. Detection of mycoestrogen zearalenone by a molecularly imprinted
polypyrrole-based surface plasmon resonance (SPR)sensor. J. Agric. Food Chem. 2009, 57, 1113–1118. [CrossRef] [PubMed]

195. Fang, G.; Fan, C.; Liu, H.; Pan, M.; Zhu, H.; Wang, S. A novel molecularly imprinted polymer on CdSe/ZnS quantum dots for
highly selective optosensing of mycotoxin zearalenone in cereal samples. RSC Adv. 2014, 4, 2764–2771. [CrossRef]

196. Radi, A.E.; Eissa, A.; Wahdan, T. Impedimetric sensor for deoxynivalenol based on electropolymerised molecularly imprinted
polymer on the surface of screen-printed gold electrode. Int. J. Environ. Anal. Chem. 2019, 00, 1–12. [CrossRef]

197. Zhao, X.; Cui, Y.; Wang, J. Preparation of fluorescent molecularly imprinted polymers via pickering emulsion interfaces and the
application for visual sensing analysis of Listeria Monocytogenes. Polymers 2019, 11, 984. [CrossRef] [PubMed]

198. Cornelis, P.; Givanoudi, S.; Yongabi, D.; Iken, H.; Duwé, S.; Deschaume, O.; Robbens, J.; Dedecker, P.; Bartic, C.; Wübbenhorst, M.;
et al. Sensitive and specific detection of E. coli using biomimetic receptors in combination with a modified heat-transfer method.
Biosens. Bioelectron. 2019, 136, 97–105. [CrossRef]

199. Perçin, I.; Idil, N.; Bakhshpour, M.; Yılmaz, E.; Mattiasson, B.; Denizli, A. Microcontact imprinted plasmonic nanosensors:
Powerful tools in the detection of salmonella paratyphi. Sensors 2017, 17, 1375. [CrossRef] [PubMed]

200. Yılmaz, E.; Majidi, D.; Ozgur, E.; Denizli, A. Whole cell imprinting based Escherichia coli sensors: A study for SPR and QCM.
Sens. Actuators B Chem. 2015, 209, 714–721. [CrossRef]

201. Yang, B.; Gong, H.; Chen, C.; Chen, X.; Cai, C. A virus resonance light scattering sensor based on mussel-inspired molecularly
imprinted polymers for high sensitive and high selective detection of Hepatitis A Virus. Biosens. Bioelectron. 2017, 87, 679–685.
[CrossRef] [PubMed]

202. Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8.
203. Duffy, G.F.; Moore, E.J. Electrochemical Immunosensors for Food Analysis: A Review of Recent Developments. Anal. Lett. 2017,

50, 1–32. [CrossRef]
204. Rotariu, L.; Lagarde, F.; Jaffrezic-Renault, N.; Bala, C. Electrochemical biosensors for fast detection of food contaminants—trends

and perspective. TrAC Trends Anal. Chem. 2016, 79, 80–87. [CrossRef]
205. Kumar, H.; Neelam, R. Enzyme-based electrochemical biosensors for food safety: A review. Nanobiosens. Dis. Diagn. 2016,

5, 29–39. [CrossRef]
206. Mitra, S.; Cumming, D.R.S. CMOS Circuits for Biological Sensing and Processing; Springer: Berlin, Germany, 2017.
207. Alvarez-Lorenzo, C.; Concheiro, A. Molecularly Imprinted Polymers as Components of Drug Delivery Systems. In Handbook of

Molecularly Imprinted Polymers; Smithers Rapra: Shawbury, UK, 2013.
208. Bougrini, M.; Florea, A.; Cristea, C.; Sandulescu, R.; Vocanson, F.; Errachid, A.; Bouchikhi, E.; El Bari, N.; Jaffrezic-Renault, N.

Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-
organic framework for tetracycline detection in honey. Food Control 2016, 59, 424–429. [CrossRef]

209. Idil, N.; Hedström, M.; Denizli, A.; Mattiasson, B. Whole cell based microcontact imprinted capacitive biosensor for the detection
of Escherichia coli. Biosens. Bioelectron. 2017, 87, 807–815. [CrossRef] [PubMed]

210. Regasa, M.B.; Soreta, T.R.; Femi, O.E.; Ramamurthy, P.C. Development of Molecularly Imprinted Conducting Polymer Composite
Film-Based Electrochemical Sensor for Melamine Detection in Infant Formula. ACS Omega 2020, 5, 4090–4099. [CrossRef]
[PubMed]

211. Rao, H.; Chen, M.; Ge, H.; Lu, Z.; Liu, X.; Zou, P.; Wang, X.; He, H.; Zeng, X.; Wang, Y. A novel electrochemical sensor based on
Au@PANI composites film modified glassy carbon electrode binding molecular imprinting technique for the determination of
melamine. Biosens. Bioelectron. 2017, 87, 1029–1035. [CrossRef] [PubMed]

212. Bai, J.; Zhang, X.; Peng, Y.; Hong, X.; Liu, Y.; Jiang, S.; Ning, B.; Gao, Z. Ultrasensitive sensing of diethylstilbestrol based
on AuNPs/MWCNTs-CS composites coupling with sol-gel molecularly imprinted polymer as a recognition element of an
electrochemical sensor. Sens. Actuators B Chem. 2017, 238, 420–426. [CrossRef]

213. Mao, L.; Ji, K.; Yao, L.; Xue, X.; Wen, W.; Zhang, X.; Wang, S. Molecularly imprinted photoelectrochemical sensor for fumonisin B
1 based on GO-CdS heterojunction. Biosens. Bioelectron. 2019, 127, 57–63. [CrossRef] [PubMed]

214. Zhang, W.; Xiong, H.; Chen, M.; Zhang, X.; Wang, S. Surface-enhanced molecularly imprinted electrochemiluminescence sensor
based on Ru@SiO2 for ultrasensitive detection of fumonisin B1. Biosens. Bioelectron. 2017, 96, 55–61. [CrossRef] [PubMed]

http://doi.org/10.1016/j.snb.2013.09.086
http://doi.org/10.1080/00032719.2011.633186
http://doi.org/10.1016/j.snb.2016.06.099
http://doi.org/10.1016/j.bios.2017.06.036
http://www.ncbi.nlm.nih.gov/pubmed/28697441
http://doi.org/10.1016/j.foodchem.2017.03.156
http://doi.org/10.1016/j.snb.2015.03.046
http://doi.org/10.1021/jf804022p
http://www.ncbi.nlm.nih.gov/pubmed/19182909
http://doi.org/10.1039/C3RA45172K
http://doi.org/10.1080/03067319.2019.1699548
http://doi.org/10.3390/polym11060984
http://www.ncbi.nlm.nih.gov/pubmed/31167356
http://doi.org/10.1016/j.bios.2019.04.026
http://doi.org/10.3390/s17061375
http://www.ncbi.nlm.nih.gov/pubmed/28608810
http://doi.org/10.1016/j.snb.2014.12.032
http://doi.org/10.1016/j.bios.2016.08.087
http://www.ncbi.nlm.nih.gov/pubmed/27631682
http://doi.org/10.1080/00032719.2016.1167900
http://doi.org/10.1016/j.trac.2015.12.017
http://doi.org/10.2147/NDD.S64847
http://doi.org/10.1016/j.foodcont.2015.06.002
http://doi.org/10.1016/j.bios.2016.08.096
http://www.ncbi.nlm.nih.gov/pubmed/27657842
http://doi.org/10.1021/acsomega.9b03747
http://www.ncbi.nlm.nih.gov/pubmed/32149237
http://doi.org/10.1016/j.bios.2016.09.074
http://www.ncbi.nlm.nih.gov/pubmed/27701054
http://doi.org/10.1016/j.snb.2016.07.035
http://doi.org/10.1016/j.bios.2018.11.040
http://www.ncbi.nlm.nih.gov/pubmed/30594075
http://doi.org/10.1016/j.bios.2017.04.035
http://www.ncbi.nlm.nih.gov/pubmed/28460332


Biosensors 2021, 11, 46 29 of 29

215. Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly Imprinted Polymers in Electrochemical and
Optical Sensors. Trends Biotechnol. 2019, 37, 294–309. [CrossRef] [PubMed]

216. Wang, H.; Yi, J.; Velado, D.; Yu, Y.; Zhou, S. Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical
Sensing of Glucose at Physiological pH. ACS Appl. Mater. Interfaces 2015, 7, 15735–15745. [CrossRef] [PubMed]

217. Liu, X.; Liu, Q.; Kong, F.; Qiao, X.; Xu, Z. Molecularly imprinted fluorescent probe based on hydrophobic CdSe/ZnS quantum
dots for the detection of methamidophos in fruit and vegetables. Adv. Polym. Technol. 2018, 37, 1790–1796. [CrossRef]

218. Liedberg, B.; Nylander, C.; Lundstrom, I. Surface Plasmon Resonance for gas detection and biosensing. Sens. Actuators 1983,
4, 299–304. [CrossRef]

219. Leonard, P.; Hearty, S.; Brennan, J.; Dunne, L.; Quinn, J.; Chakraborty, T.; O’Kennedy, R. Advances in biosensors for detection of
pathogens in food and water. Adv. Biosens. Detect. Pathog. Food Water 2003, 32, 3–13. [CrossRef]

220. Zhang, L.; Zhu, C.; Chen, C.; Zhu, S.; Zhou, J.; Wang, M.; Shang, P. Determination of kanamycin using a molecularly imprinted
SPR sensor. Food Chem. 2018, 266, 170–174. [CrossRef] [PubMed]

221. Law, J.W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. Rapid methods for the detection of foodborne bacterial pathogens:
Principles, applications, advantages and limitations. Front. Microbiol. 2014, 5, 1–19. [CrossRef]

222. Yola, M.L.; Uzun, L.; Özaltin, N.; Denizli, A. Development of molecular imprinted nanosensor for determination of tobramycin in
pharmaceuticals and foods. Talanta 2014, 120, 318–324. [CrossRef]

223. Van Grinsven, B.; Betlem, K.; Cleij, T.; Banks, C.; Peeters, M. Evaluating the potential of thermal read-out techniques combined
with molecularly imprinted polymers for the sensing of low-weight organic molecules. J. Mol. Recognit. 2016, 30, 1–12. [CrossRef]
[PubMed]

224. Radke, S.; Alocilja, E. Market analysis of biosensors for food safety. Biosens. Bioelectron. 2003, 18, 841–846.
225. Choi, J.R.; Yong, K.W.; Choi, J.Y.; Cowie, A.C. Emerging point-of-care technologies for food safety analysis. Sensors 2019, 19, 817.

[CrossRef] [PubMed]
226. Liu, W.; Guo, Y.; Luo, J.; Kou, J.; Zheng, H.; Li, B.; Zhang, Z. A molecularly imprinted polymer based a lab-on-paper chemilumi-

nescence device for the detection of dichlorvos. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 141, 51–57. [CrossRef]
227. Xiao, L.; Zhang, Z.; Wu, C.; Han, L.; Zhang, H. Molecularly imprinted polymer grafted paper-based method for the detection of

17β-estradiol. Food Chem. 2017, 221, 82–86. [CrossRef] [PubMed]
228. Fang, M.; Zhou, L.; Zhang, H.; Liu, L.; Gong, Z.-Y. A molecularly imprinted polymers/carbon dots-grafted paper sensor for

3-monochloropropane-1,2-diol determination. Food Chem. 2019, 274, 156–161. [CrossRef] [PubMed]
229. Caro, N.; Bruna, T.; Guerreiro, A.; Alvarez-Tejos, P.; Garretón, V.; Piletsky, S.; González-Casanova, J.; Rojas-Gómez, D.; Ehren-

feld, N. Florfenicol Binding to Molecularly Imprinted Polymer Nanoparticles in Model and Real Samples. Nanomaterials 2020,
10, 306. [CrossRef] [PubMed]

230. Lowdon, J.W.; Diliën, H.; Singla, P.; Peeters, M.; Cleij, T.J.; van Grinsven, B.; Eersels, K. MIPs for commercial application in
low-cost sensors and assays—An overview of the current status quo. Sens. Actuators B Chem. 2020, 325, 128973. [CrossRef]

231. Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, A.G.S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc.
2016, 11, 443–455. [CrossRef] [PubMed]

232. Capoferri, D.; Álvarez-Diduk, R.; Del Carlo, M.; Compagnonea, D.; Merkoçi, A. Electrochromic Molecular Imprinting Sensor for
Visual and Smartphone-Based Detections. Anal. Chem. 2018, 90, 5850–5856. [CrossRef] [PubMed]

233. Sergeyeva, T.; Yarynka, D.; Dubey, L.; Dubey, I.; Piletska, E.; Linnik, R.; Antonyuk, M.; Ternovska, T.; Brovko, O.; Piletsky, S.;
et al. Sensor Based on Molecularly Imprinted Polymer Membranes and Smartphone for Detection of Fusarium Contamination in
Cereals. Sensors 2020, 20, 4304. [CrossRef] [PubMed]

http://doi.org/10.1016/j.tibtech.2018.08.009
http://www.ncbi.nlm.nih.gov/pubmed/30241923
http://doi.org/10.1021/acsami.5b04744
http://www.ncbi.nlm.nih.gov/pubmed/26148139
http://doi.org/10.1002/adv.21838
http://doi.org/10.1016/0250-6874(83)85036-7
http://doi.org/10.1016/S0141-0229(02)00232-6
http://doi.org/10.1016/j.foodchem.2018.05.128
http://www.ncbi.nlm.nih.gov/pubmed/30381173
http://doi.org/10.3389/fmicb.2014.00770
http://doi.org/10.1016/j.talanta.2013.10.064
http://doi.org/10.1002/jmr.2563
http://www.ncbi.nlm.nih.gov/pubmed/27611483
http://doi.org/10.3390/s19040817
http://www.ncbi.nlm.nih.gov/pubmed/30781554
http://doi.org/10.1016/j.saa.2015.01.020
http://doi.org/10.1016/j.foodchem.2016.10.062
http://www.ncbi.nlm.nih.gov/pubmed/27979279
http://doi.org/10.1016/j.foodchem.2018.08.133
http://www.ncbi.nlm.nih.gov/pubmed/30372920
http://doi.org/10.3390/nano10020306
http://www.ncbi.nlm.nih.gov/pubmed/32053989
http://doi.org/10.1016/j.snb.2020.128973
http://doi.org/10.1038/nprot.2016.030
http://www.ncbi.nlm.nih.gov/pubmed/26866789
http://doi.org/10.1021/acs.analchem.8b00389
http://www.ncbi.nlm.nih.gov/pubmed/29617110
http://doi.org/10.3390/s20154304
http://www.ncbi.nlm.nih.gov/pubmed/32752255

	Introduction 
	Imprinted Polymers 
	Imprinted Polymers: Preparation Strategies According to the Template’s Size 
	Molecularly Imprinted Polymers 
	Surface Imprinted Polymers 


	Chemical Food Hazards 
	Imprinting Technology for the Recognition of Chemical Food Hazards 
	Pesticides 
	Drugs 
	Other Chemical Contaminants 


	Biological Food Hazards 
	Imprinting Technology for the Recognition of Biological Food Hazards 
	Toxins 
	Bacteria 
	Viruses 


	The Role of Transducers in Designing a Sensor for Application in Food Safety 
	Electrochemical Detection 
	Optical Detection 
	Acoustic Wave Transducers 
	Thermometric: Heat Transfer Method 

	Outlook and Conclusions 
	References

