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Abstract 

Spontaneous preterm birth (sPTB) poses significant challenges, affecting neonatal health and neurodevelopmental 
outcomes worldwide. The specific effects of placental trophoblasts on the pathological development of sPTB sub‑
types—preterm premature rupture of fetal membranes (pPROM) and spontaneous preterm labor (sPTL)—are not fully 
understood, making it crucial to uncover these impacts for the development of effective therapeutic strategies. Using 
single‑nucleus RNA sequencing, we investigated transcriptomic and cellular differences at the maternal–fetal inter‑
face in pPROM and sPTL placentas. Our findings revealed distinct trophoblast compositions with pPROM character‑
ized predominantly by extravillous trophoblasts (EVTs), while sPTL showed an abundance of syncytiotrophoblasts 
(STBs). Through cell differentiation and cell‑to‑cell communication analyses, other distinguishing factors were 
also found. In pPROM, heightened inflammation, oxidative stress, and vascular dysregulation with key pathways 
including tumor necrosis factor signaling, matrix metalloproteinase activation, and integrin‑mediated cell adhesion, 
highlighted an invasive EVT profile potentially driven by hypoxic conditions and immune cell recruitment. In con‑
trast, sPTL was marked by increased smooth muscle contraction, vascular remodeling, and altered signaling dynam‑
ics involving fibroblasts, including TGF‑β and WNT pathways. Our study highlights the critical need to distinguish 
sPTB subtypes to improve diagnostic precision and therapeutic targeting. The molecular insights gained provide 
a foundation for future investigations aimed at functional validation of key pathways and exploration of trophoblasts 
on the development of sPTB. Ultimately, these findings pave the way for more personalized and effective interven‑
tions to mitigate adverse outcomes associated with preterm birth.

Background
Spontaneous preterm birth (sPTB) is a complex and 
widespread syndrome that significantly contributes 
to neonatal morbidity and mortality worldwide [1–3]. 
In 2020 alone, ~  13.4 million infants were born before 
37-week gestation [4]. Additionally, in 2019, around 
900,000 children under the age of five years died from 
complications related to preterm birth, including lower 
respiratory infections, intrapartum-related events, 
and other perinatal causes [5]. Beyond the immediate 
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postnatal risks to infant survival, sPTB poses lasting chal-
lenges. It can disrupt the intricate coordination required 
in the final weeks of gestation, potentially interfering 
with the established sequence of fetal brain development 
and affecting multiple aspects of a child’s development 
[6]. Among these, disruptions in the highly orchestrated 
and time-sensitive process of fetal brain development are 
associated with an increased risk of neurodevelopment 
disorders, learning difficulties, and behavioral and social 
challenges [7].

Considering the clinical impact of sPTB, it is essen-
tial to distinguish between its two main subtypes: pre-
term premature rupture of membranes (pPROM) and 
spontaneous preterm labor (sPTL). Many studies have 
failed to differentiate between the sPTB subtypes, pre-
term premature rupture of fetal membranes (pPROM), 
and spontaneous preterm labor (sPTL), the latter being 
characterized by muscle contractions rather than a mem-
brane rupture [8–11]. sPTB is a clinical syndrome with 
various causes [12], in which both pPROM and sPTL are 
complex conditions. Clinically, pPROM may be associ-
ated with infection and inflammation, resulting from the 
activation of cytokines, matrix metalloproteinases, and 
apoptotic pathways [13]. sPTL, on the other hand, may 
arise from multiple factors that stimulate cervical ripen-
ing and uterine contractility [14, 15].

Infection and/or inflammation are the most common 
etiological factors that may result in pPROM and sPTL at 
an early stage of pregnancy, and these could have a path-
ological impact on intrauterine fetal neurodevelopment. 
However, the pathogenic mechanisms and links to neu-
ronal development within the maternal–fetal interface in 
sPTB are not fully understood, partly due to the lack of 
powerful and accurate methods for real-time intrauterine 
assessment of fetal neurodevelopment during pregnancy.

Studies using genetic, genomic, epigenetic, and tran-
scriptomic approaches in sPTB have identified several 
genetic loci potentially involved in premature parturi-
tion. However, the findings regarding the maternal–fetal 
interface have been inconsistent and lack functional 
validation [16, 17]. Much of the research on sPTB has 
focused on correlating monogenic factors, such as sin-
gle-omic data generated from genome-wide variation in 
pregnant women. These studies have also highlighted the 
crucial role of cellular components within the maternal–
fetal interface, particularly the trophoblast populations 
[18–20]. The key trophoblast cell types, cytotropho-
blast (CTB), syncytiotrophoblast (STB), and extravillous 
trophoblast (EVT) play distinct but interconnected roles 
in placental function and fetal development [21, 22]. The 
CTB and the CTB within the villous layer (VCT) serve 
as the progenitor population, differentiating into STB, 
which is responsible for maintaining the nutrient and gas 

exchange necessary for pregnancy maintenance. EVT dif-
ferentiation occurs at the villi, with EVTs invading the 
maternal decidua and remodeling spiral arteries, thereby 
providing blood supply to the fetus.

Understanding these intricate processes is essential for 
unraveling the pathological mechanisms behind sPTB. 
By considering the distinct clinical subtypes of sPTB, 
we aimed to provide a more nuanced understanding of 
the molecular and pathological differences that underlie 
sPTB and its diagnostic markers with a single-cell tran-
scriptomic approach. For which, the single-cell RNA 
sequencing (scRNA-seq) offers a unique opportunity 
to explore cell-type-specific transcriptomic landscapes 
within the maternal–fetal interface [23].

Materials and methods
Study design
The aim of this study was to conduct a comprehensive 
analysis of the pathophysiology underlying the subtypes 
of sPTB, specifically focusing on pPROM and sPTL, 
and provide a new avenue for exploration. We utilized 
snRNA-seq to examine differential gene expression and 
other molecular differences between the sPTB subtypes.

Sample collection
Human fetal membrane samples were obtained from the 
University of Texas Medical Branch at Galveston. Ini-
tially, nuclei from nine frozen human fetal membrane 
samples were isolated and processed for sequencing. Due 
to quality concerns, one pPROM sample was excluded 
due to lower data quality, and one sPTL sample was 
removed for having a lower uniparental mitochondrial 
inheritance count compared to other samples (Table 1).

Single‑nucleus RNA sequencing
In an earlier study, we applied scRNA-seq to exam-
ine freshly collected chorionic villi samples for spon-
taneous miscarriages [23]. In this study, we employed 

Table 1 Sample number, maternal age, history of pregnancy 
(Hx pregnancy), and gestational age of control, pPROM, and sPTL 
pregnancy groups

Group Sample 
number

Maternal age Hx pregnancy Gestational age

Control 1 39 G6P4 39.0

2 23 G3P2 39.0

3 29 G4P2 39.0

pPROM 1 30 G4P2 34.3

2 24 G3P2 33.3

sPTL 1 23 G1P0 40.4

2 34 G3P1 40.2
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single-nucleus RNA sequencing (snRNA-seq) [24] and 
studied pre-banked human placentas [25]. Instead of 
isolating cells, nuclei used for isolation of RNAs were 
isolated from freshly frozen placental tissues and sub-
jected to library construction and RNA sequencing for 
snRNA-seq. Briefly, the placental tissue samples were 
homogenized and lysed with Triton X-100 in RNase-free 
water for nuclei isolation. The isolated nuclei were puri-
fied, centrifuged, and resuspended in PBS with BSA and 
RNAse inhibitor. Nuclei were diluted to 700 nuclei/µl and 
loaded into the 10 × Genomics Chromium Controller to 
encapsulate single nuclei into droplet emulsions, follow-
ing the manufacturer’s recommendations (10 × Genom-
ics, Pleasanton, CA, USA). Raw sequencing data for the 
single-nucleus transcriptome was converted into FASTQ 
format and processed through the Cell Ranger pipeline 
(10X Genomics Cell Ranger 7.1.0) to obtain barcodes, 
features, and matrix files, which were subsequently 
imported into R for analysis. The datasets supporting 
the conclusions of this article are available in the NCBI 
Gene Expression Omnibus under accession number 
GSE174399 (https:// www. ncbi. nlm. nih. gov/), as well as 
provided in the Appendices (Data file S1–S4).

Data processing, including quality control and pre-
processing, followed previously established protocols 
[26]. Cells were excluded if they expressed fewer than 
200 genes, had fewer than 1000 total UMI counts, or 
exhibited greater than 10% total mitochondrial gene 
expression. Additional steps included dataset merging, 
normalization, variable features identification, scaling, 
principal component analysis, neighborhood and clus-
ter identification, and Uniform Manifold Approximation 
and Projection (UMAP), performed using the Seurat v4 
R package (https:// satij alab. org/ seurat/). Prior to dataset 
integration, the marker genes for each cluster were iden-
tified using the ‘FindAllMarkers’ function within ‘Seurat.’ 
Cluster annotation was performed by matching clusters 
to known cell types by using a reference placenta gene 
panel, as we described [23] (Data file S1–S3). To maintain 
consistency across conditions, we retained the original 
‘Seurat’ objects for individual conditions, then merged 
them for downstream processing to explore batch effects 
and ensure uniformity. The same annotation approach 
was applied to the merged dataset to categorize clusters 
(Data file S4).

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis: To gain insight into the biological pathways 
associated with the different conditions, KEGG path-
way enrichment analysis (http:// www. kegg. jp/ kegg) 
was conducted on the individual ‘Seurat’ datasets. We 
began by converting the top 10 differentially expressed 
genes (DEGs) (p < 0.01) in each cluster, ranked by high-
est to lowest average log2-fold change, as identified using 

the ‘FindAllMarkers’ function in ‘Seurat,’ to EntrezIDs. 
These were mapped to the human genome-wide annota-
tion using the ‘org.Hs.eg.db’ package. The ‘clusterProfiler’ 
package was used to identify the top 20 KEGG pathways 
(p < 0.05), including details on gene ratio, gene count, and 
p-values, using the ‘enrichKEGG’ function.

Trajectory and pseudotime ordering: We modeled cel-
lular trajectories and inferred pseudotime by using the 
‘Monocle 3’ R package (https:// cole- trapn ell- lab. github. 
io/ monoc le3/). The individual ‘Seurat’ objects were con-
verted to ‘CellDataSet’ objects and root cells, or starting 
points were selected through ‘Monocle 3’ to order cell 
types along a developmental trajectory. The ‘graph_test’ 
function was employed to identify genes that significantly 
changed along the trajectory, which were further ana-
lyzed based on q-values.

Cell-to-cell communication analysis: Cell-to-cell com-
munication was assessed using the ‘CellChat’ R pack-
age (http:// www. cellc hat. org/). The merged dataset was 
divided into the condition-specific subsets and con-
verted into ‘CellChat’ objects, grouped by the cell type 
annotations from the original merged dataset. Fur-
ther processing involved setting the ligand-receptor 
interaction database to ‘CellChatDB.human,’ identify-
ing over-expressed genes and interactions, computing 
communication probability, and aggregating networks. 
Cophenetic and silhouette indexes were based on the 
non-negative matrix factorization (NMF) R package 
[27]. Additional visualization models within ‘CellChat,’ 
such as scatterplots comparing the outgoing and incom-
ing interaction strengths, heatmaps indicating outgo-
ing and incoming signaling pathways, and bubble plots 
highlighting the communication probabilities, aided in 
the interpretation and comparative analysis of cell-to-cell 
interactions.

Results
Variation of cell subtypes and differential gene expression: 
pPROM vs. sPTL
A broad range of differences in cell subtypes, as charac-
terized by snRNA-seq, was observed between pPROM 
and sPTL. UMAP showcased diverse cell types, including 
trophoblast cells: CTBs, VCTs, STBs, and EVTs; immune 
cells: decidual macrophages (dMs), decidual natural killer 
(dNK), Hofbauer, and mixed immune; endothelial cells: 
fetal, maternal, and lymphatic; as well as fibroblasts and 
perivascular (PV) cells (Fig. 1A–D). In a previous study, 
we identified three distinct types of EVT and two types 
of STB [23], but in this study, we observed different gene 
expression patterns of the identical cell type, such as 
EVT3 consisting of two unique clusters.

When the UMAP findings were split by the pPROM 
and sPTL conditions, we noticed key distributional 

https://www.ncbi.nlm.nih.gov/
https://satijalab.org/seurat/
http://www.kegg.jp/kegg
https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
http://www.cellchat.org/
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differences between the preterm conditions com-
pared to full-term control (Fig.  1A–C). While pPROM 
included various immune cells, such as dNK, dM, and 
mixed immune cells, these clusters exhibited different 
gene expression patterns compared to the Hofbauer cell 
cluster observed in sPTL, suggesting that immune cells 
infiltrating the pPROM placental environment may be 
replacing or masking the normally expected Hofbauer 
cells. Furthermore, there were notable distributional 
differences between pPROM and sPTL. Despite limited 
overlap, a clear pattern emerged in the EVT and STB 
cell types. In the pPROM condition, EVTs were preva-
lent, whereas most STB cell types were absent. In con-
trast, sPTL exhibited an abundance of various STB cell 
subtypes but lacked EVT cells. This difference is unlikely 
related to gestational age, as all samples were taken from 
pregnancies at approximately the same gestational week. 
Differential gene expression in STB and EVT clusters 
across the three groups further supports the observed 
differences, highlighting the presence of EVT clusters 
in pPROM and of STB clusters in sPTL (Fig.  1E). (For 
enlarged versions of all figures throughout the results, 
please refer to Supplementary Figures.)

Gene dynamics in sPTB through pathway and trajectory 
analysis
Functional differences between pPROM and sPTL were 
explored using KEGG pathway enrichment and trajec-
tory analysis [28, 29]. The phosphatidylinositol 3-kinase/
protein kinase B pathway, which is crucial for mater-
nal metabolism, placental-fetal growth, morphology, 
and nutrient transport, was enriched in both pPROM 
and sPTL conditions. This pathway displayed consist-
ent enrichment within PV (SGIP1), fibroblast (MEG3), 
endothelial_fetal (ITGA2), and endothelial (GUCY1A2) 
cells. The mitogen-activated protein kinase pathway, 
which plays a role in cell proliferation, differentiation, and 
apoptosis, was exclusively enriched in pPROM, particu-
larly in dS3, EVT3 (LVRN), and mixed immune (RHEX) 
cell clusters. In contrast, the vascular smooth muscle 
contraction pathway was uniquely enriched in sPTL, with 
high expression in fibroblast (AF165147.1), endothelial_
fetal (MEOX2), endothelial (GUCY1A2), EVT3 (LVRN), 
CTB (ASPM), and PV (SGIP1) cells (Fig. 2).

Trajectory analyses provided potential insights into 
the differences in disease progression as shown by pseu-
dotime branching, which tracks the transcriptional 

Integrated(D)Control pPROM sPTL(C)(B)(A)

(E) STB EVT

Fig. 1 Cell clusters characterized by snRNA‑seq among sPTB placentas. UMAPs of cell clusters were annotated by snRNA‑seq among groups 
of the control (A), premature preterm rupture of membranes (pPROM) (B), spontaneous preterm labor (sPTL) (C), and integrated A, B, 
and C conditions (D). Violin plots present gene expressions of the top five scored upregulated or downregulated genes for all cell clusters 
of syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). The upregulated genes are lined up in upper rows, and the downregulated 
genes are in lower rows in each group (E)
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status and differentiation of cell clusters across condi-
tions [29]. In addition to the differentiation, various 
mechanisms, including cell turnover, can also be in effect. 
In pPROM, cell clusters dM2 (DNAJB1) and endothelial_
fetal (RRM2) represented earlier pseudotime cell types, 
whereas endothelial_lymphatic (AL357507.1), mixed 
immune (TOP2A), and T (THEMIS) cells appeared at 
later pseudotime points. Unlike pPROM, sPTL exhibited 
clear branching points, especially from the earliest pseu-
dotime cell type, CTB (MKI67), leading to two distinct 

branches: one involving the differentiation of CTB to 
VCT cells, and the other involving STB and endothelial 
cells, which were of the latest pseudotime (Fig. 3A–F).

Significant changes in DEGs were observed across 
pseudotime. In the control group, ISG15 ubiquitin-like 
modifier, TTLL10 antisense RNA 1, stromal cell-derived 
factor 4, matrix remodeling–associated 8, and aurora 
kinase A–interacting protein 1 showed differential 
expression over pseudotime (Fig.  3G). In the pPROM 
group, genes such as tumor necrosis factor receptor 

Control pPROM sPTL

(B) (C)(A)

(D) (E)(D)

Fig. 2 Pathophysiological pathways. Pathophysiological pathways, which were identified to be statistically significant (adjusted p < 0.05, 
FDR correction) in the premature preterm rupture of membranes (pPROM) and spontaneous preterm labor (sPTL) groups, when compared 
to the control group, are shown with bubble plots. The horizontal axis represents the gene ratio, and the vertical axis represents the enriched 
pathways. The color scale shows the − log10(p‑value), and the size of the bubble indicates the gene count for each pathway. The labels on the right 
of each bubble chart represent the KEGG subcategories: CP = cellular processes, EIP = environmental information processing, HD = human diseases, 
GIP = genetic information processing, and OS = organismal systems (A–C). Violin plots present expression levels for genes significantly associated 
with a uniquely enriched KEGG pathway, either split by clinical features (D) or by cell clusters (E). The phosphatidylinositol 3‑kinase/ protein kinase 
B (PI3K‑Akt) pathway is associated with pPROM and sPTL; the mitogen‑activated protein kinase (MAPK) pathway, with pPROM; and the vascular 
smooth muscle contraction pathway, with sPTL
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superfamily members 18 and 14, potassium voltage-
gated channel subfamily A regulatory beta subunit 2, 
matrix remodeling-associated 8, Rho guanine-nucleotide 
exchange factor 16, and ERBB receptor feedback inhibi-
tor 1 were highly expressed in many early pseudotime 
clusters. These clusters included dM2 (DNAJB1), epithe-
lial cells (RRM2), endothelial_fetal (ITGA2), and various 
trophoblasts such as EVT3 (LINC00511), EVT3 (GPR78), 

VCT (ATP13A4), EVT1 (FLT1), CTB (AC007368), and 
STB (MYH14) (Fig.  3H). Similar to pPROM, sPTL also 
displayed significant DEG with six key genes identified: 
protein kinase c zeta, pleckstrin homology and RhoGEF 
domain containing G5, phosphatidylinositol-4,5-bis-
phosphate 3-kinase catalytic subunit delta, eukaryotic 
translation initiation factor 4 gamma 3, podoplanin, and 
phospholipase A2 group V. PRKCZ exhibited consistent 

(D)

(C)

(E) (F)

(G) (H) (I)

(A) (B)

Fig. 3 Trajectories across pseudotime between pPROM and sPTL. Pseudotime trajectory UMAPs represent placental cell differentiation 
in the control, premature preterm rupture of membranes (pPROM), and spontaneous preterm labor (sPTL) groups. The dark blue represents 
the original starting point of pseudotime, which is scaled as 0, and the yellow represents the tertiary point of pseudotime, which is scaled as 15 
in the control group (A) and as 20 in the pPROM (B) and sPTL (C) groups. Boxplots represent variant subtypes of cell clusters (y‑axis) that are 
arranged from bottom to top in ascending order of median pseudotime values (x‑axis) in the control (D), pPROM (E), and sPTL (F) groups. The 
feature plots display all significant differentially expressed genes (adjusted p < 0.05, FDR correction) across pseudotime for the control (G), pPROM 
(H), and sPTL (I) groups
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expression, with its highest levels in later pseudotime 
STB, and endothelial (SPTLC3) and endothelial_fetal 
(ACVRL1) cells. In contrast, PLEKHG5, PIK3CD, and 
EIF4G3 displayed significant differential gene expression 
primarily in the dM2 (CR1) cell type (Fig. 3I).

Cell‑to‑cell communication signaling
We employed NMF to identify and categorize cell-to-
cell communication signals within the pPROM and 
sPTL groups, comparing them to a control group. NMF 
reduces dimensionality and obtains cophenetic and sil-
houette indexes, which help assess clustering quality 
and consistency within RNA sequencing data [30]. In 
total, pPROM samples exhibited eight outgoing signals 
and nine incoming signals, whereas sPTL samples dem-
onstrated nine outgoing and incoming signals. By con-
trast, the control group displayed eight outgoing and four 
incoming signaling patterns (Fig. 4A, D).

Within the control group, many clusters of the same 
cell type exhibited the same cell signaling pattern. Among 
the outgoing signals, EVT cell types followed pattern 1, 
with pathways such as angiopoietin-like (ANGPTL) and 
pleiotrophin (PTN), whereas STBs exhibited pattern 2, 

involving activin, periostin, follicle-stimulating hormone 
(FSH), and thyroid-stimulating hormone (TSH). Pattern 
3 was associated with immune cells (dMs, mixed immune 
cells) that are associated with galectin, CD30, B-cell acti-
vating factor (BAFF), and C-X-C motif chemokine ligand 
1 (CXCL) (Fig.  4B, C. For incoming signals, STB clus-
ters exhibited pattern 4, involving pathways such as col-
ony-stimulating factor 3 and FSH. Immune cell clusters 
followed pattern 2, including but not limited to gluco-
corticoid-induced TNFR-related protein–ligand, BAFF, 
IL-16, and galectin (Fig. 4E, F).

In contrast to the control group, the pPROM group did 
not display the same pattern across cell types. In outgo-
ing secreting cells, multiple trophoblast cell types—CTB, 
STB, VCT, and EVT—were associated with pattern 1, 
whereas only immune cells were associated with pat-
tern 2. Patterns 5, 6, and 7 also involved immune cells 
but shared the same patterns with other cell types such 
as fibroblasts, CTB, and STB. These patterns consisted of 
many immune-related pathways, including osteopontin 
(SPP1), ANGPTL, CD30, CD70, and class 3 semaphorin 
(SEMA3) (Fig. 4B, C). Similar observations were made in 
incoming target cells. Pattern 1 comprised a mixture of 
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Fig. 4 Global cell‑to‑cell communications. For each group, control (A, D), premature preterm rupture of membranes (pPROM) (B, E), 
and spontaneous preterm labor (sPTL) (C, F), data involving the outgoing and incoming signaling were collected. The number of outgoing 
and incoming signals for the control, pPROM, and sPTL groups was determined by selecting the pattern number at the lowest measure score, 
excluding the final point, from the cophenetic and silhouette indexes, which, respectively, measure how well the clustering matches the original 
data, the consistency of clustering, and the separation between clusters [30] Arrows point to the value selected. A corresponding heatmap 
shows the cell and communication pathway patterns and their contributions and a Sankey diagram, a flow diagram in which the arrow 
width is proportional to the quantity (gene expression) to depict changes over time or hierarchy between nodes and presents the increase 
or the decrease of data elements in two or more time points [27], shows the communication patterns and signaling pathways of secreting cells 
and target cells



Page 8 of 14Uhm et al. Cell & Bioscience            (2025) 15:1 

EVT, STB, and fibroblast cell types. Aside from pattern 
2, which was specific to immune cells, patterns 6 and 7 
were shared with other cells, including CTB and STB 
and highlighted a mix of immune and cellular pathways 
including galectin and chemokine ligand (CCL) (Fig. 4E, 
F).

In the sPTL group, aside from pattern 2 (specific to 
STB1 cells), most trophoblast cell types exhibited unique 
patterns. Among the few immune cell types available, 
mixed immune cells and endothelial cells of maternal ori-
gin shared pattern 9, whereas other immune cells, such 
as dMs and Hofbauer cells, followed pattern 4, involv-
ing immune-related pathways such as SPP1, IL-10, and 
CXCL. We noticed similar trends in the incoming sig-
nals, whereby individual trophoblast clusters either 
exhibited their pattern or were grouped within patterns 
of the same cell type, such as in patterns 1, 2, 4, and 5. 
Pattern 3 consisted solely of immune cell clusters, which 
showed strong contributions from the IL-16 pathway 
(Fig. 4E, F). Overall, the global cell-to-cell analysis high-
lighted that incoming and outgoing signals are cell- and 
condition-specific.

Further analysis focused on fibroblast cell clusters 
(MEG3), in which clear differences in signaling strengths 
were observed across the control, pPROM, and sPTL 
groups (Fig. 5A–C). In the control group, outgoing fibro-
blast signals were dominated by vascular endothelial 
growth factor (VEGF) and growth arrest–specific (GAS) 
signaling, suggesting a baseline for maintaining the 
fetal membrane integrity, angiogenesis, and cell migra-
tion [31, 32]. In pPROM, there was an upregulation in 
VEGF, visfatin, transforming growth factor beta (TGFβ), 
ANGPTL, interleukin 6 (IL6), platelet-derived growth 
factor (PDGF), leukemia inhibitory factor receptor, neu-
rotrophin, TSH, FSH, implying active signaling processes 
associated with tissue repair in response to inflammation 
and immune response, and hormone regulation [33–39]. 
In sPTL, neuregulin, GAS, IL6, prolactin (PRL), eryth-
ropoietin (EPO), and macrophage migration inhibitory 
factor signaling were found at high levels with absent 
VEGF signaling. Like the pPROM condition, the sPTL 
condition shows upregulated outgoing signaling associ-
ated with immune and tissue modulation and hormones 
[40–45] (Fig. 5D).

For the control condition’s incoming signaling to the 
fibroblast cluster, patterns of higher displayed ANGPTL, 
protein S (PROS), and ectodysplasin A (EDA) sug-
gested a baseline of angiogenesis, cell cycle regulation, 
lipid regulation, and ectoderm development [46–48]. In 
pPROM, we observed SPP1, ANGPTL, PDGF, oncosta-
tin M, myostatin, CD40, EDA, and FSH signaling, which 
are involved in inflammation, trophoblast invasion, 
growth factor, and immune regulation [49–52]. Lastly, 

sPTL exhibited a diverse range of incoming signaling 
patterns, including SEMA3, SPP1, bone morphogenetic 
protein (BMP), ANGPTL, TGFβ, non-canonical WNT 
(ncWNT), PRL, IL2, midkine, periostin, PTN, EPO, EDA, 
PROS, resistin, and nerve growth factor, which suggests 
roles in inhibition of angiogenesis, axon guidance, tissue 
development, inflammation, trophoblast differentiation, 
implantation success, and cellular responses [33, 53–59] 
(Fig. 5D).

Cell dialogues: immunocyte to trophoblast in pPROM vs. 
trophoblast to immunocyte in sPTL
To explore cell-to-cell communication in sPTB, the inter-
action between dMs (SLC16A10) and the EVTs (LVRN) 
was assessed in the pPROM condition (Fig. 6A), whereas 
the interaction between STB2 (CACNA2D3) and fetal 
macrophages and Hofbauer cells (F13A1) was measured 
for the sPTL condition (Fig.  6B). We selected interac-
tions involving EVTs in pPROM and STBs in sPTL due 
to the prominence of these specific cell types within each 
condition. In pPROM, the interaction from dMs to EVTs 
was chosen since the dot plot illustrating outgoing and 
incoming signal interaction strength, indicated strong 
outgoing signals from dMs (SLC16A10) and moderate 
but highly receptive incoming signals in EVTs (LVRN) 
(Fig.  5B). In the sPTL condition, we prioritized STB 
(CACNA2D3) because it exhibited the strongest outgo-
ing signaling among STB clusters (Fig.  5C). Hofbauer 
cells (F13A1) were selected due to their essential role in 
supporting STB function within the chorionic villi.

The highest communication probabilities in the 
pPROM condition were observed in the VEGF, SPP1, nic-
otinamide phosphoribosyl transferase, TGFβ, CSF, CCL, 
and the epidermal growth factor signaling pathways 
(Fig.  6C). These pathways collectively support the intri-
cate balance of tissue homeostasis, immune responses, 
and angiogenetic repair mechanisms, highlighting their 
critical roles in maintaining and restoring cellular and tis-
sue integrity [26, 33, 60–64].

In contrast, only two pathways exhibited high commu-
nication probabilities in the sPTL condition: semaphorin 
3C (SEMA3C) and growth differentiation factor (GDF) 
(Fig.  6D). GDF signaling, particularly via the GDF15-
TGFBR2 interaction, is involved in cell growth and 
differentiation. SEMA3C signaling, facilitated by inter-
actions such as SEMA3C-PLXND1 and SEMA3C-
(NRP1-NRP2), plays a role in inhibiting VEGF-mediated 
endothelial cell survival, migration, and angiogenesis by 
altering cytoskeletal dynamics and disrupting endothe-
lial cell adhesion [53, 65, 66]. This inhibition suggests 
that SEMA3C may regulate blood vessel development 
within the placental tissue in individuals with sPTL, 



Page 9 of 14Uhm et al. Cell & Bioscience            (2025) 15:1  

(A)

(B)

(C)

(D)

Fig. 5 Signaling of cell‑to‑cell dialogues. Scatterplots of all cell types plotted, with the x‑axis representing the signaling strength of outgoing 
cell‑to‑cell dialogues and the y‑axis showing that of the incoming interaction of cell‑to‑cell dialogues which cross premature preterm rupture 
of membranes (pPROM) and spontaneous preterm labor (sPTL), when compared to the control group (A–C). The biological function of a specific 
cell to be incoming or outgoing signaling in a cell‑to‑cell dialogue may vary on the pathophysiological condition. For example, the circled fibroblast 
(MEG3) had an outgoing signal whose strength was at (x = 15, y = 8) approximately in the pPROM group, whereas it had an incoming signal strength 
at (x = 8, y = 17) in the sPTL group. Gene expression of various transcripts involved in cell‑to‑cell dialogues, among all cell clusters in the control, 
pPROM, and sPTL groups are presented with a heatmap (D)
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emphasizing a distinct pathway profile compared to the 
angiogenic focus observed in pPROM.

Discussion
The current study closely examined the differences in cell 
compositions and their transcriptomic profiles between 
the two clinical features of sPTB, which clearly demon-
strate that pPROM is distinct from sPTL despite both 
being considered premature in clinical management. As 
evidenced by the UMAPs, EVT clusters were predomi-
nantly present in pPROM, whereas STB cell types were 
more common in sPTL. STBs are known to efficiently 
transfer nutrients and gases between maternal and 
fetal tissue while simultaneously restricting the entry of 
potentially harmful substances and maternal immune 
cells through intercellular junctions [67]. In contrast, 
EVTs, particularly the interstitial and endovascular sub-
types, are essential for uterine invasion and spiral artery 
remodeling, crucial processes for establishing adequate 
maternal–fetal blood flow and nutrient exchange within 
the placental villi [68]. Hypoxic conditions during early 
placental development have long been suggested, to elicit 
cellular responses mediated by hypoxia-inducible factors 
[69, 70]. These transcription factors significantly impact 
implantation and placentation processes, as well as 
increase vascular permeability and angiogenesis within 
the placental microenvironment [71]. However, although 
oxidative stress may contribute to the rupture of fetal 
membranes and exposure to external factors [72], there 
is currently no research directly connecting hypoxia 
to pPROM. Nonetheless, it is implied that initial spiral 
arterial remodeling is likely regulated by immune cells 
localized in vessels before EVT involvement [73]. Our 
findings suggest that the inflammatory microenviron-
ment and oxidative stress can promote the formation of 
immature EVTs within the placenta, akin to the patho-
logical changes in cervical stromal cells [74].

Our single-cell data support this notion, revealing 
robust recruitment of immune cells, upregulation of 
tumor necrosis factor receptor superfamily members, 
and increased cytokine expression in PTB samples, indic-
ative of inflammation within the placental microenviron-
ment associated with pPROM. Moreover, our analysis 
identified differential expression of genes such as ERRFI1 

and enrichment of the MAPK pathway, implicating cel-
lular growth and stress responses in shaping the intricate 
landscape of pPROM pathogenesis. Additionally, our 
findings suggest a potential role for integrins in mediat-
ing the increased invasive properties of EVTs in pPROM, 
as evidenced by elevated integrin expression levels in our 
cell-to-cell communication analysis from EVT to dM cell 
types. There was also an upregulation of VEGF expres-
sion, which is consistent with hypoxic conditions [71, 72]. 
Furthermore, the involvement of TGF-β in regulating 
trophoblast proliferation, differentiation, and decidual 
EVT invasion underscores the importance of maintain-
ing a balanced cytokine environment for proper pla-
centation. Dysregulation of TGF-β signaling may lead 
to aberrant placentation and contribute to pregnancy 
complications, including pPROM [75]. These results 
implicate inflammation and oxidative stress as significant 
contributors to the etiology of pPROM and provide com-
prehensive insights into its multifaceted pathogenesis.

In the context of sPTL, our study highlights distinct 
pathophysiological mechanisms compared to pPROM, 
particularly emphasizing the altered trophoblast com-
position and cell-to-cell communication profiles. Our 
analysis reveals a predominant presence of STB in sPTL 
samples, with EVTs being significantly underrepresented. 
Despite this, persistent inflammation and a unique 
immune profile were evident in sPTL, suggesting that 
immune modulation and inflammatory processes play a 
role in its pathogenesis. Our single-cell analysis identi-
fied an enriched expression of pathways involved in stress 
responses and tissue remodeling in sPTL samples, includ-
ing those associated with smooth muscle contraction and 
vascular regulation. Additionally, the cell-to-cell com-
munication analysis uncovered distinct incoming signal-
ing patterns to fibroblasts, such as SEMA3, SPP1, BMP, 
ANGPTL, TGFβ, and ncWNT, implicating complex 
interactions influencing angiogenesis, trophoblast cell 
life cycle, migration, and tissue remodeling. Furthermore, 
our analysis revealed the expression of hormones such as 
prolactin and erythropoietin originating from the outgo-
ing signals of fibroblasts, suggesting the contribution of a 
complex interplay of signaling pathways to the pathogen-
esis of preterm labor. The distinct cellular and molecular 
profiles in sPTL and pPROM reflect the complexity of 

(See figure on next page.)
Fig. 6 Cell interactions between immunocytes and trophoblasts. White boxes present cell‑to‑cell interactions of ligand‑receptor pairs 
between immunocyte dM (SLC16A10), which functions as the ligand, and trophoblasts EVT3 (LVRN), which act as the receptor in the incoming 
signaling in the clinical condition of premature preterm rupture of membranes (pPROM) (A). Similarly, for the outgoing signaling of cell‑to‑cell 
interactions, trophoblasts STB2 (CACNA2D3) are the ligand, and immunocyte Hofbauer cells (F13A1) are the receptor in spontaneous preterm labor 
(sPTL) (B). The dot plots present the communication probability and p‑values of specific ligand‑receptor pairs involved, and the corresponding 
violin plots present the transcripts that have been differentially expressed in ligand‑receptor (C, D)
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Fig. 6 (See legend on previous page.)



Page 12 of 14Uhm et al. Cell & Bioscience            (2025) 15:1 

PTB subtypes and underscore the importance of tailored 
therapeutic approaches for each condition.

Conclusion
This study provides a comprehensive single-nucleus 
transcriptomic analysis of the maternal–fetal interface, 
revealing key differences in the trophoblast cell com-
position, gene expression, and molecular interactions 
between the two major subtypes of sPTB: pPROM and 
sPTL. Given that preterm birth is a significant cause of 
mortality and morbidity, our study further emphasizes 
the necessity of distinguishing between these subtypes 
to understand their unique etiology and pathophysiol-
ogy for potential therapeutic targets. We observed nota-
ble alterations in trophoblast cell populations, EVT and 
STB, which may act as critical factors associated with the 
outcomes of pPROM and sPTL. In addition, we dem-
onstrated that infection- and inflammation-associated 
pathways play significant roles in these conditions, with 
pPROM associated with cytokine activation, matrix 
metalloproteinase induction, and apoptosis, while sPTL 
involves molecular mechanisms driving uterine contrac-
tility and cervical ripening.

Our study also highlights the need for improved molec-
ular diagnostics and prognostic markers for further 
exploration into the sPTB subtypes. Future studies should 
expand upon our findings, integrating multi-omics, to 
provide a comprehensive study of the maternal–fetal 
interface. In addition to functionally validating key genes 
and pathways, studies can dive deeper and identify any 
connections and impacts that pPROM and sPTL may 
have on fetal neurodevelopment, thereby for novel thera-
peutic strategies mitigating the risk of preterm birth and 
its associated complications.
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