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Abstract: Microseismic monitoring system is one of the effective means to monitor ground stress in
deep mines. The accuracy and speed of microseismic signal identification directly affect the stability
analysis in rock engineering. At present, manual identification, which heavily relies on manual
experience, is widely used to classify microseismic events and blasts in the mines. To realize intelligent
and accurate identification of microseismic events and blasts, a microseismic signal identification
system based on machine learning was established in this work. The discrimination of microseismic
events and blasts was established based on the machine learning framework. The microseismic
monitoring data was used to optimize the parameters and validate the classification methods.
Subsequently, ten machine learning algorithms were used as the preliminary algorithms of the
learning layer, including the Decision Tree, Random Forest, Logistic Regression, SVM, KNN, GBDT,
Naive Bayes, Bagging, AdaBoost, and MLP. Then, training set and test set, accounting for 50% of each
data set, were prospectively examined, and the ACC, PPV, SEN, NPV, SPE, FAR and ROC curves
were used as evaluation indexes. Finally, the performances of these machine learning algorithms
in microseismic signal identification were evaluated with cross-validation methods. The results
showed that the Logistic Regression classifier had the best performance in parameter identification,
and the accuracy of cross-validation can reach more than 0.95. Random Forest, Decision Tree, and
Naive Bayes also performed well in this data set. There were some differences in the accuracy of
different classifiers in the training set, test set, and all data sets. To improve the accuracy of signal
identification, the database of microseismic events and blasts should be expanded, to avoid the
inaccurate data distribution caused by the small training set. Artificial intelligence identification
methods, including Random Forest, Logistic Regression, Decision Tree, Naive Bayes, and AdaBoost
algorithms, were applied to signal identification of the microseismic monitoring system in mines,
and the identification results were consistent with the actual situation. In this way, the confusion
caused by manual classification between microseismic events and blasts based on the characteristics
of waveform signals is solved, and the required source parameters are easily obtained, which can
ensure the accuracy and timeliness of microseismic events and blasts identification.

Keywords: microseismic monitoring; machine learning; source parameters; signal identification

1. Introduction

Since the 1980s, with the gradual deepening of mining depth, mining accidents occur
frequently in deep mines. The stress state of deep rock mass is significantly different
from that of shallow rock mass in engineering because the deep rock mass is in a special
environment of high stress, high temperature, high permeability, and strong mining distur-
bance [1]. The process of micro-crack expansion in the rock mass is difficult to be captured
by traditional rock mass stability monitoring technology. When a measurable displacement
occurs on the surface of the rock mass, a considerable fracture or sliding may have occurred
inside the rock mass. After years of practice and improvement, microseismic monitoring
technology has become one of the effective means of stability monitoring for the deep
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mine. In the mining process, elastic deformation and inelastic deformation are generated
in the rock mass. During the inelastic deformation process, the elastic potential energy
accumulated inside the rock mass will be released in the form of a vibration wave [1,2],
which will be received by the sensor arranged by the microseismic monitoring system and
defined as a microseismic event. A large number of microseismic events will occur in the
process of rock deformation and internal crack propagation. The essence of microseismic
events is the manifestation of a series of dynamic processes, such as stress-strain and
instability-failure of rock mass [2]. Microseismic events contain abundant source infor-
mation: microseismic events received by sensors around the source have been used for
seismic source localization [3–5] and abnormal region identification [6,7]; the waveform
of microseismic events was received to inverse the source mechanism [8–11]; microseis-
mic events were used to predict rock burst and other rock disasters and provide reliable
data support for regional stability analysis of rock masses [12–15]. For different research
objects, the events collected by the microseismic monitoring system are classified into two
categories: (1) microseismic events generated in the rock deformation and micro-crack
expansion inside the rock mass [16]; and (2) blasts of rock mass caused by the impact wave
directly generated by the underground dynamite explosion [17,18].

The analysis of microseismic events is based on accurate and pure microseismic
monitoring signals, which requires eliminating the interference signals such as blasting
and noise before analysis. Although the microseismic monitoring system is maturely used
to analyze the stability of rock mass, it is difficult to directly extract accurate microseismic
information in a complex environment, especially under the interference of various noise
and explosions. Traditional methods for identifying the microseismic events and blasts
depend on the manual or subjective experience, resulting in large errors in discrimination
and parameter analysis. The research on identification of controlled blasts and natural
microseismicities is mainly divided into the differences in frequency distributions, source
parameters, and waveforms. Statistical analysis and spectrum analysis, as well as machine
learning, are the three kinds of widely used methods in current research.

Some researchers adopted the Fourier transform to obtain the difference between
microseismic events and blasts, which provided a basis for the classification of microseismic
events and blasts [19,20]. Frantti and Levereault [21] converted the frequency of the seismic
and blasting signals into an available range through hundred times of compression and
correctly reclassified 2/3 seismic signals. Tayler [22] proposed a high-frequency Pg/Lg
discriminant about earthquakes and blasts between 0.5 and 10 Hz. As the increase of
frequency, the dividing line between the two signals became obvious. The identification
accuracy reaches 95%. Jiang et al. [23] classified the microseismic and blasting signals
based on the fast Fourier transform spectrum analysis. By comparing the spectrums of
the two kinds of signals, they found that the blast signals have the characteristics of high
energy release and shock reaction time. The energy of blast signals was mostly distributed
in the region of 0–30 Hz. On the contrary, the energy of the microseismic signals was
mainly distributed in the frequency range of 30–50 Hz. Zhao et al. [24] used a frequency
slice wavelet transform (FSWT) to study the typical microseismic and blast vibration
signals of the rock mass in a mine. The results showed that the energy of the two kinds
of signals is mainly distributed below 100 Hz and the energy of rock mass microseismic
signals was mainly concentrated in the band between 0~50 Hz, while the energy of the
blast vibration signals is concentrated more obviously in the band between 50~100 Hz. In
addition, blasting vibration signals accounted for a larger proportion of energy in areas
above 100 Hz. He et al. [25] used the Mel-frequency cepstral coefficients method to convert
four types of signals (rock burst, blasting vibration, electromagnetic interference, and rig
drilling) into the nonlinear frequency spectrum on the MEL scale and then switch to the
cepstrum domain. Combining with the difference in the time domain, they chose a set of
24 dimensions as a characteristic parameter vector, which is used to construct and train the
Gaussian mixture hidden Markov identification model. The accuracy of the classification of
microseismic events reached 92.46%. Spectrum analysis is hard to be applied for classifying
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the blast and microseismic signals in the field operation on account of a large number
of sensors in the microseismic monitoring system and the high requirement of spectrum
analysis on the professional knowledge, although it is a relatively accurate method.

Energy will be released in the type of microseismic waves by cracks in rocks. The
source parameters of microseismic events will be different depending on the fracture mode
of rocks. Based on the above characteristics, the characteristic parameters of the received
microseismic events can be used as a criterion to distinguish the two kinds of signals.
Muller et al. [26] classified mining blasts and rock bursts according to the earthquake
seismometer network. In their method, a multi-layer neural network was adopted for
fusion, and fuzzy coding was conducted for the input characteristics of the neural network,
combined with the characteristics of the signals collected by sensors. Orlic and Loncaric [27]
proposed a new method to classify the natural and artificial earthquake signals, in which
the near best seismic features were searched by a genetic algorithm. Although the source
parameters can be regarded as the difference between the two kinds of signals, the source
parameter analysis relies on the subjective parameter selection and judgment of researchers.
Additionally, the parameters’ correlations are rarely considered when selecting the parame-
ters. As a result, it will significantly affect the identification accuracy. The pre-analysis of
the parameters is needed before the establishment of the model, and the applicability of
different parameters to different classification models is unknown, thus the computational
complexity is increased inevitably. The discrimination of blasts and microseismic events is
mainly based on monitoring parameters or waveform contained in the events previously.
With the quick and efficient development of modern artificial intelligence (AI), machine
learning can also be applied to identify blasts and microseismic events. Dowla [28] applied
a neural network to the classification of microseismic events. Shang et al. [29] analyzed
the microseismic events and related parameters by PCA and ANN and found that the
collaborative method of PCA and ANN achieved the best classification accuracy compared
to other methods.

Spectral analysis is not suitable for the classification of the mine database because
of its high requirement for professional knowledge. Statistical analysis methods often
rely on manual experience to select the parameters and models, without considering the
correlation between parameters. In addition, the classification of microseismic events and
blasts has a serious lag. In this work, ten machine learning methods including Decision Tree,
Random Forest, Logistic Regression, Support Vector Machine (SVM), Gradient Boosting
Decision Tree (GBDT), K-nearest neighbor (KNN), AdaBoost, Naive Bayes, Bagging, and
Multi-layer Perceptron classification (MLP) are used to establish models for classification
of microseismic events and blasts by 100 collected cases. Under the condition of a small
sample data set, ten different machine learning algorithms are used to find out the best
training model and its optimal parameters.

2. Materials and Methods
2.1. Event Features

The energy generated by the microfracture in the rock mass will be released in the
form of a seismic wave. Through the microseismic monitoring system, different kinds of
source parameters can be collected. Due to the distinct source mechanism of microseismic
events and blasts, their characteristic parameters are different [30].

The principle of the characteristic parameter selection for the classification of micro-
seismic events and blasts is as follows: characteristic parameters from the same category
should be as similar as possible, while characteristic values from different categories should
be as distinct as possible. The data sets used in this work are all from the microseismic
monitoring system in mines, which are shown in Appendix A.

By drawing a probability density histogram, parameters with a certain recognition
effect can be found, as shown in Figure 1. Finally, the seismic moment M, energy E, the
number of triggered sensors N, the first peak A, the time of maximum peak T, and the
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dominant frequency F are selected as the characteristic parameters to classify the two kinds
of signals. Table 1 shows the statistical characteristics of the collected samples.
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Table 1. Characteristics of the samples.

Index
Data Set of Microseismic Events Data Set of Blasts

Mean SD Mean SD

lgM 8.6416 0.792632813 9.4202 0.762676517
lgE 0.5806 1.245097177 2.3396 1.140919715
N 8.06 3.991879512 10.9 3.183182851

LgA −5.3976 0.580209533 −4.1588 0.521393893
lgT −4.0314 0.452124283 −3.328 0.441546448
F 35.7 18.61629745 79.958 23.38982938
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2.2. Methods

In this system, machine learning was used to classify and recognize microseismic
events and blasts. The system was composed of data feature area, machine learning area,
and model prediction area. Ten machine learning methods were used to classify micro-
seismic events and blasts, including Decision Tree, Random Forest, Logistic Regression,
SVM, KNN, Naive Bayes, GBDT, AdaBoost, Bagging, MLP, as shown in Figure 2. The
training samples and test samples accounted for 50% of the data set, respectively. ACC,
PPV, SEN, NPV, SPE, FAR and ROC curves were used as evaluation indexes to analyze the
classification results.
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Decision Tree can be expressed as a binary tree, each leaf node represents an input
variable and a variable-based bifurcation. The prediction result of the Decision Tree is
obtained as follows: (1) follow the tree’s bifurcation path until it reaches a leaf node and
(2) output the category of the node.

Based on Bagging, the randomness is introduced in the Random Forest and to split
the data sets. In this way, the model created for each sample is more random with higher
accuracy than that created in other cases, and output results can be more consistent with
the real value.

Logistic Regression is a classification method derived from statistics, the purpose of
which is to find the weight value of each input variable, and the final output prediction
result is obtained through a nonlinear function transformation.

SVM aims to find a hyperplane that divides the input variable space into categories.
All the input points can be completely divided by the hyperplane. The training process of
SVM is actually to search for the coefficients of the optimal category segmentation.

In KNN algorithm, the classification result is obtained as follows: (1) search the
whole training set; (2) find out the most similar K instances with a certain data point;
(3) summarize the output variables of these K instances; and (4) output the category of the
data point. For the regression problem, the prediction result is the mean value of the output
variables, while for the classification problem, the prediction result is a certain category.
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Naive Bayes algorithm uses two kinds of probabilities (prior probability and posterior
probability) which can be directly obtained from the training data to predict the new data.
By assuming that each input variable is independent of each other, the algorithm has an
outstanding performance in the calculation of complex problems.

Based on the boosting algorithm, GBDT adopts the idea of gradient lifting. In this
algorithm, the sum of the results of all weak classifiers is equal to the predicted value,
and then the next weak classifier is used to fit the error between the predicted value and
the real value. The final result of this algorithm is determined by multiple trees as the
Random Forest. The trees that make up the Random Forest can be either regression trees or
decision trees, while GBDT is only composed of regression trees. In addition, the result of
the Random Forest is determined by a majority of votes, and GBDT is determined by the
accumulation of the results of multiple trees.

In the AdaBoost algorithm, the weight of the training samples in the latter tree is
obtained based on the performance of the training samples in the previous tree. The weight
of the unpredictable training samples increases in the latter tree, and the weight of the
easily predicted training samples decreases in the latter tree. The performance of each
tree affects the weight of training in the latter tree. Finally, the final results are weighted
according to the accuracy of each tree in training.

In the Bagging algorithm, multiple samples in the training set are selected to build a
model for these sample sets. When classifying the test set, the prediction result is generated
by each model established before. Finally, the average value of all models is taken as the
final classification result of the Bagging algorithm.

MLP includes an input layer, an output layer, and at least one hidden layer. In the
hidden layer, the neurons in the upper layer are connected with all the neurons in the
lower layer. In the training process of training samples, the weights and bias parameters in
the hidden layer are adjusted continuously to make the output value consistent with the
real value.

Then, 10 machine learning models were evaluated by cross-validation. In the process
of cross-validation, K = 10 was used as the evaluation parameter, i.e., the whole data was
randomly divided into K parts, and the K-1 part was used as the fit model of the training
set, and the other part was used as the evaluation model of the test set. By repeating K
times, the K models and performance evaluation results were obtained, and the average
performance was calculated.

3. Results and Discussion
3.1. Assessment Results Using Traditional Models

The study on microseismic signal identification can be roughly divided into spec-
trum analysis, statistical analysis, and artificial intelligence method involved in this paper.
According to the literature, spectrum transformation, neural network, and Fisher discrim-
ination have been used for analysis in the past (Table 2). Among the results involved in
the reference, the artificial intelligence method has achieved a more efficient identification
performance. Due to the high demand for professional knowledge in the application,
spectrum analysis is not widely used in the field. Although the Fisher discriminant analysis
method has a good performance in the identification of the test set, this method depends
on subjective experience in parameter selection and modeling and has certain randomness.
With the development of artificial intelligence (AI), the AI identification method shows
superiority such as simple, objective operation, and high accuracy in the identification of
microseismic signals. At present, there are many artificial intelligence algorithms. However,
in the previous literature, common issues were simply compared, and the corresponding
results were not evaluated. In this paper, ten common machine learning classification
algorithms are selected to perform the microseismic signal identification. Meanwhile, the
identification results and parameters are analyzed and evaluated.
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Table 2. Traditional classification model evaluation.

Scholar Methods or Objects Accuracy

Malovichko [18] Multivariate maximum likelihood Gaussian classifier 20% reclassify
Frantti and Levereault [21] Spectrum analysis 2/3

Tayler [22] Maximum likelihood Gaussian + BP neural network 95%
Jiang et al. [23] FFT spectrum analysis
Zhao et al. [24] Linear regression + Fisher discriminant 97.1%

Muller et al. [26] Neural network 90%
Orlic and Loncaric [27] Genetic algorithm 85%

Vallejos and McKinnon [17] Logistic Regression and neural work 95%

3.2. Assessment Results Using Ten Machine Learning Classifiers

Ten machine learning algorithms are used to classify microseismic events and blasts.
The results show that except for Logistic Regression, KNN, Naive Bayes, and Bagging
algorithms, the recognition accuracy of other algorithms to the training set is 100%; the
performance of Random Forest and KNN on the test set is better, reaching 94%, and the
accuracy of Logistic Regression and Bagging algorithm can achieve 92%. Although SVM
algorithm shows excellent identification ability in the training set, its accuracy rate in the
test set is only 68%. In addition, there is an obvious overfitting phenomenon. Hence,
under the condition of small sample data set, SVM cannot meet our requirements for
sample fitting. Tables 3 and 4 show the accuracy rate and various evaluation indexes
of ten algorithms in the training set and test set. As shown in the probability density
distribution diagram, there are obvious differences between parameter lgA and parameter
lgT in the training set and test set. Hence, the two parameters are selected to draw the
decision boundary diagram (Figures 3 and 4). The decision boundary diagram shows
different decision boundaries in different methods. Through comparison, it is found that
the decision boundaries of the integrated algorithm based on GBDT and Random Forest
are clear, and these algorithms perform well in the training set and test set.

Table 3. Evaluation results of machine learning model on training set.

Classifier ACC PPV SEN NPV SPE FAR

Decision Tree 1.000 1.000 1.000 1.000 1.000 0.000
Random Forest 1.000 1.000 1.000 1.000 1.000 0.000

Logistic Regression 0.980 1.000 0.962 0.960 1.000 0.000
SVM 1.000 1.000 1.000 1.000 1.000 0.000

GBDT 1.000 1.000 1.000 1.000 1.000 0.000
KNN 0.940 1.000 0.893 0.880 1.000 0.000

AdaBoost 1.000 1.000 1.000 1.000 1.000 0.000
Naive Bayes 0.980 1.000 0.962 0.960 1.000 0.000

Bagging 0.980 1.000 0.962 0.960 1.000 0.000
MLP 1.000 1.000 1.000 1.000 1.000 0.000

Table 4. Evaluation results of machine learning model on test set.

Classifier ACC PPV SEN NPV SPE FAR

Decision Tree 0.860 0.800 0.909 0.920 0.821 0.178
Random Forest 0.940 0.920 0.958 0.960 0.923 0.077

Logistic Regression 0.920 0.880 0.956 0.960 0.889 0.111
SVM 0.680 0.400 0.909 0.960 0.615 0.385

GBDT 0.860 0.800 0.909 0.920 0.821 0.179
KNN 0.940 0.920 0.958 0.960 0.923 0.077

AdaBoost 0.860 0.800 0.909 0.920 0.821 0.178
Naive Bayes 0.820 0.640 1.000 1.000 0.735 0.265

Bagging 0.920 0.840 1.000 1.000 0.862 0.138
MLP 0.900 0.840 0.955 0.960 0.857 0.143
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For the classification results of test set samples, ACC, PPV, SEN, NPV, and SPE indexes
of Random Forest and KNN algorithm are all greater than 0.900; and for the Logistic
Regression and Bagging, except that the PPV and SPE indexes are less than 0.900, the other
indexes are also greater than 0.900. Therefore, in this sample condition, several machine
learning algorithms, such as Random Forest, can effectively identify microseismic events
and blasts according to source parameters.

3.3. Discussion

The evaluation results of cross-validation (K = 10) for ten machine learning algorithms
are shown in Table 5. There is a difference between the results of cross-validation and
the performance in the training set and test set, because the original data set is divided
into ten parts in the cross-validation, nine of which are used as training set and one of
which is used as the test set. After ten times of verification groups by the above method,
the accuracy is averaged as the final result. Thus, the cross-validation can evaluate the
performance of the model more accurately. Since the information content of the training
sample is larger than that of the test sample, the trained model has a stronger identification
ability. It suggests that a larger training data set can improve identification accuracy. Table
6 shows the evaluation results of ten machine learning algorithms through cross-validation
and parameter settings in the case of the optimal model.

Table 5. Optimal accuracy of the ten machine learning algorithms and parameter settings.

Group Model ACC Parameters

All Data

Decision Tree 0.940

Criterion = ‘gini’
Max_depth = 3

Min_impurity_decrease = 0.0
Min_samples_leaf = 1

Splitter = ‘best’

Random Forest 0.960

N_estimators = 31
Max_depth = 6

Min_samples_leaf = 1
Min_sanmples_split = 2

Criterion = ‘entropy’

Logistic Regression 0.950
C = 1.0

Class_weight = ‘balanced’
Solver = ‘liblinear’

SVM 0.870 Kernel = ‘rbf’
Probability = True

GBDT 0.950

KNN 0.940 N_neighbors = 5

AdaBoost 0.960

Max_depth = 2
Min_samples_split = 20
Min_samples_leaf = 5
Algorithm = ‘SAMME’

N_estimators = 200
Learning_rate = 0.8

Naive Bayes 0.950 Priors = None
Var_smoothing = 1 × 10−9

Bagging 0.900 Max_samples = 0.5
Max_features = 0.5

MLP 0.950

Solver = ‘lbfgs’
Alpha = 1e-5

Hidden_layer_sizes = (30,20)
Random_state = 1
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Table 5. Cont.

Group Model ACC Parameters

Training Data

Decision Tree 0.920

Criterion = ‘gini’
Max_depth = 3

Min_impurity_decrease = 0.0
Min_samples_leaf = 1

Splitter = ‘random’

Random Forest 0.983

N_estimators = 11
Max_depth = 3

Min_samples_leaf = 1
Min_sanmples_split = 2

Criterion = ‘gini’

Logistic Regression 0.980
C = 1.0

Class_weight = ‘balanced’
Solver = ‘liblinear’

SVM 0.775 Kernel = ‘rbf’
Probability = True

GBDT 0.891

KNN 0.892 N_neighbors = 2

AdaBoost 0.967

Max_depth = 2
Min_samples_split = 20
Min_samples_leaf = 5
Algorithm = ‘SAMME’

N_estimators = 200
Learning_rate = 0.8

Naive Bayes 0.975 Priors = None
Var_smoothing = 1 × 10−9

Bagging 0.875 Max_samples = 0.5
Max_features = 0.5

MLP 0.958

Solver = ‘lbfgs’
Alpha = 1 × 10−5

Hidden_layer_sizes = (30,20)
Random_state = 1

Test Data

Decision Tree 0.940

Criterion = ‘gini’
Max_depth = 2

Min_impurity_decrease = 0.0
Min_samples_leaf = 1

Splitter = ‘best’

Random Forest 0.933

N_estimators = 91
Max_depth = 4

Min_samples_leaf = 1
Min_sanmples_split = 2

Criterion = ‘gini’

Logistic Regression 0.960
C = 1.0

Class_weight = ‘balanced’
Solver = ‘liblinear’

SVM 0.675 Kernel = ‘rbf’
Probability = True

GBDT 0.833

KNN 0.858 N_neighbors = 4



Sensors 2021, 21, 6967 11 of 14

Table 5. Cont.

Group Model ACC Parameters

AdaBoost 0.850

Max_depth = 2
Min_samples_split = 20
Min_samples_leaf = 5
Algorithm = ‘SAMME’

N_estimators = 200
Learning_rate = 0.8

Naive Bayes 0.900 Priors = None
Var_smoothing = 1 × 10−9

Bagging 0.833 Max_samples = 0.5
Max_features = 0.5

MLP 0.892

Solver = ‘lbfgs’
Alpha = 1 × 10−5

Hidden_layer_sizes = (30,20)
Random_state = 1

Table 6. Evaluation results of ten machine learning algorithms.

Methods Training Data Test Data All Data

Decision Tree **** **** ****
Random Forest ***** **** *****

Logistic Regression ***** ***** *****
SVM * * ***

GBDT *** ** *****
KNN *** *** ****

AdaBoost ***** *** *****
Naive Bayes ***** **** *****

Bagging *** ** ****
MLP ***** *** *****

According to the accuracy of each machine learning algorithm after cross-validation,
the performance of this method in the training set, test set, and all data set is scored. The
score is visually expressed by the symbol:

***** indicates the algorithm with an accuracy greater than 0.95;
**** indicates the algorithm with an accuracy greater than 0.90 and less than 0.95;
*** indicates the algorithm with an accuracy greater than 0.85 and less than 0.90;
** indicates the algorithm with an accuracy greater than 0.80 and less than 0.85;
* indicates the algorithm with an accuracy less than 0.80.
According to the results of model evaluation, the performance of the Logistic Regres-

sion algorithm is the best in the three data sets, followed by Random Forest and Naive
Bayes algorithm. Random Forest and Naive Bayes obtain ***** in the training set and all
data set, and **** in the test set.

4. Conclusions

Based on ten common machine learning algorithms, microseismic events and blasts
are classified using six source parameters collected by the microseismic monitoring sys-
tem, namely seismic moment, energy, number of triggered sensors, first peak, time of the
maximum peak, and dominant frequency. Compared with the traditional classification
methods, the proposed method reduced the errors caused by the differences of human
experience by using the machine learning framework. Through the classification of the
monitoring data using the established models, it is found that the efficiency and accuracy
of the signal identification were improved. In addition, by comparing the manual division
of the training set and test set with cross-validation, it is found that the quality of training
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samples directly affects the recognition accuracy of the model. To improve the classifi-
cation accuracy of microseismic events and blasts, parameter samples should be added
continuously to enlarge the training data.
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Appendix A

In the following Table A1 it is presented the acquired microseismic data which is used
for analysis in this work.

Table A1. The database of microseismic monitoring system.

No. lg0 lgE N lgA lgT F Type No. lg0 lgE N lgA lgT F Type

1 8.41 0.25 11 −3.67 −3.14 88 B 51 9.22 1.98 10 −3.54 −2.56 83.4 B
2 9.21 2.61 14 −4.57 −3.55 66.1 B 52 8.71 0.63 10 −4.32 −3.61 80.3 B
3 7.96 0.25 4 −3.55 −3.14 92.1 B 53 9.72 4.93 11 −4.02 −3.72 68.6 B
4 9.3 2.09 10 −3.77 −2.91 114 B 54 9.17 1.75 9 −4.72 −4.26 81.2 B
5 9.61 2.69 13 −3.65 −3.22 117.2 B 55 8.7 1.54 8 −4.48 −3.67 111.4 B
6 11.31 5.31 18 −3.86 −3.1 84.4 B 56 9.25 2.73 15 −4.6 −3.68 67.5 B
7 8.91 1.91 12 −4.89 −3.71 105 B 57 9.98 2.52 12 −4.29 −3.43 76.6 B
8 9.26 1.87 13 −3.86 −3.16 96.4 B 58 9.22 4.63 7 −4.59 −4.29 88.2 B
9 10.09 3.15 14 −4.24 −3.41 47.6 B 59 8.6 1.23 6 −4.07 −3.46 77.6 B

10 10.72 3.76 11 −4.74 −3.61 52.9 B 60 9.72 2.17 5 −4.4 −3.58 99.2 B
11 9.05 1.41 7 −4.38 −3.41 88.2 B 61 9.81 1.85 9 −4.43 −3.48 75.3 B
12 9.54 2.89 13 −4.25 −3.19 68.3 B 62 8.86 1.97 7 −5.08 −3.4 97.6 B
13 9.87 3.44 11 −3.71 −2.64 82.8 B 63 10.77 4.83 10 −3.29 −2.67 122.6 B
14 9.62 3.07 13 −4.64 −3.85 42.6 B 64 9.17 1.96 10 −4.09 −3.2 58.5 B
15 9.56 2.71 11 −4.08 −2.94 43.6 B 65 10.01 3.09 15 −5.17 −3.09 100.4 B
16 10.52 1.87 11 −2.41 −2 93.5 B 66 9.96 2.41 14 −3.67 −3.14 64.4 B
17 9.16 2.25 14 −4.03 −3.35 58.2 B 67 9.2 2.77 11 −4.57 −3.55 41.9 B
18 8.67 1.31 7 −4.36 −3.75 48.2 B 68 9.19 2.21 10 −3.55 −3.14 117 B
19 9.66 1.57 10 −4.29 −3.86 124.6 B 69 9.6 3.27 11 −3.77 −2.91 83.6 B
20 10.22 3.47 16 −4.71 −4.02 64.4 B 70 8.74 0.89 4 −3.65 −3.22 105.5 B
21 9.23 2.83 12 −4.24 −2.59 74.7 B 71 9.3 1.68 13 −3.86 −3.1 67.9 B
22 9.66 3.2 12 −4.11 −2.73 63.6 B 72 9.45 2.59 10 −4.89 −3.71 35.6 B
23 8.61 1.11 10 −4.5 −3.9 84.2 B 73 10.12 3.25 13 −4.96 −3.25 42.5 B
24 7.25 1.21 5 −4.17 −3.15 110.3 B 74 9.98 1.78 15 −3.58 −3.19 106.9 B
25 8.16 0.94 12 −3.8 −3.5 65.7 B 75 11 1.15 16 −3.87 −3.26 67.6 B
26 7.99 −0.04 4 −5.47 −3.86 23.4 M 76 8.89 −0.88 5 −5.39 −3.57 34.3 M
27 9.31 1.68 14 −6.11 −4.51 49 M 77 9.03 1.63 9 −6.84 −4.58 18.9 M
28 9.03 0.49 14 −6.34 −4.89 28.9 M 78 8.35 −0.77 5 −4.71 −4.13 39 M
29 8.59 2.4 7 −5.76 −4.62 9.2 M 79 7.49 −0.31 3 −5.34 −4.19 66.5 M
30 9.41 2.32 11 −5.98 −4.83 33.1 M 80 9.02 0.93 12 −5.26 −3.99 46.8 M
31 9.82 1.96 14 −5.19 −4.69 23 M 81 7.63 0 3 −4.78 −3.25 35.3 M
32 9.43 1.96 8 −5.93 −4.23 50.7 M 82 7.93 −1.15 6 −4.85 −4.14 10.4 M
33 9.83 2.01 6 −5.55 −3.83 13.7 M 83 8.37 0.97 13 −5.55 −4.26 14.4 M
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Table A1. Cont.

No. lg0 lgE N lgA lgT F Type No. lg0 lgE N lgA lgT F Type

34 9.67 1 4 −5.27 −3.96 11.6 M 84 8.17 −0.36 6 −6.26 −4.25 59.1 M
35 9.13 −0.29 8 −5.9 −4.18 14.9 M 85 7.83 1.76 3 −4.63 −2.81 31 M
36 8.41 0.11 5 −5.39 −3.98 52.6 M 86 8.36 −1.93 11 −5.76 −3.71 28.4 M
37 7.98 1.67 5 −5.82 −3.74 12.3 M 87 8.14 2.8 4 −4.8 −3.76 45.2 M
38 9.39 0.09 17 −5.59 −3.67 10.4 M 88 9.22 2.04 11 −5.04 −3.77 26.3 M
39 10.74 0.02 16 −5.59 −3.62 19.9 M 89 7.22 1.66 3 −5.66 −3.89 29.5 M
40 9.17 −0.28 9 −5.71 −4.05 67.5 M 90 9.96 −1.2 8 −5.17 −4.36 41 M
41 8.46 −0.44 9 −4.72 −3.59 23.9 M 91 9.59 1.58 10 −4.88 −3.12 50.2 M
42 7.93 −0.51 10 −4.59 −3.86 10.2 M 92 9.59 −0.51 18 −4.68 −3.79 17.4 M
43 7.93 −0.33 5 −5.45 −4.89 53.1 M 93 7.83 2.67 4 −6.73 −4.72 35.3 M
44 8.35 −0.67 7 −4.68 −3.88 30.4 M 94 9.77 1.05 16 −5 −4.19 65 M
45 7.9 −0.62 7 −6.96 −3.96 68.4 M 95 7.68 −0.02 5 −5.34 −4.01 40.4 M
46 8.02 −0.57 8 −5.17 −3.82 33 M 96 9.33 −1.16 5 −5.28 −4.14 71.8 M
47 8.5 −0.4 6 −5.54 −4.01 67.1 M 97 9.24 0.7 7 −5.39 −4.48 32.3 M
48 8.14 0.18 5 −4.83 −3.36 45 M 98 8.39 1.82 9 −5.37 −4.67 18.7 M
49 8.23 1.39 7 −5.08 −4.38 43.4 M 99 7.46 2.98 5 −4.63 −3.66 18.4 M
50 7.99 −0.29 5 −5.09 −4.14 44 M 100 8.24 1.89 11 −4.83 −3.58 70.7 M
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