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Introduction
Breast cancer (BC) is a heterogeneous disease 
that is broadly classified into five major common 
clinical subtypes based on estrogen receptor (ER) 
expression, progesterone receptor (PR) expres-
sion, and human epidermal growth factor recep-
tor 2 (HER2) expression or gene amplification. 
These five subtypes are the following: (a) hor-
mone receptor-positive (HR+; i.e. tumors 
expressing ER, PR, or both)/HER2-negative 
(HER2−) disease; (b) HR+/HER2+ disease 

(which includes ER+/PR−/HER2+, ER−/PR+/
HER2+, and triple-positive [ER+/PR+/HER2+] 
disease); (c) hormone receptor-negative (HR−)/
HER2+ disease; (d) triple-negative (ER−/PR−/
HER2−) disease; and (e) HER2-low, defined as 
immunohistochemical detection of HER2 protein 
at a 1+ or 2+ level in tumor cells, and lacking 
amplification of the gene encoding HER2, 
encompassing both HR+ and HR− patients.1,2 
Tumors classified as HR+/HER2−, which gener-
ally includes those that are HR+/HER2-low,3 are 
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the most common subtype, accounting for ∼74% 
of all BCs.4–6

ER and PR are nuclear transcription factors that, 
in their canonical genomic signaling mode, dimer-
ize following ligand binding in the cell cytoplasm 
and translocate to the nucleus, where they inter-
act with steroid receptor co-activator and repres-
sor molecules and other nuclear transcription 
factors on response elements (specific DNA 
sequences regulating gene transcription), result-
ing in the promotion of cell division, prolifera-
tion, and invasion.7 It has become apparent that 
ER variants can also be associated with plasma 
membrane caveolae/lipid rafts where it can acti-
vate non-nuclear signaling, which is also termed 
rapid, nongenomic, or membrane initiated  
steroid signaling in a variety of cell types.8 HER2 
is a cell surface receptor tyrosine kinase that stim-
ulates multiple intracellular signaling pathways 
that support cell proliferation, cell migration/
invasion, tumorigenesis, and survival;9–11 thus, 
HER2+ status, characteristic of ∼15% of BCs in 
the United States, is associated with clinical 
aggressiveness if not treated with anti-HER2 
therapy.4

HR+/HER2+ tumors account for ∼10% of all 
BCs in the United States4–6 and, compared with 
HR+/HER2− tumors, are more likely to be high 
grade and are more prevalent in younger patients.4 
However, an analysis of a large sample of US 
women with newly diagnosed stage IV BC 
(N = 14,000) found that, likely owing to the 
robust efficacy of targeted anti-HER2 therapies, 
these aggressive HR+/HER2+ tumors are now 
actually associated with a lower risk of mortality 
than HR+/HER2− tumors.12 A retrospective, 
population-based study of patients with HER2+ 
disease (in which information on endocrine ther-
apy [ET] and HER2 therapy was not available) 
found that among all HER2+ tumors, HR+/
HER2+ tumors are more likely than HR−/
HER2+ tumors to be of lower grade, smaller size, 
and have less nodal involvement, and are less 
likely to be de novo stage IV.13 Thus, the presence 
of HR+/HER2+ tumors is associated with supe-
rior overall patient survival compared with the 
presence of HR−/HER2+ tumors.13 Within the 
HR+/HER2+ subtype, tumor behavior varies 
widely based on both patient-to-patient differ-
ences, as well as intratumoral heterogeneity, 
including the presence of other mutations, 
amplifications, and relative levels of HER2 

overexpression along with variations in ER and/or 
PR expression.13–15

HR status is often not a primary consideration in 
treatment guidelines for HER2+ metastatic BC 
(mBC).16–18 Current guidelines from the 
American Society of Clinical Oncology (ASCO®), 
the European Society for Medical Oncology 
(ESMO), and the National Comprehensive 
Cancer Network® (NCCN®) recommend anti-
HER2 monoclonal antibody therapies (i.e.  
trastuzumab plus pertuzumab) in combination 
with taxane chemotherapy as standard of care for 
first-line systemic therapy for HER2+ mBC.16–19 
Results of prespecified subgroup analyses of the 
phase 3 CLEOPATRA (NCT00567190) and 
PERUSE trials (NCT01572038) in women with 
HER2+ locally recurrent or metastatic BC dem-
onstrated the efficacy of this combination in both 
the HR+ and HR− subgroups.20,21 The antibody-
drug conjugate (ADC) trastuzumab emtansine 
(T-DM1), which contains trastuzumab linked to 
a microtubule inhibitor, is a single agent previ-
ously preferred as second-line therapy for patients 
with HER2+ mBC who had received prior treat-
ment with trastuzumab and a taxane.16,17,22 
T-DM1 was effective in both the HR+ and HR− 
subgroups in the phase 3 EMILIA trial 
(NCT00829166).23 However, the ADC  
trastuzumab deruxtecan, which contains  
trastuzumab linked to a topoisomerase I inhibi-
tor, is now the preferred second-line treatment in 
patients with HER2+ mBC who previously 
received anti-HER2-based therapy.18,19,24 This 
recommendation is based on an interim analysis 
of the head-to-head phase 3 DESTINY-Breast03 
trial (NCT03529110), which showed that  
trastuzumab deruxtecan provided significantly 
longer progression-free survival (PFS) than 
T-DM1 regardless of HR status.25 Trastuzumab 
deruxtecan also showed antitumor activity against 
T-DM1-pretreated HER2+ mBC, irrespective of 
HR status in the phase 2 DESTINY-Breast01 
trial (NCT03248492).26 Finally, a recent phase 3 
trial (DESTINY-Breast04, NCT03734029) 
involving patients with HER2-low mBC showed 
that trastuzumab deruxtecan resulted in signifi-
cantly longer PFS and overall survival (OS) than 
physician’s choice of chemotherapy, regardless of 
HR status.27 These results portend a new treat-
ment approach going forward for significant 
numbers of patients previously categorized as 
having HER2− BC, but who now may be recate-
gorized as HER2-low.
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Although treatment guidelines for HER2+ mBC 
mention ET, the level of supporting evidence is 
low based on the lack of well-controlled phase 3 
trials.16–18 Thus, ET tends to be reserved for 
patients who do not tolerate chemotherapy or for 
post-chemotherapy maintenance, particularly in the 
first line with trastuzumab and pertuzumab.14,18,21 
Approved maintenance ET following chemother-
apy discontinuation in PERUSE was used by 
21% of patients,21 and 23% of patients in 
CLEOPATRA who discontinued study treat-
ment received maintenance ET.20

As described above, the substantial heterogeneity 
of HR+/HER2+ mBCs and their distinct molec-
ular characteristics (e.g. variations in levels of ER 
and PR expression and HER2 overexpression, 
presence of other mutations) present both clinical 
challenges and opportunities regarding treatment 
optimization.15 While HER2+ mBC remains for 
the most part an incurable disease (rare “excep-
tional responders” with durable complete clinical 
responses notwithstanding), there remains an 
unmet need for more tailored treatment 
approaches to maximize patient outcomes in 
HR+/HER2+ mBC, and to prevent overtreat-
ment in some patients.14 Resistance to treatment 
may develop through a variety of mechanisms, 
including crosstalk between treatment-attenuated 
HER2 signaling (kinase inhibitor- or antibody-
based) and uninhibited HRs,28 as well as between 
inhibited HRs and uninhibited HER2 signaling.29 
NCCN Clinical Practice Guidelines in Oncology 
(NCCN Guidelines®) currently recommend con-
tinued suppression of HER2 pathways after dis-
ease progression on anti-HER2 therapy.19 A new 
area of interest in HR+/HER2+ mBC treatment 
is the addition of other inhibitors of these signal-
ing pathways in the form of novel combination 
regimens. For instance, as association of cyclin-
dependent kinase 4 and 6 (CDK4/6) with cyclin 
D1 appears to have a role in resistance to HER2-
directed therapies, studies are now investigating 
the safety and efficacy of adding CDK4/6 inhibi-
tors to combination regimens directed against 
HER2.30 The aim of this review is to explore clin-
ical and preclinical data supporting the use of tai-
lored treatment regimens for individuals with 
HR+/HER2+ mBC.

Rationale for dual HR and HER2 pathway 
targeting in HR+/HER2+ mBC treatment
It is hypothesized that the heterogeneity of HR+/
HER2+ mBC is such that the main oncogenic 

driver will vary among patients, with subsets of 
patients showing differential sensitivity to HER2 
pathway targeting and HR pathway targeting, in 
turn, supporting the use of dual pathway target-
ing for optimal clinical benefit.31 Further, evi-
dence from in vitro and preclinical studies suggests 
that targeted blockade of HER2 alone may lead 
to HR activation via complex interactions and 
crosstalk between HR and HER2 signaling path-
ways, providing tumor cells with an escape route 
that results in anti-HER2 therapy resist-
ance.28,32–34 HR+/HER2+ tumors may therefore 
initially respond to HER2-targeted therapies but 
develop resistance over time.

Indeed, evidence from in vitro and preclinical 
studies found that ER-dependent genes were dif-
ferentially upregulated in ER+/HER2+ BC cells 
resistant to lapatinib, a small molecule anti-epi-
dermal growth factor receptor (EGFR)/HER2 
tyrosine kinase inhibitor (TKI), implicating ER 
signaling in acquired lapatinib resistance.32 A 
combination of lapatinib and anti-estrogen ther-
apy prevented the development of acquired  
lapatinib resistance in ER+/HER2+ BC cells, 
providing a rationale for dual pathway targeting 
with ET and anti-HER2 therapies.32,33 One of 
these studies further demonstrated that ERs 
became the primary drivers of tumor cell survival 
and proliferation in ER+/HER2+ BC cells  
with acquired resistance to trastuzumab and  
lapatinib.33 In mouse xenograft models bearing 
ER+/HER2+ BC tumors treated with lapatinib 
alone or in combination with trastuzumab, anti-
HER2 resistance was associated with increased 
ER expression/activity.28 In another study, in the 
presence of HER2, ER activation stimulated the 
activity of EGFR, HER2, and other growth factor 
receptors, activating kinase cascades implicated 
in resistance, such as mitogen-activated protein 
kinase (MAPK) and phosphatidylinositol-3- 
kinase (PI3K)/ protein kinase B (AKT), leading 
to cell migration and upregulation of the 
chemokine receptor CXCR4.34

This HR/HER2 crosstalk-mediated resistance is 
bidirectional, as targeted blockade of HR alone 
also leads to changes in HER2 signaling.35 
Evidence from in vitro and preclinical studies sug-
gests that HER2 overexpression can promote 
resistance to ET. For example, BC cell lines  
with acquired resistance to the ER antagonist 
tamoxifen showed increased mRNA and protein 
levels of HER2 and EGFR and increased HER2 
and EGFR activity via phosphorylation; cell 
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growth was also inhibited by treatment with  
trastuzumab or the anti-EGFR TKI gefitinib, fur-
ther implicating HER2 and EGFR signaling in 
acquired tamoxifen resistance.29 In mouse ER+/
HER2+ BC xenograft models, acquired ET 
resistance was associated with activation of HER2 
and MAPK and was delayed with concomitant 
gefitinib treatment.36,37

Clinical data also support the involvement of HR/
HER2 crosstalk in treatment resistance. Results 
of a secondary analysis of the phase 3 HERA trial 
(NCT00045032) in women with early-stage 
HER2+ BC who had undergone at least four 
rounds of adjuvant chemotherapy suggested that 
a subgroup of HER2+ tumors that express ER 
(measured by lower fluorescent in situ hybridiza-
tion ratios or highest estrogen receptor 1 [ESR1] 
expression) may be less responsive to subsequent 
adjuvant trastuzumab therapy than those without 
ER expression, implying a relationship between 
ER signaling and resistance to trastuzumab.38 In 
addition, in a retrospective analysis of patients 
with advanced HER2+ BC, those who had tumors 
with high ER expression (⩾30% of cells) had a 
reduced probability of response to trastuzumab 
plus chemotherapy (multivariate odds ratio 
0.422; p = 0.009) compared with patients who 
had tumors without high ER expression.39

An analysis of tumor biopsies from patients with 
HER+ BC who had received neoadjuvant treat-
ment with lapatinib found that some HER2+ 
tumors that were initially ER− by diagnostic criteria 
became ER+ after treatment.28 In the phase 3 
ExteNET trial (NCT00878709) in early HER2+ 
BC, administration of neratinib, a TKI with activity 
against EGFR, HER2, and HER4, to achieve con-
tinuous HER blockade after adjuvant trastuzumab-
based treatment improved disease-free survival in 
the subset of women with ER+/HER2+ BC when 
administered in combination with ET.40 Notably, 
this benefit of neratinib was not observed in 
women with HR−/HER2+ BC.40 Therefore, ER 
signaling in ER+/HER2+ tumors may be involved 
in the development of acquired resistance to anti-
HER2 therapies.

Based on this crosstalk between HR and HER2 
signaling pathways, combined HR and HER2 
blockade should be considered in the treatment 
of HR+/HER2+ BC. Clinical trials that have 
investigated combined HR and HER2 blockade 
in postmenopausal women with HR+/HER2+ 

BC are outlined in Table 1. The phase 3 
TAnDEM (NCT03517540) and eLEcTRA 
(NCT05386108) trials evaluated the combina-
tion of trastuzumab and an aromatase inhibitor 
(AI) as first-line therapy.41,42 Another phase 3 
trial evaluated the combination of lapatinib and 
letrozole as first-line therapy.43 The phase 3 
ALTERNATIVE trial (NCT01160211) assessed 
dual HER2 blockade with lapatinib and  
trastuzumab plus ER blockade with an AI in 
patients who had received prior trastuzumab and 
ET,44 and the phase 2 PERTAIN trial 
(NCT01491737) assessed dual HER2 blockade 
with pertuzumab plus trastuzumab plus ER 
blockade with an AI in patients with no prior sys-
temic nonhormonal anticancer therapy in the 
advanced setting.45 Recently, in the open-label, 
noninferiority, phase 3, randomized controlled 
SYSUCC-002 trial (NCT01950182) performed 
at nine hospitals in China, 392 patients were ran-
domly assigned to receive trastuzumab plus ET 
or trastuzumab plus chemotherapy as first-line 
treatment for HER2+ mBC.46 After a median 
follow-up of 30.2 months, the median PFS was 
19.2 months in the ET group and 14.8 months  
in the chemotherapy group (hazard ratio, 0.88; 
pnoninferiority <0.0001). Moreover, a significantly 
higher prevalence of toxicity was observed in the 
chemotherapy group compared with the ET 
group. Further, in a nonrandomized “real-world” 
analysis of National Cancer Database patients 
with HR+/HER2+ mBC who were treated 
between 2010 and 2015, among 6234 patients 
analyzed, 3770 (60.5%) of whom received ET 
and 2464 (39.5%) of whom received chemother-
apy, multivariate analysis suggested that patients 
receiving ET plus anti-HER2 experienced 
improved OS compared with those receiving 
chemotherapy plus anti-HER2 (hazard ratio, 0.74; 
p = 0.004).47 Taken together, these studies suggest 
the potential utility of combined receptor block-
ade targeting HER2 and ER as a chemotherapy-
free option in selected patients with HR+/HER2+ 
tumors. These trials also signal a need for further 
randomized studies testing this treatment para-
digm, particularly in light of the fact that the 
SYSUCC-002 trial did not include the use of per-
tuzumab, and the National Cancer Database real-
world analysis could have been biased by 
nonrandomized patient treatment assignment 
(e.g. in this study, patient assignment to ET plus 
anti-HER2 therapy was associated with older age, 
grade 1/2 disease, no visceral involvement, higher 
comorbidity scores, and being White).46,47
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Role of cyclin D1 and CDK4/6 inhibitors in 
resistance of HR+/HER2+ mBC
Under normal conditions, mitogenic growth fac-
tors trigger cells to exit quiescence (G0) and enter 
the pre-DNA synthesis (G1) phase of the cell cycle 
before passing through the DNA synthesis (S), 
predivision (G2), and cell division (M) phases. 
Regulatory checkpoints throughout the cell cycle 
prevent unnecessary or erroneous cell division. In 
the early G1 phase, the cyclin D1–CDK4 kinase 
holoenzyme phosphorylates the retinoblastoma 
protein and other related proteins,48 ultimately 
leading to the activation of E2F family transcrip-
tion factors that facilitate S phase entry. Preclinical 
data have demonstrated that both the initiation 
and maintenance of the growth of HER2+ BCs 
require the presence of cyclin D1 and its activation 
of CDK4.48–50 Activation of the oncogenes Ras 

and Neu (the rodent homologue of human HER2) 
upregulates cyclin D1 mRNA expression, as do 
ligand-activated ERs (cyclin D1 is a direct tran-
scriptional target of ER), which indicates a key role 
for cyclin D1-CDK4/6 complexes in promoting 
breast tumorigenesis.49,51,52 Moreover, amplifica-
tion of the gene encoding cyclin D1 has also been 
identified in ∼15%–20% of human BCs,53 pro-
moting uncontrolled cell proliferation.51,54

In vitro treatment of a panel of 44 human BC cell 
lines with palbociclib, a highly selective CDK4/6 
inhibitor, found that ER+ and HER2+ cell lines 
were the most sensitive; inhibition resulted in pre-
vention of proliferation and successive cell cycle 
arrest, supporting dependence of these tumors on 
CDK signaling.53 Tamoxifen-resistant, ER+ xen-
ografts and cancer cell lines (Table 2).

Table 1. Clinical trials of ET plus single or dual HER2-targeting approaches in postmenopausal women with HR+/HER2+ mBC.

Combination (Trial) Phase Cohort size Key findings (Primary endpoint)

Trastuzumab + anastrozole versus 
anastrozole alone (TAnDEM)42

3 207 Median PFS
• Trastuzumab + anastrozole: 4.8 months
• Anastrozole alone: 2.4 months
• Hazard ratio (95% CI): 0.63 (0.47–0.84)
• p = 0.0016

Trastuzumab + letrozole versus letrozole 
alone (eLEcTRA)41

3 57 Median TTP
• Trastuzumab + letrozole: 14.1 months
• Letrozole alone: 3.3 months
• Hazard ratio (95% CI): 0.67 (0.35–1.29)
• p = 0.23

Lapatinib + letrozole versus
placebo + letrozole43

3 219 Median PFS
• Lapatinib + letrozole: 8.2 months
• Placebo + letrozole: 3.0 months
• Hazard ratio (95% CI): 0.71 (0.53–0.96)
• p = 0.019

Lapatinib + trastuzumab + AI versus 
trastuzumab + AI versus lapatinib + AI
(ALTERNATIVE)44

3 355 Median PFS
• Lapatinib + trastuzumab + AI: 11 months
• Trastuzumab + AI: 5.6 months
• Hazard ratioa (95% CI): 0.62 (0.45–0.88)
• p = 0.0063
• Lapatinib + AI: 8.3 months
• Hazard ratiob (95% CI): 0.85 (0.62–1.17)
• p = 0.3159

Trastuzumab + pertuzumab + AI versus 
trastuzumab + AI (PERTAIN)45

2 258 Median PFS
• Trastuzumab + pertuzumab + AI: 18.9 months
• Trastuzumab + AI: 15.8 months
• Hazard ratio (95% CI): 0.65 (0.48–0.89)
• p = 0.007

AI = aromatase inhibitor; ET = endocrine therapy; HER2 = human epidermal growth factor receptor 2; HR = hormone receptor; mBC = metastatic 
breast cancer; PFS = progression-free survival; TTP = time to progression.
aLapatinib + trastuzumab + AI versus trastuzumab + AI.
bLapatinib + trastuzumab + AI versus lapatinib + AI.
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Cyclin D1 overexpression has been shown to medi-
ate resistance to HER2-targeted therapies,30 poten-
tially through cyclin D1-facilitated ER transcriptional 
activity,51 which reinforces the dependence of HR+ 
BC on cyclin D1. The observation that tumor cells 
surviving HER2 blockade retain high expression of 
cyclin D1 implies that inhibition of CDK4/6 could 
re-sensitize them to HER2-targeted therapy. 
Persistent CDK4/6 activity despite anti-HER2 ther-
apy could sustain ongoing catalysis of mammalian 
target of rapamycin complex 1 (mTORC1), a cyc-
lin-CDK downstream protein complex involved in 
the translation of proteins that allow cells to grow 
and proliferate, providing another means for ongo-
ing S phase progression, and hence drug resistance. 
Combined CDK4/6 inhibition with HER2 blockade 
demonstrated synergistic activity in preclinical mod-
els of HER2+ BC resistant to HER2-targeted thera-
pies.30 This effect appears to be mediated through 
increased suppression of mTORC1.30 As inhibition 
of CDK activity represents a highly selective anti-
cancer strategy,50 the addition of CDK4/6 inhibitors 
to standard anti-HER2 therapeutic regimens could 
represent a beneficial treatment strategy.

Ongoing clinical trials with CDK4/6 
inhibitors in HR+/HER2+ BC
In an open-label phase 1/1b trial, the combina-
tion of palbociclib and T-DM1 was assessed as 

second- or later-line therapy in patients with 
HER2+ mBC, 66% of which were HR+/
HER2+, and it was determined to be safe, toler-
able, and active (overall response rate [ORR], 
33%; median PFS, 6 months; median OS, 
44.5 months).58 The phase 2 PATRICIA trial 
(NCT02448420) assessed the combination of 
palbociclib and trastuzumab in patients with 
HER2+ BC pretreated with 2–4 previous lines of 
anti-HER2 therapy randomized to receive treat-
ment with or without letrozole. The 6 month PFS 
rates in the subset of patients with HR+/HER2+ 
mBC treated concomitantly with and without 
letrozole were 46.4% and 42.9%, respectively, 
suggesting that the combination of CDK4/6 inhi-
bition and anti-HER2 therapy exhibits promising 
activity in pretreated patients with advanced 
HR+/HER2+ disease treated both with and 
without ET.59 In addition, luminal disease defined 
by prediction analysis of microarray 50 (PAM50) 
was independently associated with longer median 
PFS compared with non-luminal disease 
(10.6 months versus 4.2 months, respectively; 
adjusted hazard ratio 0.40; p = 0.003), reinforcing 
that within the HER2+ population, patients with 
a luminal subtype may benefit most from this 
therapeutic strategy.59 The randomized, open-
label, phase 2 monarcHER trial (NCT02675231) 
investigated the combination of abemaciclib,  
fulvestrant, and trastuzumab in patients with 

Table 2. Approved CDK4/6 inhibitors and their US indications in HR+/HER2− mBC.

Drug name FDA-approved indication

Palbociclib (IBRANCE)55 HR+/HER2− advanced or mBC in combination with:
• An AI as initial ET in postmenopausal women or in men
• Fulvestrant in patients with disease progression following ET

Ribociclib (KISQALI)56 HR+/HER2− advanced or mBC in combination with:
• An AI as initial ET
•  Fulvestrant as initial ET or following disease progression on ET in 

postmenopausal women or in men

Abemaciclib (VERZENIO)57 HR+/HER2− early BC with:
•  ET (tamoxifen or an AI) for the adjuvant treatment of adult patients with 

node-positive early BC at high risk of recurrence
HR+/HER2− advanced or mBC:
• In combination with an AI as initial ET in adult patients
•  In combination with fulvestrant in patients with disease progression 

following ET
•  As monotherapy in patients with disease progression following ET and 

chemotherapy in the metastatic setting

AI, aromatase inhibitor; ASCO, American Society of Clinical Oncology; BC, breast cancer; CDK4/6, cyclin-dependent kinase 
4 and 6; ET, endocrine therapy; FDA, US Food and Drug Administration; HER2, human epidermal growth factor receptor 2; 
HR, hormone receptor; mBC, metastatic breast cancer; US, United States.
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advanced HR+/HER2+ disease who had received 
at least two prior HER2-targeted therapies. The 
combination achieved a median PFS of 8.3 months 
versus 5.7 months with standard-of-care chemo-
therapy plus trastuzumab (hazard ratio, 0.67; 
p = 0.051).60 Recently, final results from the 
monarcHER trial presented at the ESMO 
Congress 2022 demonstrated numerically 
improved OS with abemaciclib plus trastuzumab 
with or without fulvestrant (31.1 months and 
29.2 months, respectively) compared with chem-
otherapy plus trastuzumab (20.7 months).61 
Additionally, similar to results from PATRICIA, 
this study showed that luminal subtype tumors 
were associated with longer PFS [8.6 months  
versus 5.4 months (hazard ratio 0.54, 95%  
CI: 0.38, 0.79)] and OS [31.7 months versus 19.7 
months (hazard ratio 0.68, 95% CI: 0.46, 1.00)] 
compared with non-luminal tumors. These find-
ings further suggest that a chemotherapy-free 
regimen, such as with a CDK4/6 inhibitor, anti-
HER2 targeted therapy, and fulvestrant, could  
be a viable treatment option for patients with 
HR+/HER2+ tumors.

Early-phase clinical trials of CDK4/6 inhibitors in 
HR+/HER2+ mBC have shown these regimens 
to have antitumor activity and manageable safety 
profiles. A phase 1b/2 study evaluating tucatinib 
(an anti-HER2 TKI), palbociclib, and letrozole 
in women who previously received at least 2 
HER2-targeted treatments (NCT03054363) 
showed encouraging antitumor activity.62 Among 
26 patients with measurable disease, 8 (31%) had 
a partial response and 16 (62%) had stable dis-
ease; the combination also had a manageable 
safety profile. Interim results from the phase 2 
DAP-Her-01 trial (NCT04293276) of the inves-
tigational CDK4/6 inhibitor dalpiciclib combined 
with pyrotinib – a pan-HER TKI currently avail-
able only in China – showed promising antitumor 
activity in patients with HR+ disease who had 
not received >1 line of systemic therapy in an 
advanced setting and who had not received prior 
treatment with CDK4/6 or HER2 inhibitors.63 In 
that trial, 10 of 18 (56%) women achieved an 
objective response. Adverse events (AEs) were 
manageable, with diarrhea, leukopenia, neutrope-
nia, anemia, and nausea most commonly reported. 
This combination could offer a completely oral, 
chemotherapy-free regimen for patients with 
HR+/HER2+ metastatic disease.

A few ongoing clinical trials are investigating the 
combination of CDK4/6 inhibition, ET, and 

anti-HER2 therapies in HR+/HER2+ mBC. 
The randomized, open-label, phase 3 PATINA 
trial (NCT02947685) is evaluating the role of 
CDK4/6 inhibition in HR+/HER2+ mBC fol-
lowing induction chemotherapy plus anti-HER2 
therapy.64 Eligible patients are randomized to 
receive standard anti-HER2 therapy (trastuzumab 
with or without pertuzumab) in combination with 
ET (AI or fulvestrant) with or without palbociclib 
as a maintenance strategy following completion of 
chemotherapy until disease progression. The pri-
mary endpoint is investigator-assessed PFS, with 
secondary endpoints of ORR, duration of 
response, clinical benefit, OS, safety, and quality 
of life; a comparison of PFS estimates according 
to PIK3CA mutation status is also included.64,65 
According to the most recently posted update, 
this trial has completed enrollment (N = 496), 
and results are awaited.

Finally, the randomized phase 3 Detect V/
CHEVENDO trial (NCT02344472) is compar-
ing chemotherapy versus ET in combination with 
dual HER2-targeted therapy (trastuzumab and 
pertuzumab) and ribociclib in patients with HR+/
HER2+ mBC who have received no more than 
two prior chemotherapies and/or anti-HER2 
therapies for metastatic disease.66 In the  
chemotherapy arms, eligible patients receive  
trastuzumab and pertuzumab with chemotherapy 
(docetaxel, paclitaxel, or vinorelbine) initially, 
followed by maintenance ET and ribociclib.  
In the ET arms, eligible patients receive  
trastuzumab, pertuzumab, and ribociclib with ET 
(exemestane, fulvestrant, anastrozole, letrozole). 
The primary outcome is number of patients with 
AEs; other outcomes include quality-adjusted 
survival, PFS, ORR, AEs, OS, and occurrence of 
central nervous system metastases. As of this 
writing, the Detect V/CHEVENDO trial is 
recruiting patients.67

Future directions
Our understanding of the interactions among 
HER2-targeted therapies, ET, and CDK4/6 inhib-
itors continues to evolve. Data suggest that immune 
evasion may contribute to the growth of HR+/
HER2+ tumors and that the tumor microenviron-
ment may influence sensitivity to systemic treat-
ments. Thus, immune enrichment may promote an 
improved response to anti-HER2 therapies.68 As an 
example, a retrospective analysis of the 
CLEOPATRA trial found that a higher level 
(>20%) of tumor-infiltrating lymphocytes (TILs) 
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in pretreatment tumor samples was associated with 
improved OS.69 Further, preclinical data suggest 
that CDK4/6 inhibitors may promote T-cell activa-
tion and enhance T-cell activity.70,71 Studies have 
also suggested that TILs could have important 
roles in disease progression via ER signaling activa-
tion (reviewed by Segovia-Mendoza and Morales-
Montor72), as well as estrogen-induced effects in 
other immune cell subpopulations.73 This further 
highlights the critical importance of identifying 

complementary treatment strategies to improve 
outcomes. Changes in proliferation, apoptosis, or 
both occur with combined CDK4/6 and HER2 
inhibition,30 lending support for therapeutic com-
binations including CDK4/6 inhibitors to influence 
cancer cell immunogenicity, apoptosis, and differ-
entiation. As with all treatment combinations, 
safety must be carefully considered in addition to 
efficacy. Common safety signals for all discussed 
approved treatments can be found in Table 3.

Table 3. Safety signals for discussed treatments in advanced BC.

Drug category Drug name Common safety signals

Warnings and precautions Most common AEs

CDK4/6 inhibitors

Class: Kinase 
inhibitors

Palbociclib 
(IBRANCE)55

• Neutropenia
• ILD/pneumonitis

Most common AEs (⩾10%) were neutropenia, 
infections, leukopenia, fatigue, nausea, stomatitis, 
anemia, alopecia, diarrhea, thrombocytopenia, rash, 
vomiting, decreased appetite, asthenia, and pyrexia

Abemaciclib 
(VERZENIO)57

• Diarrhea
• Neutropenia
• ILD/pneumonitis
• Hepatotoxicity
• Venous thromboembolism

Most common AEs (⩾20%) were diarrhea, 
neutropenia, nausea, abdominal pain, infections, 
fatigue, anemia, leukopenia, decreased appetite, 
vomiting, headache, alopecia, and thrombocytopenia

Ribociclib 
(KISQUALI)56

• ILD/pneumonitis
•  Severe cutaneous adverse 

reactions
• QT interval prolongation
• Hepatotoxicity
• Neutropenia

Most common AEs (⩾20%) were neutropenia, nausea, 
infection, fatigue, diarrhea, leukopenia, vomiting, 
alopecia, headache, constipation, rash, and cough

EGFR inhibitor

Class: TKI Gefitinib
(IRESSA)74

• ILD
• Hepatotoxicity
• Gastrointestinal perforation
• Diarrhea
•  Ocular disorders including 

keratitis
•  Bullous and exfoliative skin 

disorders

Most common AEs (⩾20%) were skin reactions and 
diarrhea

Endocrine therapy

Class: AI Letrozole
(FEMARA)75

• Osteopenia
• Cholesterol
• Fatigue

Most common AEs (⩾20%) were hot flashes, 
arthralgia, flushing, asthenia, edema, headache, 
dizziness, hypercholesterolemia, sweating increase, 
bone pain, and musculoskeletal pain

 Exemestane 
(AROMASIN)76

• Osteopenia Most common AEs for patients with advanced BC were 
hot flashes, nausea, fatigue, increased sweating, and 
increased appetite

(Continued)
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Drug category Drug name Common safety signals

Warnings and precautions Most common AEs

 Anastrozole 
(ARIMIDEX)77

• Cardiovascular events
• Osteopenia
• Cholesterol

Most common AEs (⩾20%) in patients with advanced 
BC were hot flashes, nausea, asthenia, pain, headache, 
back pain, bone pain, increased cough, dyspnea, 
pharyngitis, and peripheral edema

Class: SERM Tamoxifen 
(NOLVADEX)78

• Hypercalcemia
• Uterine malignancies
• Thromboembolic events
• Hepatotoxicity
• Effects on the eye

Most common AE in patients with mBC was hot flashes; 
other infrequent AEs were hypercalcemia, peripheral 
edema, distaste for food, pruritus vulvae, depression, 
dizziness, light-headedness, headache, hair thinning 
and/or partial hair loss, and vaginal dryness

HER2 inhibitors

Class: mAb Trastuzumab 
(HERCEPTIN)79

• Cardiomyopathy
• Infusion reactions
• Neutropenia
• Pulmonary toxicity

Most common AEs (⩾10%) for patients with mBC were 
fever, chills, headache, infection, congestive heart 
failure, insomnia, cough, and rash

Pertuzumab 
(PERJETA)80

• Left ventricular dysfunction
•  IARs/hypersensitivity 

reactions/anaphylaxis

Most common AEs (>30%) in combination with 
trastuzumab and docetaxel were diarrhea, alopecia, 
neutropenia, nausea, fatigue, rash, and peripheral 
neuropathy

Class: ADC T-DM1, ado-
trastuzumab 
emtansine 
(KADCYLA)22

• Pulmonary toxicity
•  IRRs/hypersensitivity 

reactions
• Thrombocytopenia
• Neurotoxicity

Most common AEs (⩾25%) for mBC were fatigue, 
nausea, musculoskeletal pain, thrombocytopenia, 
hemorrhage, headache, increased transaminases, 
constipation, and epistaxis

Fam-
trastuzumab 
deruxtecan-
nxkl 
(ENHERTU)24

• ILD/pneumonitis
• Neutropenia
• Left ventricular dysfunction

Most common AEs (⩾20%) in patients with BC were 
nausea, decreased blood cell count, decreased 
hemoglobin, decreased neutrophil count, increased 
AST, fatigue, decreased lymphocyte count, vomiting, 
decreased platelet count, increased ALT, increased 
blood alkaline phosphatase, alopecia, constipation, 
hypokalemia, decreased appetite, diarrhea, 
musculoskeletal pain, increased transaminases, 
respiratory infection, headache, and abdominal pain

Class: TKI Lapatinib
(TYKERB)81

• Left ventricular dysfunction
• Hepatotoxicity
• Diarrhea
• ILD/pneumonitis
• QT interval prolongation

Most common AEs (⩾20%) in combination with 
letrozole were diarrhea, rash, nausea, and fatigue

Neratinib 
(NERLYNX)81

• Diarrhea
• Hepatotoxicity

Most common AEs (⩾5%) were diarrhea, nausea, 
abdominal pain, fatigue, vomiting, rash, stomatitis, 
decreased appetite, muscle spasms, dyspepsia, AST 
or ALT increase, nail disorder, dry skin, abdominal 
distention, epistaxis, weight decrease, and urinary 
tract infection

Tucatinib
(TUKYSA)82

• Diarrhea
• Hepatotoxicity

Most common AEs (⩾20%) were diarrhea, palmar-
plantar erythrodysesthesia, nausea, fatigue, 
hepatotoxicity, vomiting, stomatitis, decreased 
appetite, abdominal pain, headache, anemia, and rash

(Continued)

Table 3. (Continued)
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As outlined above, ER activation, whether 
through mutations in ER or its downstream effec-
tors, may lead to dysregulation of downstream 
PI3K/AKT/mTOR pathways and subsequent 
resistance to current treatment strategies. 
Mutations in the gene coding for ER (ESR1) have 
been found in up to 42% of HR+ advanced BCs, 
with the majority of these mutations being in a 
hotspot region within the ligand binding domain 
that functional studies have shown leads to con-
stitutive, ligand-independent ER activation.83 
These mutations are enriched following AI treat-
ment in the metastatic setting and are associated 
with shorter PFS, indicating they may lead to ET 
resistance and alterations in downstream 
signaling.83,84

The PI3K enzyme and its principal downstream 
target molecule, AKT, regulate the cell cycle, 
growth, proliferation, and modulate energy 
metabolism.85 Hyperactivation of this pathway 
contributes to primary or acquired resistance to 
anti-HER2 therapy and represents an alternative 
survival pathway for cancer cells.86,87 In a study of 
HER2+ BC tissue samples, 71% of trastuzumab-
refractory tumors had activating mutations in the 
PI3K catalytic subunit (PIK3CA) and/or absent 
or reduced expression of tumor suppressor PTEN 
compared with 44% of a cohort of HER2+ BC 
not exposed to trastuzumab.88 Mutations have 
also been identified in PIK3CA in ∼17% of 
HER2+ and ∼21% of HR+ BCs,89 loss of func-
tion of PTEN also occurs in 13%–35% of BCs.87 
In the CLEOPATRA trial, patients harboring a 
PIK3CA mutation had a shorter PFS than those 

with wild-type PIK3CA.90 Inhibitors of the PI3K/
AKT/mTOR pathway could therefore be utilized 
as new agents to help avoid resistance to current 
therapies. The phase 3 SOLAR-1 trial 
(NCT02437318) compared the combination of 
the PI3K/AKT pathway antagonist alpelisib plus 
fulvestrant with placebo plus fulvestrant in 
patients with HR+/HER2− mBC with and with-
out PIK3CA mutations. PFS with alpelisib plus 
fulvestrant was significantly improved compared 
with placebo plus fulvestrant (11.0 months versus 
5.7 months, respectively; p < 0.001) in patients 
with PIK3CA mutations.91 The most common 
grade 3–4 AEs with alpelisib plus fulvestrant 
treatment were hyperglycemia and rash, with 
grade 3 diarrhea reported in 6.7% of patients 
compared with 0.3% in the placebo plus  
fulvestrant group. Other trials are now translating 
these findings to the HER2+ mBC setting; for 
example, the ongoing open-label, phase 1b 
IPATHER trial (NCT04253561), is assessing the 
safety and preliminary efficacy of ipatasertib, a 
PI3K/AKT pathway antagonist, in combination 
with trastuzumab and pertuzumab with or with-
out ET in patients with HER2+ mBC with a 
PIK3CA mutation.92 Results for six patients as of 
the data cutoff of February 2021 indicated that 
the combination was tolerable; in addition, one 
patient achieved a partial response and the other 
five had stable disease. Furthermore, the ongoing 
double-blind, randomized, placebo-controlled 
EPIK-B2 phase 3 trial (NCT04208178) is evalu-
ating the efficacy and safety of alpelisib with  
trastuzumab and pertuzumab maintenance ther-
apy for HER2+ advanced BC.93

Drug category Drug name Common safety signals

Warnings and precautions Most common AEs

PI3K/AKT pathway inhibitors

Class: TKI Alpelisib
(PIQRAY)82

• Hypersensitivity reactions
• Severe cutaneous reactions
• Hyperglycemia
• ILD/pneumonitis
• Diarrhea

Most common AEs (⩾20%) were glucose increase, 
creatinine increase, diarrhea, rash, lymphocyte 
count decrease, GGT increase, nausea, ALT increase, 
fatigue, hemoglobin decrease, lipase increase, 
decreased appetite, stomatitis, vomiting, weight 
decrease, calcium decrease, glucose decrease, aPTT 
prolongation, and alopecia

ADC, antibody-drug conjugate; AE, adverse event; AI, aromatase inhibitor; AKT, protein kinase B; ALT, alanine transaminase; aPTT, activated partial 
thromboplastin time; AST, aspartate aminotransferase; BC, breast cancer; CDK4/6, cyclin-dependent kinase 4 and 6; EGFR, epidermal growth 
factor receptor; GGT, gamma-glutamyl transferase; HER2, human epidermal growth factor receptor 2; IAR, infusion-associated reaction; ILD, 
interstitial lung disease; IRR, infusion-related reaction; mAb, monoclonal antibody; mBC, metastatic breast cancer; PI3K, phosphatidylinositol-3-
kinase; SERM, selective estrogen receptor modulator; TKI, tyrosine kinase inhibitor.

Table 3. (Continued)
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Other ongoing studies are investigating novel 
combinations of HER2-targeted therapy with  
palbociclib and a selective ER degrader. 
Preliminary results from a study of neoadjuvant 
therapy with trastuzumab, pertuzumab, and  
palbociclib in combination with fulvestrant in 
women with HR+/HER2+ BC (the NA-PHER2 
study; NCT02530424) indicate that this combi-
nation has a significant impact on Ki-67 expres-
sion 2 weeks after treatment.94 The investigational 
anti-HER2 monoclonal antibody zanidatamab is 
being studied in locally advanced/mBC in com-
bination with fulvestrant and palbociclib in a 
phase 2 trial that is currently recruiting patients 
(NCT04224272).

Conclusions
The HR+/HER2+ BC subtype represents a dis-
tinct clinical entity from HR−/HER2+ BC, and 
as such, warrants individualized options to maxi-
mize clinical outcomes. Given the heterogeneity 
among HR+/HER2+ tumors and the pathway 
crosstalk-mediated acquisition of treatment 
resistance, combined receptor blockade targeting 
both HR and HER2 signaling pathways merits 
further investigation. Promising preclinical and 
early-phase clinical trial data suggest that combi-
nation treatment with anti-HER2 therapies and 
ET, with or without CDK4/6 inhibition, may 
provide superior efficacy compared with targeted 
HER2 blockade alone. Results from ongoing tri-
als (e.g. PATRICIA, IPATHER) designed to test 
this hypothesis and to compare HR/HER2 block-
ade with CDK4/6 and HR/HER2 blockade are 
eagerly awaited to inform the future treatment of 
HR+/HER2+ mBC.
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