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1   |   INTRODUCTION

Although most dairy cow breeding objectives include milk 
protein and fat concentration and yield at the macro-level 
(Cole & VanRaden,  2018; Miglior et al.,  2005), few con-
sider the detailed milk composition. However, detailed 
milk composition affects the quality of a variety of dairy 
products that can be manufactured (Bonfatti, Di Martino, 

et al. 2011; Wedholm et al., 2006). For example, the con-
centration of casein (CN) in milk has a favourable effect on 
the quantity of protein transferred from milk into cheese 
curd. High concentrations of αs1-casein (αs1-CN), β-casein 
(β-CN), κ-casein (κ-CN) and β-lactoglobulin B (β-LG B) 
are known to increase cheese yield (Wedholm et al., 2006).

Milk rich in FAA tends to present unfavourable cheese-
making characteristics mainly due to protein hydrolysis 
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Abstract
Considerable resources are required to routinely measure detailed milk composi-
tional traits. Hence, an insufficient volume of phenotypic data can hinder genetic 
progress in these traits within dairy cow breeding programmes. The objective of 
the present study was to quantify the opportunities for breeding for improved 
milk protein and free amino acid (FAA) composition by exploiting mid-infrared 
spectroscopy (MIRS) predictions routinely recorded from milk samples. Genetic 
parameters for protein fractions and FAA composition were estimated using 
134,546 test-day records from 16,166 lactations on 9,572 cows using linear mixed 
models. Heritability of MIRS-predicted protein fractions ranged from 0.19 (α-
lactalbumin) to 0.55 (β-lactoglobulin A), while heritability of MIRS-predicted 
FAA ranged from 0.08 for glycine to 0.29 for glutamic acid. Genetic correlations 
among the MIRS-predicted FAA were moderate to strong ranging from −0.44 
(aspartic acid and lysine) to 0.97 (glutamic acid and total FAA). Adjustment of 
the genetic correlations for the genetic merit of 24-h milk yield did not greatly af-
fect the correlations. Results from the current study highlight the presence of ex-
ploitable genetic variation for both protein fractions and FAA in dairy cow milk. 
Besides, the direction of genetic correlations reveals that breeding programmes 
directly selecting for greater milk protein concentration carry with them favour-
able improvement in casein and whey fractions.
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(Auldist et al.,  1995; Urech et al.,  1999). Nevertheless, 
presence of FAA is important for some products like in-
fant formulas even though the milk from mammals dif-
fers in FAA composition and concentration. In fact, cow 
milk presents lower quantity of FAA than human milk 
(McDermott et al., 2016; van Sadelhoff et al., 2020). Some 
FAA are known to have a key role in the development of 
the immune system, particularly in infants (van Sadelhoff 
et al.,  2020). However, bovine milk FAA have generally 
been overlooked thus far, even if some of them are es-
sential or conditionally essential, such as leucine, valine 
and glycine. For nutritional reasons, FAA-enriched infant 
formulas and amino acid-based products may be valu-
able when breastfeeding is not possible (van Sadelhoff 
et al., 2020). Despite the high cost, amino acid-based sup-
plements provide proteins in non-allergenic forms and are 
thus suitable for people with bovine milk protein aller-
gies (Verduci et al., 2019). Given these considerations, it 
is worth investigating whether and how bovine milk FAA 
profile could be manipulated through breeding.

Interbreed differences in the concentration of pro-
tein fractions and FAA have been documented (Auldist 
et al.,  2004; Lopez-Villalobos,  2012; McDermott 
et al., 2017) and individual protein fractions, including α-
lactalbumin (α-LA) and γ-casein (γ-CN), are known to be 
heritable (Graml & Pirchner, 2003). For example, Schopen 
et al. (2009) reported a heritability of between 0.25 (β-CN) 
and 0.80 (β-LG) for protein fractions quantified using cap-
illary zone electrophoresis. Similarly, Huang et al.  (2012) 
reported that the proportion of total phenotypic variance 
attributable to additive genetic variation varied between 
0.33 (αs1-CN, β-CN and α-LA) and 0.68 (β-LG). Differences 
in the gold standard methods used to quantify milk protein 
fractions, as well as the characteristics of the studied pop-
ulation such as the breeds investigated, parities and stages 
of lactation represented, could have contributed to the dif-
ference in estimates (Schopen et al., 2009). Heritability es-
timates calculated by Bonfatti, Cecchinato, et al. (2011) in a 
population of Italian Simmental dairy cows, for the relative 
proportions of protein fractions expressed as a percentage 
of total CN (0.18 for γ-CN to 0.69 for β-CN) were greater 
than those for protein fraction contents expressed as g/L 
of milk (0.11 g/L for α-LA to 0.53 g/L for κ-CN). At present, 
little is known about the genetic parameters of FAA.

The usefulness of mid-infrared spectroscopy (MIRS) 
analysis of milk to predict milk composition and animal 
health traits on a large scale is now well established (De 
Marchi et al., 2014; Niero et al., 2016; Rutten et al., 2011; 
Soyeurt et al.,  2011). Despite this, genetic parameters of 
MIRS-predicted protein fractions have been reported in 
only a limited number of studies (Bonfatti et al.,  2017; 
Sanchez et al., 2017), while no estimates are available in 
the literature for FAA.

Therefore, the objective of the present study was to 
quantify the potential of breeding for milk protein frac-
tions and FAA in dairy cows, but doing so by exploiting the 
MIRS predictions routinely available for individual cows.

2   |   MATERIALS AND METHODS

2.1  |  Milk samples and datasets

2.1.1  |  Gold standard dataset and 
development of MIRS prediction models

Seven hundred and fifteen milk samples were collected 
from seven research dairy farms operated by the Teagasc 
Animal and Grassland Research and Innovation Centre 
(Moorepark, Fermoy, Co. Cork) between August 2013 and 
August 2014, inclusive. Individual milk proteins (αs1-CN, 
αs2-CN, β-CN, κ-CN, α-LA, and β-LG variant A and vari-
ant B) were determined in 557 of the 715 milk samples 
using reverse-phase high-performance liquid chromatog-
raphy (HPLC). The FAA-related traits, namely total FAA, 
glutamic acid (or glutamate, Glu), glycine (Gly), lysine 
(Lys), arginine (Arg), aspartic acid (Asp), serine (Ser) and 
valine (Val), were quantified in all 715 milk samples using 
cation-exchange HPLC. Further details regarding gold 
standard analyses for both protein fractions and FAA are 
described in detail in McDermott et al. (2016). Each milk 
sample was also analysed using a mid-infrared spectrom-
eter MilkoScan FT6000 located at the Teagasc Animal and 
Grassland Research and Innovation Centre (Moorepark, 
Fermoy Co. Cork, Ireland) for milk chemical composition 
quantification and spectra determination. Gold standard 
data were matched to their respective milk spectra, which 
were subsequently used to develop equations to predict in-
dividual and groups of milk proteins and FAA using par-
tial least squares regression analysis (PROC PLS) in the 
SAS software v. 9.4 (SAS Institute Inc., Cary, NC). More 
details on the methodology used to develop the MIRS pre-
diction models are outlined in McDermott et al.  (2016). 
Overall, the accuracy of prediction, defined as the cor-
relation coefficient between the reference and predicted 
values using (leave-one-out) cross-validation of protein 
fractions, ranged from 0.43 (β-LG variant A) to 0.76 (total 
whey and total LG). Cross-validation prediction accuracy 
for FAA varied from 0.51 (Ser) to 0.75 (Gly).

2.1.2  |  Large dataset with MIRS-
predicted traits

Between the years 2013 and 2015, inclusive, 171,279 
milk samples from 17,353 lactations on 10,162 cows were 
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collected from 7 research herds and 69 commercial dairy 
herds (Visentin et al., 2017). Animals in the research herds 
were subjected to different experimental treatments, based 
mainly on different feeding and management strategies. 
All animals were milked twice daily. The commercial dairy 
farms (n = 69) were located in the south-west of Ireland 
(Munster Region) and represented typical Irish dairy 
farms.

Individual milk samples were sporadically taken and 
delivered to the laboratory of the Teagasc Animal and 
Grassland Research and Innovation Centre. All milk sam-
ples collected in both research and commercial herds were 
analysed using the same Fourier transform infrared spec-
trometer MilkoScan FT6000 (Foss Electronic A/S, Hillerød, 
Denmark) based at the Animal and Grassland Research 
Centre, Teagasc. Somatic cell count (SCC) was deter-
mined using a Fossomatic (Foss Electronic A/S, Hillerød, 
Denmark). Prediction equations developed by McDermott 
et al. (2016) based on the gold standard dataset were applied 
to these milk spectra in order to predict (a) groups of pro-
teins (total CN, total whey, total LG), (b) individual proteins 
(αs1-CN, αs2-CN, β-CN, κ-CN, α-LA, β-LG A and β-LG B) 
and (c) FAA traits (total FAA, Glu, Gly, Lys, Arg, Asp, Ser 
and Val). Spectral variables and information on 24-h milk 
yield along with cow calving date and parity number were 
available for all milk samples. The average number of milk 
samples available per cow was equal to 72 for cows in the 
experimental farms (median = 57) and 5.15 for those in the 
commercial herds (median = 4).
In the final dataset, spectra with a Mahalanobis distance 
relative to the centroid of the gold standard dataset greater 
than three were discarded prior the application of MIRS 
prediction models (Williams,  2007). Furthermore, MIRS-
predicted values of proteins and FAA, as well as 24-h milk 
yield and composition, greater than three standard devi-
ations from the mean were set as missing. Moreover, the 
skewed-distributed values of Glu, Gly, Lys, Arg, Asp, Ser and 
Val were loge-transformed. Breed composition was available 
for each cow and only data from Holstein, Friesian, Jersey, 
Norwegian Red, Montbeliarde cows as well as their crosses 
sampled between 5 and 305 days in milk (DIM) and from 
parities ≤10 were retained. Parities greater than 6 were 
grouped together for analysis and only contemporary groups 
with a minimum of ten records were used. In particular, as 
both research and commercial farms were present, contem-
porary groups were generated either by combining the ex-
perimental treatment and the test date or by combining the 

commercial herd ID and the test date. Somatic cell count 
(SCC, n/μl) was converted to somatic cell score (SCS), as 
conventionally: SCC  =  3  + log2(SCC/100). Following all 
edits, 134,546 records from 16,166 lactations on 9,572 cows 
were available; of these, 40,260 were from commercial herds 
(i.e. 13,337 lactations and 8,260 cows).

2.2  |  Variance components

Pedigree information was retrieved from the Irish Cattle 
Breeding Federation database and each animal was traced 
back (where available) up to at least four generations, re-
sulting in a pedigree file of 33,949 and 8,210 individuals for 
the large dataset and gold standard dataset, respectively. 
Coefficients of general heterosis and recombination loss 
were quantified based on the equations presented by both 
VanRaden and Sanders (2003) and Visentin et al. (2017). 
Genetic, permanent environmental and residual (co)vari-
ances for protein fractions and FAA composition were 
quantified using linear mixed models in ASReml v. 3.0 
(Gilmour et al., 2011).

2.2.1  |  Large dataset

Fixed effects included in the linear mixed models were the 
contemporary group, the interaction between parity (1, 2, 
3, 4, 5 and ≥6) and stage of lactation (10 classes with length 
of 30 d, from 5 to 305 DIM), milking time (AM or PM), 
proportion of cow breed (Friesian, Jersey, Norwegian 
Red, Montbeliarde and other; Holstein was not included 
to avoid linear dependencies), and general heterosis and 
recombination loss coefficients of the cow. The latter two 
effects were fitted as linear covariates. Random effects in-
cluded in the models were the direct additive genetic effect 
of the animal and both a within- and an across-lactation 
cow permanent environmental effect.

Genetic and phenotypic (co)variances among the 
MIRS-predicted protein fractions were estimated using a 
series of trivariate (3 × 3) analyses that included two MIRS-
predicted protein fractions as dependant variables, along 
with the total protein concentration (%). Covariances be-
tween MIRS-predicted FAA were estimated in a similar 
manner. Thus, two MIRS-predicted FAA together with the 
24-h milk yield were the dependent variables. In matrix 
notation, the model was
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where, for traits 1, 2 and 3, y is the vector of phenotypic 
observations of the dependent variable; b is the vector of 
fixed effects; a is the vector of random additive genetic ef-
fect; p is the vector of permanent environmental effect of 
the cow within a given lactation; c is the vector of perma-
nent environmental effect of the cow across lactations; e is 
the vector of random residuals. Incidence matrices relating 
the corresponding effects to the dependent variable were 
X, Z, W and S, respectively. The following structure was 
assumed for the (co)variance between the random effects:

where for the traits 1, 2 and 3: σa12, σa13 and σa23 are the ad-
ditive genetic covariances, σp12, σp13 and σp23 are the within-
lactation permanent environmental covariances; σc12, σc13 
and σc23 are the across-lactation permanent environmental 
covariances; σe12, σe13 and σe23 are the residual covariances; 
σ2

a, σ
2

p, σ2
c and σ2

e indicate the additive genetic variance, the 
within- and across-lactation permanent environmental vari-
ance and the residual variance; A was the pedigree-based 
relationship matrix of size equal to number of individuals 
(n = 33,949), while the I denoted identity matrixes of appro-
priate order, that is equal to number of lactations, number of 
cows and number of records for σ2

p, σ2
c and σ2

e, respectively.
Genetic correlations among the MIRS-predicted pro-

tein fractions were adjusted for their respective genetic 
correlation with total protein concentration as follows:

where rxy,z is the partial correlation coefficient between 
traits x and y independent of trait z, rxy represents the cor-
relation coefficient between traits x and y, rxz is the cor-
relation coefficient between traits x and z, and ryz is the 
correlation coefficient between traits y and z. In a similar 

manner, genetic correlations among the MIRS-predicted 
FAA were adjusted for their respective genetic correlation 
with 24-h milk yield.

The phenotypic and genetic variance adjusted for their 
respective correlation (phenotypic or genetic) with pro-
tein concentration (protein fractions) or 24-h milk yield 
(FAA) were calculated for each trait afterwards, as:

where �2iunadjusted is the variance (phenotypic or genetic) esti-
mated by the REML algorithm for each trait, and rxy is the 
correlation (phenotypic or genetic) between trait x (protein 
fraction or FAA) and trait y (protein concentration or 24-h 
milk yield). Heritability was the ratio of the additive genetic 
variance (adjusted or unadjusted) to the phenotypic vari-
ance calculated by summing up of the additive genetic (ad-
justed or unadjusted), the within- and the across-lactation 
permanent environmental and the residual variances.

2.2.2  |  Gold standard dataset

The model used for genetic parameter estimation in 
the gold standard dataset differed from that used in the 
large dataset. In particular, the contemporary group was 
replaced by the fixed effect of herd (n = 7) and the two 
random permanent environmental effects were not con-
sidered, since only one record per cow (in a single lacta-
tion) was present. Heritability was calculated as the ratio 
between the additive genetic variance to the sum of the 
additive genetic and residual variance. The genetic cor-
relation between the gold standard trait and its MIRS 
prediction was estimated using (co)variance components 
obtained from the bivariate analyses.
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3   |   RESULTS

3.1  |  Mean and variation

The mean of the gold standard measurement and the 
mean of the respective MIRS-predicted milk protein frac-
tions were comparable. In fact, the mean value of the gold 
standard total CN and the mean of MIRS-predicted total 
CN were 36.92 g/L and 36.16 g/L, respectively (Tables  1 
and 2, respectively). Similarly, the mean of the gold stand-
ard FAA was similar to the mean of their relative MIRS 
predictions (Tables 1 and 2). The genetic standard devia-
tion of protein fractions ranged from 0.44 g/L (β-LG A) to 
2.47 g/L (total CN; Table 1) for the gold standard data. The 
MIRS predictions ranged from 0.04 g/L (α-LA) to 1.85 g/L 
(total CN) for the unadjusted analyses (Table  2). The 
genetic standard deviation of the gold standard and the 

respective MIRS-predicted FAA variables were also simi-
lar, with the exception of total FAA. In fact, gold standard 
total FAA had a genetic standard deviation of 10.48 μg/
mL, which was approximately twice that for the MIRS-
predicted values (5.05 μg/ml). The coefficient of genetic 
variation differed among traits ranging from 3.63 (β-CN) 
to 47.08 (β-LG B) for the gold standard protein fractions 
and from 4.02 (Gly) to 14.30 (total FAA) for the gold 
standard FAA (Table 1).

3.2  |  Heritability and 
repeatability estimates

Heritability estimates of milk yield and composition from 
the gold standard dataset (Table 1), that is the one con-
taining just the reference values of milk protein fractions 

T A B L E  1   Number of records (n), mean, genetic standard deviation (σg), heritability (standard error) and coefficient of genetic variation 
(CVg) for milk yield and composition, gold standard protein fractions and free amino acids (FAA) and the genetic correlation (rg) between 
gold standard versus MIRS-predicted FFA and protein fractions

Trait N Mean σg Heritability CVg, % rg

24-h Milk yield, kg/d 497 22.08 2.64 0.16 (0.10) 11.96 –

Protein, % 585 3.74 0.22 0.45 (0.12) 5.88 –

Casein, % 585 2.82 0.19 0.51 (0.12) 6.74 –

Fat, % 584 4.71 0.53 0.30 (0.10) 11.25 –

Lactose, % 584 4.61 0.07 0.15 (0.10) 1.52 –

SCS, log2 units 252 2.48 0.23 0.03 (0.12) 9.27 –

Protein fractions, g/L

Total casein 441 36.92 2.47 0.20 (0.12) 6.69 0.69 (0.18)

αs1-casein 442 14.18 1.19 0.22 (0.12) 8.39 0.71 (0.15)

αs2-casein 442 3.67 0.51 0.38 (0.14) 13.90 0.82 (0.15)

β-casein 441 12.95 0.47 0.05 (0.09) 3.63 0.63 (0.15)

κ-casein 440 6.01 0.60 0.21 (0.14) 9.98 0.64 (0.24)

Total whey 437 6.18 0.97 0.41 (0.15) 15.70 0.73 (0.15)

α-Lactalbumin 441 1.13 0.27 0.24 (0.16) 23.89 0.45 (0.33)

Total lactoglobulin 438 5.04 0.84 0.38 (0.15) 16.67 0.76 (0.13)

β-Lactoglobulin A 441 2.59 0.44 0.15 (0.12) 16.99 0.68 (0.17)

β-Lactoglobulin B 400 2.74 1.29 0.69 (0.16) 47.08 0.77 (0.11)

FAA, μg/mLa

Total FAA 568 73.28 10.48 0.19 (0.11) 14.30 0.53 (0.12)

Glutamic acid 568 27.41 0.29 0.41 (0.13) 5.46 0.83 (0.11)

Glycine 565 5.64 0.15 0.11 (0.09) 4.02 0.78 (0.32)

Lysine 565 3.41 0.29 0.23 (0.12) 8.98 0.38 (0.35)

Arginine 507 3.15 0.20 0.27 (0.13) 6.36 0.51 (0.26)

Aspartic acid 483 2.12 0.29 0.24 (0.13) 10.54 0.52 (0.28)

Serine 488 1.22 0.30 0.37 (0.15) 13.64 0.38 (0.11)

Valine 524 1.39 0.24 0.15 (0.11) 10.32 0.46 (0.17)
aTraits were log-transformed before analysis.
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and FAA, were similar to those from the large dataset with 
research and commercial cow data (Table 2). The herit-
ability estimates did, however, differ in terms of stand-
ard errors, which was due to the fewer records in the 
gold standard dataset. Heritability estimates for the gold 
standard protein fractions, albeit characterized by large 
standard errors, ranged from 0.05 (β-CN) to 0.69 (β-LG 
B; Table 1). Heritability estimates for the MIRS-predicted 
protein fractions (Table  2) were higher than those esti-
mated for the gold standard protein fractions (Table  1), 
although the range of overall heritability estimates for the 
MIRS-predicted protein fractions was smaller (0.19 for 
α-LA to 0.46 for β-LG A; Table 2) than the range for the 

respective gold standard measures (0.05 for β-CN to 0.69 
for β-LG B; Table  1). Similar to protein fractions, herit-
ability estimates for MIRS-predicted FAA had a narrower 
range (0.08 for Gly to 0.29 for Asp and Glu; Table 2) than 
the respective gold standard range (0.11 for Gly to 0.41 for 
Glu; Table 1). Repeatability estimates for MIRS-predicted 
protein fractions and MIRS-predicted FAA were moder-
ate (0.24 for α-LA to 0.55 for total CN; 0.15 for Gly to 0.40 
for Glu; Table 2). The estimated genetic standard devia-
tion for each protein fraction trait, genetically independ-
ent of protein concentration, was less than the respective 
unadjusted measure and this was also reflected in lower 
heritability estimates; only a small reduction in genetic 

T A B L E  2   Number of records (n), mean, genetic standard deviation (σg) with the unadjusted heritability (standard error) and 
repeatability (standard error) for milk yield and composition, MIRS-predicted protein fractions and MIRS-predicted free amino acids (FAA). 
Heritability and genetic standard deviation after adjustmenta are also reported

Trait n Mean

Unadjusted Adjusted

σg Heritability Repeatability σg Heritability

24-h Milk yield, kg/day 133,999 20.54 1.53 0.17 (0.02) 0.54 (0.01) – –

Protein, % 125,045 3.72 0.18 0.44 (0.02) 0.56 (0.01) – –

Casein, % 125,484 2.82 0.15 0.39 (0.02) 0.52 (0.01) – –

Fat, % 111,055 4.57 0.36 0.30 (0.01) 0.32 (0.01) – –

Lactose, % 110,954 4.77 0.09 0.36 (0.02) 0.49 (0.01) – –

SCS, units 63,505 2.50 0.26 0.05 (0.01) 0.47 (0.01) – –

Protein, g/L

Total casein 134,395 36.16 1.85 0.42 (0.02) 0.55 (0.01) 0.27 0.11

αs1-casein 134,409 13.70 0.79 0.44 (0.02) 0.54 (0.01) 0.59 0.36

αs2-casein 134,482 3.66 0.18 0.36 (0.02) 0.44 (0.01) 0.14 0.28

β-casein 134,235 12.96 0.54 0.45 (0.02) 0.48 (0.01) 0.41 0.30

κ-casein 134,463 6.03 0.34 0.36 (0.02) 0.46 (0.01) 0.25 0.27

Total whey 134,383 6.13 0.52 0.37 (0.02) 0.45 (0.01) 0.50 0.36

α-lactalbumin 134,106 1.11 0.04 0.19 (0.01) 0.24 (0.01) 0.03 0.17

Total lactoglobulin 134,236 5.09 0.51 0.39 (0.02) 0.48 (0.01) 0.48 0.37

β-lactoglobulin A 134,489 2.39 0.19 0.46 (0.02) 0.54 (0.01) 0.16 0.42

β-lactoglobulin B 128,391 2.61 0.56 0.42 (0.02) 0.52 (0.01) 0.55 0.42

FAA, μg/mlb

Total FAA 134,546 53.60 5.05 0.24 (0.01) 0.36 (0.01) 5.05 0.24

Glutamic acid 134,426 30.93 4.40 0.29 (0.02) 0.40 (0.01) 4.38 0.29

Glycine 133,650 8.09 0.66 0.08 (0.01) 0.15 (0.01) 0.66 0.08

Lysine 134,105 4.75 0.53 0.17 (0.01) 0.23 (0.01) 0.52 0.16

Arginine 134,425 3.38 0.23 0.15 (0.01) 0.24 (0.01) 0.23 0.15

Aspartic acid 134,433 2.73 0.39 0.29 (0.02) 0.38 (0.01) 0.39 0.28

Serine 112,918 2.74 0.22 0.15 (0.01) 0.20 (0.01) 0.22 0.15

Valine 133,957 1.52 0.16 0.13 (0.01) 0.25 (0.01) 0.16 0.12
aProtein factions and FAA were adjusted for protein concentration and 24-h milk yield, respectively. Heritability considered the genetic variance calculated as 
per Equation 2.
bTraits were log-transformed before analysis.
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standard deviation and heritability was observed for the 
whey protein fractions (i.e. α-LA, β-LG A and β-LG B; 
Table 2). There was also little impact on the heritability 
estimates for FAA when adjusted for differences in the ge-
netic merit of 24-h milk yield (Table 2).

3.3  |  Genetic correlations

Moderate-to-strong genetic correlations existed between 
the gold standard protein fractions and their respective 
MIRS-predicted protein fractions, ranging from 0.45 (α-
LA) to 0.82 (αs1-CN; Table  1). The genetic correlation 
between the gold standard Glu and MIRS-predicted Glu 
was strong (0.83), similar to the correlation between the 
gold standard and MIRS-predicted Gly (0.78; Table  1). 
Protein fractions were negatively correlated with 24-h 
milk yield, but they were positively associated with pro-
tein and CN concentration (Table 3). Protein fractions 
were weakly correlated with both lactose concentration 
and SCS. With the exception of both β-CN and α-LA, all 
protein fractions were negatively correlated with lactose 

concentration. Individual FAA were weakly to moder-
ately genetically correlated with 24-h milk yield, pro-
tein, CN, fat concentration, lactose concentration and 
SCS (Table  4). Correlations between MIRS-predicted 
FAA and SCS in general did not differ from zero with 
the exception of the genetic correlation between MIRS-
predicted Val and SCS (0.39 ± 0.09; Table 4).

Genetic correlations among the MIRS-predicted protein 
fractions were weak to strong (Table  5). An almost unity 
genetic correlation (0.99) existed between protein concen-
tration and total CN, between total CN and αs1-CN, and 
between total LG and total whey. The genetic correlation 
between total LG and total whey did not change after ad-
justing for their respective genetic correlation with protein 
concentration, albeit most of the correlations among the 
protein fractions weakened when calculated genetically 
independent of protein concentration. For example, the 
strong positive genetic correlation that existed between 
β-CN and αs2-CN (0.89) became negative (−0.05) once ad-
justed for genetic merit for protein concentration (Table 5). 
Genetic correlations among the MIRS-predicted FAA were 
weak to strong and ranged from −0.44 (Asp and Lys) to 0.97 

T A B L E  3   Genetic correlations (standard errors) of MIRS-predicted protein fractions with 24-h milk yield, concentration of protein, 
casein, fat and lactose, as well as somatic cell score (SCS)

Trait
24-h milk 
yield Protein Casein Fat Lactose SCS

Total casein −0.57 (0.04) 0.99 (0.001) 0.99 (0.002) 0.72 (0.02) −0.09 (0.04) 0.11 (0.08)

αs1-casein −0.58 (0.04) 0.99 (0.001) 0.98 (0.002) 0.74 (0.03) −0.12 (0.04) 0.10 (0.08)

αs2-casein −0.59 (0.04) 0.95 (0.01) 0.96 (0.01) 0.79 (0.03) −0.05 (0.04) 0.10 (0.08)

β-casein −0.57 (0.04) 0.94 (0.01) 0.81 (0.03) 0.69 (0.02) 0.06 (0.04) 0.07 (0.08)

κ-casein −0.50 (0.04) 0.97 (0.01) 0.94 (0.01) 0.62 (0.03) −0.20 (0.04) 0.10 (0.08)

Total whey −0.30 (0.05) 0.49 (0.03) 0.46 (0.03) 0.39 (0.03) −0.07 (0.04) 0.09 (0.08)

α-lactalbumin −0.45 (0.05) 0.55 (0.03) 0.59 (0.03) 0.68 (0.03) 0.35 (0.04) 0.11 (0.08)

Total lactoglobulin −0.29 (0.04) 0.49 (0.03) 0.46 (0.03) 0.38 (0.03) −0.12 (0.04) 0.08 (0.08)

β-lactoglobulin  A −0.56 (0.04) 0.86 (0.01) 0.87 (0.01) 0.75 (0.02) −0.09 (0.04) 0.15 (0.08)

β-lactoglobulin B −0.08 (0.05) 0.18 (0.03) 0.15 (0.04) 0.11 (0.04) −0.11 (0.04) 0.07 (0.08)

T A B L E  4   Genetic correlations (standard errors) between log-transformed MIRS-predicted free amino acids (FAA) with 24-h milk yield, 
concentration of protein, casein, fat and lactose, as well as somatic cell score (SCS)

Trait 24-h Milk yield Protein Casein Fat Lactose SCS

Total FAA 0.01 (0.06) −0.10 (0.04) −0.09 (0.04) −0.07 (0.04) 0.29 (0.04) 0.07 (0.09)

Glutamic acid 0.10 (0.05) −0.18 (0.04) −0.17 (0.04) −0.15 (0.04) 0.33 (0.04) 0.08 (0.09)

Glycine 0.05 (0.06) −0.19 (0.04) −0.17 (0.04) −0.24 (0.04) 0.28 (0.05) −0.15 (0.10)

Lysine −0.33 (0.05) 0.52 (0.03) 0.51 (0.03) 0.51 (0.03) −0.16 (0.04) 0.07 (0.09)

Arginine −0.18 (0.06) 0.21 (0.04) 0.17 (0.04) 0.40 (0.04) −0.33 (0.04) 0.13 (0.12)

Aspartic acid 0.14 (0.05) −0.19 (0.04) −0.20 (0.04) −0.16 (0.04) 0.25 (0.04) −0.01 (0.09)

Serine −0.13 (0.06) −0.15 (0.04) −0.11 (0.04) 0.24 (0.04) 0.26 (0.04) 0.18 (0.09)

Valine −0.21 (0.06) 0.32 (0.04) 0.33 (0.04) 0.25 (0.04) −0.16 (0.04) 0.39 (0.09)
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(Glu and Total FAA; Table 6). Adjusting the correlations for 
the genetic merit of 24-h milk yield did not greatly affect the 
correlation estimates (Table 6). For example, the unadjusted 
correlation between Arg and Val was 0.63 and changed to 
0.62 when adjusted for the genetic merit of 24-h milk yield.

4   |   DISCUSSION

The present study aimed to quantify the extent of genetic 
variability in detailed milk protein and FAA composi-
tion predicted by MIRS in individual cow milk samples. 
Nowadays, global milk recording programmes rely on in-
frared tools for determination of fat and protein content of 
samples intended to herd testing and genetic evaluations 
(De Marchi et al., 2014; Franzoi et al., 2021). Currently, 
protein fractions and FAA are not either determined by 
MIRS on a routine basis or used for within-country genetic 
evaluations. For both protein fractions and FAA, the ge-
netic correlations estimated in the present study between 
both the gold standard and MIRS prediction were mod-
erate to strong, demonstrating that the MIRS predictions 
are genetically very similar to their corresponding gold 
standard measures. All traits were heritable and exhibited 
considerable and exploitable genetic variation; therefore, 
MIRS is a viable method to collect a large quantity of ac-
curate data for use in genetic evaluations with the goal of 
improving the added value of granular milk.

4.1  |  Response to genetic selection

Response to genetic selection is a function of the ex-
tent of genetic variability, the accuracy of selection, 
selection intensity and generation interval (Rendel & 
Robertson, 1950). Therefore, to achieve genetic gain, the 
trait must exhibit genetic variation and sufficient pheno-
typic or genomic information on the trait must be available 
to ensure a high accuracy of selection (Costa et al., 2020; 
Simm et al., 2020). Considerable genetic variation clearly 
exists for all milk quality traits examined in the present 
study with the traits being low to moderately heritable. 
Therefore, this suggests that there is potential to alter both 
the protein composition and FAA composition in bovine 
milk using selective breeding. The greater the heritability, 
the fewer progeny records required to achieve a high ac-
curacy of selection. In other words, the greater the herit-
ability, the smaller the reference population required to 
develop genomic predictions (Daetwyler et al., 2008).

Heritability estimates of all the MIRS-predicted pro-
tein fractions in the present study (0.19 to 0.46; Table 2) 
were higher than the heritability estimate for 24-h milk 
yield (0.17; Table  2). Moreover, the heritability of 24-h T
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milk yield and protein concentration (0.44; Table  2) in 
the present study were in the range of the heritability 
estimates for the gold standard protein fractions (0.05 to 
0.69; Table 1), but only the heritability of 24-h milk yield 
was in the range of the heritability of gold standard FAA 
(0.11 to 0.41; Table  1) and of the MIRS-predicted FAA 
(0.08 to 0.29; Table  2). Previous heritability estimates of 
protein fractions in bovine milk have been documented 
to be moderate to high ranging from 0.25 for β-CN to 0.80 
for total LG (Huang et al., 2012; Schopen et al., 2009), al-
though they differed across studies. Recent heritability es-
timates for gold standard protein fractions in milk from 
Simmental cows ranged from 0.18 (κ-CN) to 0.68 (αs1-CN; 
Bonfatti, Cecchinato, et al. (2011) and in milk from both 
Holstein and Holstein-Jersey crosses the range was be-
tween 0.33 (αs1-CN, β-CN and α-LA) and 0.68 (β-LG; 
Huang et al., 2012).

In the present study, all protein fractions were posi-
tively genetically correlated with protein concentration, 
contradicting previous findings by Schopen et al.  (2009) 
who estimated genetic parameters for the same traits 
but determined with capillary zone electrophoresis in 
milk from 1,940 primiparous cows. By way of example, 
αs1-CN, β-CN, α-LA and total whey were negatively genet-
ically correlated with the protein concentration (Schopen 
et al.,  2009), but those estimates were characterized by 
quite large standard errors and sometimes did not differ 
from zero. Genetic correlations among the protein frac-
tions obtained in the present study were also different from 
those of Schopen et al.  (2009) and Bonfatti,Cecchinato, 
et al. (2011) in dairy cows. Again, different methods were 
used to determine milk protein fractions across studies, as 
well as the characteristics of the studied population such 
as breeds, parities and seasons represented all of which 
could have contributed to the difference in correlations. 

Indeed, Bonfatti, Cecchinato, et al. (2011) used data from 
protein fractions determined by high-performance liquid 
chromatography from 2,167 Simmental cows. In the pres-
ent study, protein fractions were predicted by MIRS on up 
to 134,100 milk samples from Holstein, Friesian, Jersey, 
Norwegian Red and Montbeliarde cows as well as their 
crosses across a wide range of parities and lactation stages.

Many current national breeding programmes indirectly 
select for protein concentration through a negative weight-
ing on milk yield concurrent with a positive weighting on 
protein yield (Cole & VanRaden, 2018). The coefficients of 
genetic variation for milk yield and protein concentration 
in the present study were 7.45% and 4.84%, respectively. 
Such values were similar or even smaller than coefficient 
of genetic variation for the gold standard total casein and 
total whey (6.69% and 15.70%, respectively), as well as 
lower than the coefficient of genetic variation for FAA 
(14.30%). Favourable trends in genetic gain for milk yield 
in dairy cows are well documented (Berry,  2008; Berry 
et al., 2014; Norman & Powell, 1999), with lactation milk 
yield per cow doubling over the past 40 years (Oltenacu 
& Broom,  2010). Given the coefficient of variation for 
milk yield, protein fractions and FAA, a similar genetic 
gain may be reached for protein fractions and FAA if these 
traits were included in a selection index with a high accu-
racy of selection. Satisfactory selection accuracy could be 
achieved by generating these phenotypes on a represen-
tative pool of cows for evaluation purpose as could be the 
case for a reference population for genomic selection.

However, a relevant question is the expected response 
to selection when including these traits, detailed proteins 
or FAA, in the official selection index and among the 
“true” breeding objectives. The official selection index in 
Ireland already includes a variety of features such as milk 
yield and protein concentration. One approach to estimate 

T A B L E  6   Genetic correlations (standard errors) among the concentration of MIRS-predicted free amino acids (FAA; above diagonal); 
estimates adjusted for 24-h milk yield are reported below diagonala

Trait
Total 
FAA

Glutamic 
acid Glycine Lysine Arginine

Aspartic 
acid Serine Valine

Total FAA – 0.97 (0.002) 0.56 (0.04) −0.20 (0.04) 0.31 (0.04) 0.88 (0.01) 0.60 (0.03) 0.49 (0.04)

Glutamic 
acid

0.99 – 0.53 (0.04) −0.35 (0.04) 0.19 (0.04) 0.91 (0.01) 0.57 (0.03) 0.42 (0.04)

Glycine 0.56 0.53 – −0.36 (0.04) −0.27 (0.05) 0.57 (0.03) 0.37 (0.04) −0.09 (0.05)

Lysine −0.20 −0.31 −0.36 – 0.56 (0.03) −0.44 (0.04) 0.06 (0.04) 0.49 (0.04)

Arginine 0.24 0.21 −0.22 0.53 – 0.13 (0.04) 0.32 (0.04) 0.63 (0.03)

Aspartic 
acid

0.90 0.90 0.57 −0.42 0.16 – 0.32 (0.04) 0.18 (0.04)

Serine 0.38 0.59 0.39 0.02 0.30 0.30 – 0.49 (0.04)

Valine 0.49 0.45 −0.09 0.45 0.62 0.19 0.27 –
aAdjusted genetic correlations calculated as per Equation 1.
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such a benefit in response is to derive the coefficient of ge-
netic variation of the traits after adjustment for the genetic 
merit of (1) protein concentration in the case of protein 
fractions (2) or milk yield in the case of FAA.

In the present study, the near unity correlation be-
tween protein concentration and total CN (0.99) and the 
resulting small coefficient of genetic variation for total 
CN after adjustment for the genetic merit of protein con-
centration (0.75%) suggest that directly including CN in 
the selection index may result in little additional benefit. 
Similarly, the genetic correlations of protein concentra-
tion with αs1-CN, β-CN and κ-CN were strong (0.99, 0.94 
and 0.97, respectively) and the coefficient of genetic varia-
tion for αs1-CN, β-CN and κ-CN after adjustment was just 
4.30%, 3.16% and 4.14%, respectively. Hence, a very high 
selection pressure would be required for αs1-CN, β-CN and 
κ-CN, that means reducing both the selection pressure 
on the other traits present in the index and their genetic 
gain. The correlation between protein concentration and 
α-LA was only 0.55 and the corresponding coefficient of 
genetic variation after adjustment for the genetic merit 
was 2.70%. Therefore, even if genetic gain would be slow, 
it could be advantageous to include α-LA per se in the 
selection index. High concentrations of α-LA are indeed 
desirable for infant formula and dairy powders manufac-
turing (Lien, 2003). In some circumstances, the addition 
of valuable proteins like α-LA would make sense in dairy 
cattle selection index, for example in those countries with 
a wide dairy product portfolio.

The weak genetic correlations between FAA and 24-h 
milk yield as well as between FAA and protein concentra-
tion signify that existing selection indexes that consider 
milk yield and protein concentration are not fully ex-
ploiting the potential to genetically improve the desirable 
protein fractions and FAA. The genetic correlation close 
to 1 between total FAA and Glu (0.99) suggests that one 
should expect little benefit when including both of them 
in the selection index. The lack of very strong genetic cor-
relations among the other FAA (i.e. Gly, Lys, Arg, Asp, Ser 
and Val) plus the existence of a moderate to large coeffi-
cient of genetic variation for these traits (Table 1) suggests 
that direct selection can be pursued simultaneously on all 
these traits together with traditional traits, like milk yield 
and protein concentration.

As proposed by Henchion et al. (2016), a potential ap-
proach would be to define the emphasis to be placed to 
a milk quality sub-index, for example to the milk α-LA 
in this study, that finds the consensus of different stake-
holders (i.e. breed associations and companies, milk pro-
ducers and processors, farm advisors and researchers). In 
Henchion et al.  (2016), all the actors of the dairy chain 
were questioned to gauge their opinion about detailed 
milk quality traits within an overall main breeding goal. 

Based on their findings, the relative importance on a milk 
quality sub-index was suggested to range from 6% to 10%. 
Nevertheless, the biggest concern raised by the inter-
viewed stakeholders was their limited knowledge on the 
fine quality characteristics, followed by the scarce con-
sumer demand for enhanced-quality milk and dairy food-
stuffs. In addition, some categories of consumers are not 
familiar with nutritional concepts and health benefits as-
sociated with consumption of animal products, including 
milk and dairy. Opinion and perception of different actors 
must be taken into account to properly quantify the selec-
tion index economic weights going in favour of desirable 
milk traits.

However, given a scenario where certain specific milk 
traits (e.g. protein fractions) are considered in the payment 
system, sub-indexes can be useful to farmers and facili-
tate more bespoke breeding decisions based on the pay-
ment system. A good example is the Trentingrana cheese 
Consortium (Italy) that incentivizes farmers to produce 
milk with more favourable cheese-making characteristics 
by applying specific rewards (Penasa et al., 2016).

4.2  |  Practical implications

Routine access to vast quantities of phenotypic data for 
protein fractions and FAA is imperative to achieve a high 
accuracy of selection and thus genetic gain. In addition, 
the actual response achievable is a function of how closely 
the selection index trait (i.e. MIR-predicted phenotype) re-
flects the goal trait (i.e the true measure of the trait). This 
is a function of the genetic correlation between the MIR-
predicted value and its true value. In cattle, the genetic 
correlation between the reference trait and its MIRS pre-
diction is often less than unity. Therefore, while selection 
using proxies may still achieve progress in a given direc-
tion, the actual response is likely to be less than optimum 
relative to if the gold standard was actually measured (as-
suming no difference in heritability).

Using the deterministic equation provided by 
Goddard (2009) to evaluate the accuracy of genomic eval-
uations with different sized reference populations, the 
number of genotyped individuals in the reference pop-
ulation necessary to achieve an animal EBV accuracy of 
0.70 is approximately equal to 6,000 for predicted αs1-CN. 
On the contrary, a larger reference population size is 
needed for predicted α-LA (≈ 14,000), Glu (≈9,000) and 
Gly (≈33,000) to achieve the same accuracy of genomic 
evaluations. For this calculation, the effective population 
size was set at 75 as reported by McParland et al. (2007) 
for Irish Holsteins. Mid-infrared spectroscopy is an effi-
cient method commonly used by milk recording organi-
zations worldwide to measure milk gross composiiton. 
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Other than this, the ability of MIRS to predict individual 
protein fractions and FAA with a reasonable accuracy has 
been previously documented (McDermott et al.,  2016). 
Thus, MIRS is the most popular, rapid and cost-effective 
method for generating substantial quantities of pheno-
types related to milk detailed composition, health traits 
and more (Benedet et al., 2020; Costa et al., 2021; Grelet 
et al., 2018).

Of potential interest to many processors are the simi-
larities, or lack thereof, between human and bovine milk 
and the potential strategies to make them more similar, 
ideally at low cost and preferably even within the farm 
gate. Human and bovine milk differ in their protein pro-
file; human milk has a whey to casein ratio of approxi-
mately 60:40, while bovine milk has a whey to casein ratio 
of approximately 20:80. While human milk does not con-
tain β-LG, it is present in large amount in bovine milk; 
on the contrary, α-LA is the dominant protein in human 
milk but is relatively low in concentration in bovine milk 
(Lien, 2003). Therefore, it may be advantageous for infant 
formula producers to select bovine milk with a higher 
concentration of α-LA and a lower concentration of β-LG. 
The amino acid profile in human and bovine milk also dif-
fers (Chuang et al., 2005): human milk contains more Glu, 
Lys, Arg, Asp, Ser and Val than bovine milk (Ghadimi & 
Pecora, 1963).

Processors also aim to maximize the efficiency of 
transformation of the milk they purchase into saleable 
high-quality and nutritious products. A high concen-
tration of CN to total protein is essential for the transfer 
of proteins from milk to cheese with high concentra-
tions of αs1-CN, β-CN, κ-CN and β-LG B being associ-
ated with greater cheese yield (Wedholm et al., 2006). 
The heritability estimates of the MIRS-predicted CN 
fractions ranged from 0.36 (κ-CN and αs2-CN) to 0.45 
(β-CN) and the genetic standard deviation calculated 
for gold standard CN fractions in the present study 
(0.79 g/L for αs1-CN) were comparable to results ob-
tained by Graml and Pirchner  (2003), i.e. 0.94 g/L for 
αs1-CN). Variability in predicted CN fractions also ex-
isted in the present study, as the genetic standard de-
viation ranged from 0.18 g/L for αs2-CN to 0.79 g/L for 
αs1-CN. This was true eve after adjusting for differences 
in protein concentration, indicating an opportunity to 
improve milk-specific protein fractions through selec-
tive breeding.

5   |   CONCLUSIONS

Gold standard and MIRS-predicted traits were heritable 
and exhibited considerable exploitable genetic variation 
in their own right. Nonetheless, variability in some cases 

was eroded once expressed as relative to total protein con-
centration, which is present in most dairy cattle breeding 
goal worldwide. Traditional and genomic evaluations of 
detailed protein composition make sense if MIRS predic-
tion equations will be implemented for phenotyping and 
whenever dairy chain stakeholders will conclude that cer-
tain protein fractions deserve inclusion in the breeding 
objective.
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