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AxoNet: A deep learning-based tool 
to count retinal ganglion cell axons
Matthew D. Ritch   1, Bailey G. Hannon2, A. Thomas Read1, Andrew J. Feola1,3, Grant A. Cull4, 
Juan Reynaud4, John C. Morrison5, Claude F. Burgoyne4, Machelle T. Pardue1,3 & C. Ross Ethier1,2 ✉

In this work, we develop a robust, extensible tool to automatically and accurately count retinal ganglion 
cell axons in optic nerve (ON) tissue images from various animal models of glaucoma. We adapted deep 
learning to regress pixelwise axon count density estimates, which were then integrated over the image 
area to determine axon counts. The tool, termed AxoNet, was trained and evaluated using a dataset 
containing images of ON regions randomly selected from whole cross sections of both control and 
damaged rat ONs and manually annotated for axon count and location. This rat-trained network was 
then applied to a separate dataset of non-human primate (NHP) ON images. AxoNet was compared 
to two existing automated axon counting tools, AxonMaster and AxonJ, using both datasets. AxoNet 
outperformed the existing tools on both the rat and NHP ON datasets as judged by mean absolute 
error, R2 values when regressing automated vs. manual counts, and Bland-Altman analysis. AxoNet 
does not rely on hand-crafted image features for axon recognition and is robust to variations in the 
extent of ON tissue damage, image quality, and species of mammal. Therefore, AxoNet is not species-
specific and can be extended to quantify additional ON characteristics in glaucoma and potentially 
other neurodegenerative diseases.

Glaucoma is the leading cause of irreversible blindness worldwide1,2, and thus is a significant research focus. This 
optic neuropathy is characterized by degeneration and loss of retinal ganglion cells (RGCs), which carry visual 
signals from the retina to the brain. Therefore, an important outcome measure in studying glaucomatous optic 
neuropathy, particularly in animal models of the disease, is the number and appearance of RGC axons comprising 
the optic nerve3,4, usually evaluated from images of optic nerve cross sections. Using images obtained by light 
microscopy is known to result in an axon count underestimation of around 30% relative to counts from images 
obtained by transmission electron microscopy5,6. However, light microscopy is widely used to count optic nerve 
axons because of its lower cost and favorable time requirements for tissue preparation. Therefore, in this work we 
focus on axon counting in optic nerve images generated by light microscopy.

Manual counting is the gold standard approach to quantify RGC axons, but it is extremely labor-intensive, 
since RGC axon numbers in healthy nerves range from the tens of thousands in mice to more than a million 
in humans7. Further complicating axon quantification is the fact that axon appearance can be highly variable. 
For example, in the healthy nerve, most axons are characterized by a clear central axoplasmic core and a darker 
myelin sheath; following previous work5,8, we will refer to such an appearance as “normal”. However, in damaged 
nerves (and even occasionally in ostensibly heathy nerves), other axon appearances occur, such as an incomplete 
myelin sheath and/or a darker axoplasmic region. Such variability further increases the time needed for axon 
counting, since the person doing the counting often needs to decide whether a given feature is (or is not) an axon. 
Here and throughout we place the term “normal” in quotes. An “abnormal” axon appearance does not necessarily 
imply non-functionality, and it is important to keep this distinction in mind.

To reduce the time-intensive counting process, various techniques have been developed for assessing axon 
counts and/or optic nerve damage, including: semi-quantitative, sub-sampling, semi-automated counting, and 
automated counting. In the semi-quantitative approach, scores based on a damage grading scale are assigned 
to optic nerves by different trained observers, and then averaged8,9. While this method is capable of quickly 
capturing whole-nerve changes, and can identify subtle changes that may not be detectable by axon counting, it 
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is subjective and requires scorers who have significant experience and training. Sub-sampling is the process of 
estimating axon loss by manually counting smaller regions of the nerve using either targeted or random sampling 
and then extrapolating to the whole nerve or providing an RGC axon count per area measurement5. Sub-sampling 
is faster than full manual counting, but it is still labor-intensive and can be poorly suited to analyzing nerves with 
regional patterns of axonal loss9. Koschade et al. have recently presented an elegant stereological sub-sampling 
method that eliminates the bias that can occur in sub-sampling, but still requires manual axon counting in 5–10% 
of the full nerve area10. While this is feasible in animals with fewer axons per optic nerve like the mouse, counting 
this proportion may be prohibitive for animals with more axons per optic nerve, as in primates. Semi-automated 
axon counting methods use algorithmic axon segmentation techniques involving hyperparameters, such as inten-
sity thresholds which are manually tuned for individual sub-images11. These methods are faster than manual 
counting and more thorough than qualitative or sub-sampling methods, but still require extensive human direc-
tion and time. Because of these limitations, there has been a push to develop fully automated counting tools.

Two of the most used automated counting tools are AxonMaster12 and AxonJ13. Both tools are designed 
to count “normal”-appearing axons, i.e. axons with a clear cytoplasmic core and a dark myelin sheath5,8. They 
use dynamic thresholding techniques to segment axonal interiors from myelin and other optic nerve features. 
While these tools are faster and provide more detail than sub-sampling methods, they also suffer limitations. 
For example, they are not easily extensible to counting features other than “normal”-appearing axons. Further, 
the two automated counting packages that currently exist were each developed for a specific animal species, and 
due to inter-species differences, it is not clear how accurate these approaches are for other species. Specifically, 
AxonMaster12 and AxonJ13 were calibrated and validated for use in non-human primate (NHP) and mouse mod-
els of glaucoma, respectively. Recently, AxonMaster has been applied to count RGCs in healthy and damaged 
tree shrew optic nerves14, but it has yet to be validated in this animal model. Our preliminary testing using these 
packages suggested that they are also sensitive to image quality, tissue staining intensity, and nerve damage extent 
in images of rat optic nerves (see Results).

Our goal was thus to create axon-counting software to overcome the above limitations, i.e. software which was 
robust to image quality and staining intensity, which could be used in multiple animal models of glaucoma, and 
which was extensible to quantification of features other than “normal”-appearing axons. Our approach to build-
ing this software, which we refer to as AxoNet, is an adaptation of the U-Net convolutional neural network archi-
tecture developed by Ronnenberger et al.15 applied to the count density learning approach of Lempitsky et al.16.

We used a dataset of manually annotated rat optic nerve images for developing and training AxoNet (detailed 
in Annotated Dataset Construction). The rat is a widely used animal model for glaucoma research and eleva-
tion of IOP produces retinal structural changes and loss of RGC axons similar to those observed in the human 
pathology17. We then applied our software to the dataset of NHP optic nerve images which was used to validate 
AxonMaster by Reynaud et al.12. Below we present the detailed methodology of the dataset and software con-
struction used to develop AxoNet, as well as a comparison of AxoNet’s automated counting results to those of 
AxonMaster and AxonJ. We have packaged AxoNet into a user-friendly open source plugin for the widely-used 
ImageJ image processing platform18, as described in greater detail in the Discussion.

Methods
Rat optic nerve dataset.  Animals.  This study used twenty-seven optic nerves from fourteen (12 male 
and 2 female) Brown Norway rats aged 3 to 13 months (Charles River Laboratories, Inc., Wilmington, MA). All 
procedures were approved by the Institutional Animal Care and Use Committee at the Atlanta Veterans Affairs 
Medical Center and Georgia Institute of Technology and conformed to the Animal Research: Reporting of In 
Vivo Experiments (ARRIVE) guidelines. All experiments were performed in accordance with relevant guidelines 
and regulations. Rats used in this study had various degrees of optic nerve health. Each animal had one eye with 
experimental glaucoma induced unilaterally by either microbead injection (12 animals)19–21 or hypertonic saline 
injection (2 animals)22. Optic nerves in the resulting dataset ranged from ostensibly normal to severely damaged 
due to ocular hypertension. These 14 rats had been used in other studies and both optic nerves were used from 
each animal. One optic nerve was excluded from the study because it had suffered extreme damage secondary 
to abnormally high IOP elevation, which made it unsuitable for use in studying experimental models of chronic 
glaucoma.

Tissue processing and imaging.  Animals were euthanized via CO2 and the eyes were enucleated. The optic 
nerves were transected with micro scissors close (<1 mm) to the posterior scleral surface. Optic nerves were 
then placed in Karnovsky’s fixative, post-fixed in osmium tetroxide, dehydrated in an ethanol series, infiltrated 
and embedded in Araldite 502/Embed 812 resin (EMS, Hatfield, PA). Semithin sections of 0.5 µm thickness were 
cut on a Leica UC7 Ultramicrotome (Leica Microsystems, Buffalo Grove, IL) and stained with 1% toluidine blue 
(Sigma-Aldrich, St. Louis, MO). They were imaged with a Leica DM6 B microscope (Leica Microsystems, Buffalo 
Grove, IL) using a 63x lens and 1.6x multiplier for a total magnification of 100×. A z-stack tile scan of the entire 
nerve was taken and the optimally focused image within each z-stack tile was selected using the “find best focus” 
feature in the LAS-X software (Leica Microsystems, Buffalo Grove, IL). Contrast was then adjusted for each tile 
by maximizing grey-value variance.

Annotated dataset construction.  To train the AxoNet algorithm, it was necessary to create a dataset of rat optic 
nerve images in which axons had been identified. For this purpose, 12 × 12 µm sub-images were randomly 
selected from the full 27 nerves, producing a dataset of 1514 partial optic nerve images, with a minimum of 20 
sub-images selected from each nerve, as follows:
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•	 200 images were taken from each nerve from the two female rats. These images were initially 48 ×48 µm, but 
were subdivided into 16 images, so that each sub-image matched the 12 × 12 µm standard image size.

•	 50 images were taken from each nerve from an early cohort of four microbead model rats. The images from 
this source were initially 24 × 24 µm, and were similarly subdivided to yield 12 × 12 µm standard sub-images.

•	 20 to 50 images, each of which was 12 × 12 µm, were selected from each nerve from a later cohort of eight 
microbead model rats.

All sub-images were 187 ×187 pixels, i.e. image resolution was 15.7 pixels per μm. However, during training 
and processing, the U-net architecture’s four max pooling layers each reduced the image side lengths by half, so all 
images used by AxoNet were required to have dimensions evenly divisible by 24. To comply with this restriction, 
we used bilinear pixelwise interpolation to resize all dataset images to 192 × 192 pixels, i.e. to the dimensions 
closest to the images’ original size which were divisible by 16.

Selected sub-images varied in image quality and contrast, and were from optic nerve sections that varied in 
tissue staining intensity and degree of nerve damage (Fig. 1). The images in our dataset can be viewed using the 
code found at github.com/ethier-lab/AxoNet. Four trained counters manually annotated “normal”-appearing 
axons in 1184 sub-images, where a “normal” axon was defined as a structure with an intact and continuous myelin 
sheath, a homogenous light interior, and absence of obvious swelling or shrinkage5,8. Each counter annotated one 
point per axon at the axon’s approximate center. The remaining 290 sub-images were annotated by two counters, 
who annotated one point per axon at the approximate center by consensus. Axons with abnormal morphol-
ogy were not annotated. Counters were instructed to count axons which lay fully inside the frame of the image 
or which intersected either the left or top image border and lay more than halfway within the image borders. 
Manual annotations were made using Fiji’s Cell Counter plugin23, which recorded the spatial location of each 
axon marked within the image. There was good agreement between manual counts for most sub-images (Fig. 2).

These manual annotations were then used to create a “ground truth” axon count density matrix for each 
sub-image, D, in which the (i, j)th entry in the matrix was defined as
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and K was the number of counters for the sub-image in question. Note that the dimensions of D equaled the 
dimensions (in pixels) of the corresponding sub-image. Entries in D were then distributed (“blurred”) according 
to = GD D( )dist , where G is an isotropic Gaussian blur operator with σ = 8 and filter size of 33 pixels, chosen 
empirically to distribute the annotated density values D i j( , ) over the full axon. This operation resulted in some of 
the annotated density values lying outside the edges of the original sub-image. This is a desired effect as an object 
which lies partially on an image’s boundary should not be counted as a full object16. The resulting ground truth 
matrix Ddist provided the spatial distribution of axon count density over the full sub-image, which when summed 
over all entries, produced the ground truth axon count for the full sub-image or the average count from all experts 
for that sub-image. All density map values were stored as double-precision floating-point numbers.

Figure 1.  Rat Dataset Image Variety. A representative set of images from the rat optic nerve image dataset is 
shown. These images include a range of nerve health, variations in sample processing quality, and in image 
acquisition contrast and quality.
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Dataset subdivisions.  The dataset was randomly divided into training, validation, and testing image subsets 
following a 60–20–20% split24. Images selected from each animal’s optic nerves were used exclusively for either 
the training, validation, or testing subsets. AxoNet was trained using the training subset. The validation subset 
was used to optimize AxoNet’s architecture and hyperparameters as well as to construct axon count correction 
equations, as was done using the calibration set in Reynaud et al.12 and as described in the Correction Equations 
section. Finally, the testing subset was used for final evaluation of tool performance.

NHP dataset.  We then evaluated the performance of AxoNet on optic nerve sub-images from NHPs with 
experimental glaucoma. This dataset had been previously annotated using a semi-automated manual method and 
used to develop one of the existing automated axon counting tools, AxonMaster, as described in Reynaud et al.12.

NHP dataset images were randomly divided into validation and testing subsets following a 50–50% split to 
match the even proportion of images in the validation and testing subsets of our rat dataset. Each subset con-
tained 247 images. The validation subset was used to construct axon count correction equations, as was done 
using the calibration set in Reynaud et al.12 and as described in the Correction Equations section. The testing 
subset was used for final evaluation of performance for each tool.

AxoNet development.  Implementation and network architecture.  We implemented a U-Net based 
encoder/decoder architecture similar to the original architecture developed by Ronnenberger et al.15. Specifically, 
we reduced the number of filters in our convolutional layers by a factor of two, resulting in a feature depth at each 
layer half of that in the original architecture. This reduction by a factor of two was chosen to reduce the number 
of parameters in the network, decreasing training time and reducing the danger of overfitting, while retaining 
the base-two relationship between the feature depths of the encoding and decoding paths of the U-Net. We also 
tried reducing the feature numbers by a factor of four, but this reduction decreased network performance. We 
used a rectified linear unit (ReLU) instead of a sigmoid activation for the final layer, indicated by the red arrow in 
Supplementary Fig. 1. The change in the final layer allowed us to regress the ground truth pixelwise count density 
function instead of predicting cell segmentation. A ReLU activation layer is better suited for this task because 
it produces a linear range of output pixelwise density map values, while a sigmoid activation biases its outputs 
towards either 0 or 1. We also included padding on all convolutional layers so that feature arrays would not shrink 
after each convolution. This network was implemented in Python (Version 3.7.3, Python Software Foundation) 
using Keras25 and Tensorflow26. The images were normalized by subtracting the mean pixel value for the entire 
image from the pixelwise values and dividing the resulting pixel values by twice the standard deviation of the 
image pixel values. This ensured that all pixels with intensities within ±2 standard deviations of the mean fell 
within the range [−1.0, +1.0]. Finally, outlier pixels were set to either −1.0 or 1.0.

The network was trained for 25 epochs with a batch size of 1 image per step and a learning rate of 10−4. Our 
modified architecture was developed iteratively by training on the training subset of the rat dataset and evaluat-
ing on the validation subset of the rat dataset. Validation performance was used to compare architectures until 
performance stopped improving.

Training.  We used the Adam optimizer27 to minimize a mean squared error loss function evaluated between 
ground truth and predicted count density function estimates for each image as follows:

∑β β= −
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n dist n
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Figure 2.  Histogram of Manual Count Variability for Rat Dataset. Variability between counters is expressed as 
the coefficient of variation (standard deviation of the manual count divided by the mean of the manual count for 
each image). The median coefficient of variation was 0.12, indicating good general agreement between manual 
counters.
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where β is the learned network parameter set, N is the number of pixels in the image, D̂ is the predicted pixelwise 
axon count density function, Xn is the nth pixel in image X, and m is a density scaling factor. The density scaling 
factor was used to increase the magnitude of the predicted pixelwise density values, allowing better regression 
convergence. Its value was determined during hyperparameter optimization, resulting in a final value of m = 
1000. Since a density scaling factor was used, the trained network overestimated the density predictions by a 
factor of m. Thus, all density maps predicted during network application were divided by m to accurately reflect 
ground truth. After density map prediction, we estimated total axon count within an image as follows:

∑β β= .
=

ˆAxon Count X
m

D X( , ) 1 ( , )
(3)n

N

n
1

Because dataset sub-images were randomly selected from larger full optic nerve images, their edges could 
contain cropping artifacts such as axons that intersected the edge. Dataset images and ground truth arrays were 
thus padded during training and evaluation through the edge-mirroring process recommended in15 to prevent 
the propagation of influence from these edge artifacts and any resulting biases in cell count. When computing the 
mean squared error loss function (Eq. 2), we did not include mirrored pixels. Training images were resized from 
187 × 187 pixels to 192 × 192 pixels and extended to 224 × 224 pixels by this edge mirroring, as this size pro-
vided the optimum balance between training speed and output accuracy. Extensive data augmentation was used 
during training. This included image mirroring and rotation at intervals of 90° as well as random multiplicative 
pixel value scaling. The random multiplicative pixel value scaling was applied by taking the elementwise product 
of the training image matrix with a matrix of the same shape containing uniformly distributed values between 
0.85 and 1.15.

As expected, our dataset contained only a few images with extreme numbers of axons per image, i.e. very low 
or very high axon counts. Training with this dataset would therefore lead to higher error in such cases, which we 
wished to avoid since having few axons per image or many axons per image can be a significant experimental out-
come. If we denote the number of manually counted axons per image by manual counts (MC), then we reasoned 
that we could reduce counting error in extreme cases by creating a data set which had a more uniform distribu-
tion of MC over all the images, which we achieved by resampling, as follows. A 10 bin histogram of MC over all 
images in the training set was created, and we augmented the number of images in any bin that had less than the 
maximum number of images. This augmentation consisted of replicating all of the images within that bin until 
the number of images within each bin was approximately the same.

The model did not show signs of overfitting, as shown by the similar loss values for the training and validation 
set over the course of model training (Supplementary Fig. 2).

Model Evaluation.  Correction equations.  The three automated counting tools, AxoNet, AxonMaster, and 
AxonJ, cannot precisely replicate ground truth. However, empirical observation shows that each tool demon-
strated a relatively consistent bias, which could be corrected for. We therefore first used the validation subsets to 
perform the following linear bias correction, following the method established in Reynaud et al.12. In brief, MC 
and automated counts (AC) of axons in the validation subset were plotted against one another and fit using a 
linear least squares regression for each tool,

= +AC a MC b, (4)

where coefficients a and b reflect any systematic linear bias in the estimation of MC by AC for the automated 
counting tool being considered. We then account for this linear bias by defining a corrected automated count, 
ACcorrected, as

=
−

.AC AC b
a (5)corrected

Ideally, our automated counting methods would not demonstrate any systematic bias, i.e. our network would 
learn to correct any such biases during training. However, all automated counting schemes that we are aware of 
either show some bias, and thus use linear bias correction equations, or do not report results in a manner that 
allows one to determine whether the scheme shows bias, e.g. by reporting only mean absolute error between 
ground truth and object counts. We have chosen to use correction equations.

We conducted a series of tests to determine the cause of this systematic linear bias. Specifically, we first inten-
tionally overfit models to determine whether there was a bug in our code causing systematic bias, reasoning that 
if we could eliminate bias by overfitting, then bias would not be due to a programming error and instead would be 
related to other factors. We thus trained on downsampled training sets with and without resampling and augmen-
tation and evaluated the bias when the algorithm was applied to the same downsampled training sets. Second, 
we tested for underfitting by training our network with randomized initial parameters and for more epochs and 
comparing the results to our initial results. We also considered differences between the training and testing sets 
and dataset imbalance as potential sources of bias.

Statistical analysis of tool performance on the rat image dataset.  To evaluate the three automated counting 
tools on the rat image dataset, we applied all three tools to the validation subsets, created correction equations 
as described above in Eq. (5), and applied the relevant correction equation to the automated counting results 
from the testing subset. Differences in sub-image manual counts and the automated counts produced by each 
automated axon counting tool were quantified for both datasets through linear regressions, Kruskal-Wallis tests 
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comparing the mean absolute error for each tool, and a comparison of the limits of agreement as defined by the 
Bland-Altman methodology28.

In more detail, after linear regression between manual and automated counts, we examined the residual distri-
butions from the regressions, and discovered they were not normally distributed (Shapiro-Wilk test, all p < 0.05). 
However, inspection of the data by histogram and Q-Q plot showed approximate normality with the exception 
of a small number of outliers and a slight heteroscedasticity for each distribution. In addition, linear regression 
is known to be robust to such slight deviations from normality, particularly in larger data sets like ours29,30. We 
therefore judged these deviations from normality to be minor, and continued to use simple linear regression to 
compare model performance, taking a larger R2 value to indicate a more consistent agreement between manual 
and automated counts.

We also calculated the mean absolute error between each automated counting tool’s axon count and the 
gold-standard manual axon counts to quantify the accuracy for that tool. None of the mean absolute error distri-
butions for each tool’s results were normally distributed (Shapiro-Wilk: all p < 0.001), so we compared the tools’ 
mean absolute errors using the Kruskal-Wallis test with Dunn’s post hoc test.

Finally, we used Bland-Altman plots28 to compare the limits of agreement calculated for each method. Ideally, 
the errors from the automated tools would lie within the range of inter-observer variability. Thus, we aimed for 
the limits of agreement of these Bland-Altman plots (mean count error ± 1.96•SD of count error) to be within 
the limits of agreement calculated for individual counters’ MC relative to the mean MC. Using this definition, 
we computed the limits of agreement for our rat dataset as ±14.3 axons. Additionally, for each image with four 
manual counters (1184 of 1514 images), corrected ACs were compared to a 95% confidence interval constructed 
from the four MCs. We defined a success rate as the proportion of images for which the corrected AC fell within 
this 95% confidence interval. This approach evaluated both automated counting accuracy and precision in the 
same measurement.

statistical analysis of tool performance on the nhp image dataset.  We also evaluated our rat-trained AxoNet algo-
rithm and the two existing axon counting tools on the NHP dataset. To do so, we applied all three tools to the 
validation subset, created correction equations as stated above, and then applied the correction equations to the 
automated counting results from the testing subset. Relationships between semi-automated manual (SAM) and 
corrected automated counts were assessed in the same manner as they were in the rat image dataset. Since only 
mean axon counts were available, we were unable to compute the proportion of the automated counts that fell 
within the 95% confidence interval for the SAM counts or define a desired range for the limits of agreement as we 
did for the rat optic nerve image dataset. However, we were able to compare the limits of agreement between the 
corrected ACs and the SAM counts.

Results
Rat model dataset results.  We first applied the three automated counting tools to the validation subset of 
the rat dataset to determine correction equations that accounted for linear bias, as described above (Fig. 3). We 
then applied the automated tools to the testing subset. Before compensating for linear bias using the correction 
equations, the relationship between AxoNet automated and manual counts (AC and MC) in the testing subset was 
AC = 0.826*(MC) + 5.36 (R2 = 0.938), indicating a comparable bias to that seen when our model was applied to 
the validation subset. For all three automated tools, the corrected linear fit between MC and ACcorrected resulted in 
regression slopes and intercepts that were mostly significantly different from 1 and 0, respectively (t-test for slope, 
all p < 0.05; t-test for intercept, p = 0.0319, p = 0.059, p < 0.001; all p-values presented in the order: AxoNet, 
AxonMaster, and AxonJ; Fig. 3). These findings indicate that the correction equation method did not fully correct 
for consistent linear biases, although their effects were reduced.

Of the three tools, AxoNet achieved the highest correlation between its corrected AC and the MC (R2 = 0.938) 
as well as the smallest mean absolute error (Kruskal-Wallis: Chi-square = 169.7 and p < 0.001; Dunn’s post-hoc: 
all p < 0.001, Fig. 3). Only AxoNet demonstrated limits of agreement within the threshold determined by the 
manual count agreement (Fig. 4). For the images annotated by four counters, the percentage of corrected ACs that 
fell within the 95% confidence interval of the manual counts was 83%, 48%, and 58% for AxoNet, AxonMaster, 
and AxonJ respectively. Taken together, we observe that AxoNet performed the best (i.e. the closest to manual 
annotations) on the testing subset of the rat dataset.

We also visualized the output of AxoNet by determining whether AxoNet was accurately replicating the den-
sity maps used during its training by comparing its predicted spatial axon count densities to ground truth (Fig. 5). 
Generally, the density maps produced by AxoNet matched those produced by the manual annotators.

NHP dataset results.  We then applied these three automated counting tools to the NHP dataset. We first 
assessed the performance of the three tools using the validation subset of the NHP dataset in order to construct 
bias correction equations relating each tool’s AC to the SAM count. When applied to the validation subset of 
the NHP dataset, AxoNet achieved a higher correlation between SAM count and AC than the other two tools, 
although AxonMaster needed less bias correction (Fig. 6), likely because it had been optimized for the NHP 
dataset.

The automated counting methods and their correction equations were then applied to the testing subset of the 
NHP dataset to directly compare their ability to accurately quantify the number of axons present in each image. 
For all three automated tools, the corrected linear fit between SAM count and ACcorrected resulted in regression 
slopes and intercepts that were not significantly different from 1 and 0, respectively (t-test for slope, p = 0.77, 
p = 0.47, p = 0.81; t-test for intercept, p = 0.77, p = 0.82, p = 0.71; all p-values presented in order: AxoNet, 
AxonMaster, and AxonJ; Fig. 6). Of the three tools, AxoNet achieved the highest correlation between its cor-
rected automated and manual counts (R2 = 0.944), with AxonMaster achieving a comparable correlation (R2 = 
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0.938). AxoNet and AxonMaster both had lower mean absolute error when compared to AxonJ (Kruskal-Wallis: 
Chi-square = 62.57 and p < 0.001; Dunn’s post-hoc: both p < 0.001, Fig. 6), while AxoNet and AxonMaster had 
similar mean absolute error values to one another (p > 0.9). AxoNet and AxonMaster produced comparable lim-
its of agreement, whereas AxonJ’s limits of agreement were larger (Fig. 7).

Figure 3.  Comparison between automated and manual axon counts for the rat validation and testing subsets. 
Validation subset results are shown for AxoNet (a), AxonMaster (b) and AxonJ (c). The regression relationships 
between MC and AC counts were: AxoNet: AC = 0.801*(MC) + 4.8; AxonMaster: AC = 0.731*(MC) − 0.633; 
and AxonJ AC = 0.508*(MC) + 26.2. These relationships were used as correction equations when counting 
axons in the testing subset. Testing subset results are shown for AxoNet (d), AxonMaster (e) and AxonJ 
(f). Testing subset mean absolute errors are 4.4, 12.8, and 9.5 axons for AxoNet, AxonMaster, and AxonJ 
respectively. AC values are shown after applying the correction equations from the validation subset results. 
Each data point is obtained from a single sub-image from the corresponding subset.

Figure 4.  Comparison of error distribution for the rat testing subset. Differences between rat testing subset MC 
and corrected AC are plotted against manual counts for AxoNet (a), AxonMaster (b) and AxonJ (c) as Bland-
Altman plots. Each data point is a single sub-image from the rat testing dataset. Red lines represent the upper 
and lower bounds for the limits of agreement, calculated as mean error ± 1.96*(standard deviation of error). 
Limits of agreement are [−8.3, 12.6], [−14.59, 25.8], and [−27.7, 39.4] axons for AxoNet, AxonMaster, and 
AxonJ, respectively.
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We packaged AxoNet into a user-friendly plugin for Fiji and ImageJ. This plugin is capable of counting full 
rat optic nerve images in about 15 minutes (Fig. 8). We typically count c. 80,000 “normal”-appearing axons in a 
healthy nerve, consistent with previous reports5,6,31.

Bias.  To investigate the source of the small bias seen in AxoNet, i.e. the fact that there was a difference between 
the unity line and the best fit regression lines in Figs. 3 and 6, we conducted several experiments. In constructing 
these experiments, we considered the following possible sources of error: (1) a bug in the algorithm; (2) poor 

Figure 5.  Visualization of AxoNet Performance. The images from the rat testing subset which produced the 
smallest (top) and greatest (bottom) difference between AxoNet predicted and ground truth manual axon count 
are shown in the left column. The corresponding manually annotated ground truth axon count density maps are 
shown in the middle column, and the automatically detected axon count density maps are shown in the right 
column. The scale bar on the right shows the map used to visualize axon count density as greyscale intensity.

Figure 6.  Comparison between automated and manual axon counts for the NHP validation and testing subsets. 
Validation subset results are shown for AxoNet (a), AxonMaster (b) and AxonJ (c). The regression relationships 
between SAM and AC counts were: AxoNet: AC = 1.11*(SAM) + 69.0; AxonMaster: AC = 0.9849*(SAM) 
+ 17.4; and AxonJ AC = 1.01*(SAM) + 139.2. These relationships were used as correction equations when 
counting axons in the testing subset. Testing subset results are shown for AxoNet (d), AxonMaster (e) and 
AxonJ (f). Testing subset mean absolute errors are 17.7, 18.2, and 35.0 axons for AxoNet, AxonMaster, and 
AxonJ respectively. AC values are shown after applying the correction equations from the validation subset 
results. Each data point is obtained from a single sub-image from the corresponding subset.
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convergence of our parameter values during the training phase, i.e. underfitting; (3) inherent differences between 
the training and testing data sets; and (4) tendency of the algorithm to be biased towards the majority group, 
which in our case was images with axon counts close to the dataset mean axon count32. We consider each of these 
in turn.

	 1.	 Bug in the algorithm: We conducted experiments in which we intentionally overfit the network, as follows. 
We first trained AxoNet on subsets of the full training set of different sizes, and then evaluated the algo-
rithm on those same images. Within this framework, training was conducted using three variations of 
the training image sets: images that were neither augmented nor resampled, images that were augmented 
but not resampled, and images that were resampled but not augmented. As data set size decreased, bias 
decreased; indeed, training on a single repeated image and testing on the same image produced essentially 
zero error (less than one axon; Supplementary Fig. 3). Because we were able to essentially eliminate bias by 
overfitting, we concluded that a bug in the code used to train or assess our network was unlikely.

	 2.	 Underfitting. Our numerical experiments suggested that the parameter optimization process had con-
verged. Specifically, we found that increasing the number of epochs during training did not improve 
convergence, as measured by the loss function’s final value. Further, using different initial parameter values 
yielded essentially the same loss function values at the end of training. Thus, we do not believe that bias was 
due to underfitting.

	 3.	 Inherent differences between data sets: Error can arise if the training, validation and testing data sets have 
systematic differences. Such an error source is inherent in supervised machine learning approaches33. In 
our case, we saw that the bias differed between validation and testing data sets (compare Figs. 3 and 6), 
suggesting subtle systematic differences between image sets. Consistent with this suggestion, the bias was 

Figure 7.  Comparison of error distribution for the NHP testing subset. Differences between NHP testing 
subset semi-automated manual count and corrected AC are plotted against semi-automated manual count for 
AxoNet (a), AxonMaster (b) and AxonJ (c) as Bland-Altman plots. Each data point is a single sub-image from 
the rat testing subset. Red lines represent the upper and lower bounds for the limits of agreement, calculated 
as mean error ± 1.96*(standard deviation of error). Limits of agreement are [−43.9, 42.8], [−48.9, 47.5], and 
[−91.0, 93.4] axons for AxoNet, AxonMaster, and AxonJ respectively.

Figure 8.  AxoNet Plugin Results. After using the AxoNet plugin for ImageJ and Fiji on an image of a full rat 
optic nerve (a), the output axon density map (b) and the combination of these two images (c) are displayed. 
The combination of these two images is shown with the input image (a) in greyscale and the axon density 
map (b) overlaid in pink. Axon density scale is not provided here because these full images are scaled down 
significantly for inclusion in the manuscript and color scale is indistinguishable at this resolution. A grid of dark 
lines is visible in panel a; these lines correspond to tile edges from the microscopy imaging and are an artifact of 
visualization only since counts are carried out on much smaller portions of the full image.
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reduced if we trained and tested on the same data set, while image augmentation increased bias if testing 
was conducted on the training data set (Supplementary Fig. 3; compare red with black symbols). It is 
interesting to note that training set resampling slightly increased the mean absolute error (compare red 
with green symbols in Supplementary Fig. 3). We suggest that this occurs because resampling increases 
the proportion of “hard to count” images, i.e. those with extensive damage or many small axons. Howev-
er, resampling also reduces error when evaluating different testing and training data sets, and thus is still 
recommended.

	 4.	 Bias towards the mean: We note that the algorithm consistently overcounted images with small numbers of 
axons, and undercounted images with large numbers of axons, suggesting bias towards the mean. Research 
on evaluating the effects of class imbalances on neural network training for classification and regression 
shows a similar effect32,34,35, where in our case, images with counts closer to the dataset mean are analogous 
to the “majority class”. To reduce the magnitude of this effect, we resampled our training set images to 
produce a uniform distribution of axon counts (see Methods). Even when doing so, a small systematic bias 
remained, which perhaps reflects a tendency of bias towards the mean even when training occurs on a uni-
formly sampled image set. Nonetheless, this bias was small and considered acceptable in this application.

Discussion
The purpose of this study was to develop and evaluate a new approach to automatically count “normal”-appearing 
RGC axons in a diverse dataset of healthy and damaged optic nerve cross sections. Such an automated axon 
counting tool is a useful tool in studying glaucoma and potentially other neurodegenerative disorders. We 
designed this new approach to work well over a range of image qualities and for multiple mammalian species. 
AxoNet’s predicted axon counts proved to be highly correlated to manual axon counts in both the rat and NHP 
datasets, indicating that it met our requirements for an automated axon counting tool. As judged by the uniform 
error over the range of manual axon counts (Figs. 4 and 7), AxoNet performed equally well on images of damaged 
vs. healthy optic nerves. This is significant because axon counting is more difficult in diseased tissue, and suggests 
promise for the use of AxoNet as a tool for nerve damage analysis in experimental glaucoma.

Prior to building AxoNet, we explored the methodologies previously used to create existing automated axon 
counting tools. AxonMaster uses a fuzzy c-means classifier as an adaptive thresholding method to segment axon 
interiors from the darker myelin sheath. These clusters are then filtered by size and circularity before counting 
axons. AxonJ uses a Hessian operator to identify the darker myelin sheath and then performs similar adaptive 
thresholding and connected region size filtering region before counting the connected regions as axons. When 
applied to the rat dataset, these two tools produced adequate segmentation of total axon area in optic nerve 
images, but often did not produce accurate segmentation of individual axons, leading to inaccurate counts. We 
also attempted to apply two other segmentation techniques, ilastik36 and the basic pixel segmentation U-Net15. 
These approaches also resulted in inaccurate counts, especially when applied to damaged tissue; therefore, we 
adapted an alternate cell counting framework introduced by Lempitsky et al.16. This approach avoids the difficult 
task of semantic segmentation and instead predicts a pixelwise cell count density estimate. The authors accom-
plished this through using machine learning with hand-crafted pixelwise features16. More recently, attempts 
have been made to perform similar count density function estimations using convolutional neural networks37 
and adapted U-Net architectures38 for crowd counting, which is a technically similar problem to cell counting. 
Convolutional neural networks have also been used recently for axon segmentation in scanning and transmis-
sion electron microscopy images of mammal and human spinal cord39. The tool produced in this work is the 
result of this synthesis between a convolutional neural network architecture designed for cell segmentation, the 
U-Net, and a count density prediction strategy. This method avoids the hard problem of axon segmentation in 
lower-resolution light microscopy, trading the ability to analyze single-axon morphology for the most accurate 
axon count.

This study was limited by several factors. First, and most important, to date AxoNet has been trained to count 
only “normal”-appearing axons, similar to existing axon-counting software. The classification of an axon as 
“abnormal” in appearance does not necessarily imply that the axon is non-functional, and thus our tool may not 
count axons that are in fact conducting visual information. However, due to AxoNet’s generalizability and lack 
of reliance on hand-crafted features specific to “normal”-appearing axons, it can be extended to count or even 
segment other features of both healthy and glaucomatous optic nerves, such as glial processes, nuclei, “abnormal” 
axons, large vacuoles, and extracellular matrix. We are currently extending AxoNet to quantify these features. 
Such analysis of features beyond “normal”-appearing axons may provide new insight into the pathophysiological 
processes of glaucomatous nerve degeneration.

Second, we were unable to fully eliminate systematic biases in the network’s predictions. We investigated the 
source of this systematic prediction bias and found that it did not originate from errors within the training or 
prediction code or from underfitting. We posit that some bias may be unavoidable due to subtle differences in the 
training and testing sets, which can be mitigated by increasing the variability within the training data set. Based 
on the literature, we also posit that training set imbalance may cause training bias towards common training 
cases. This source of bias can be mitigated by resampling rarer cases to increase their influence during network 
training. By doing so, we were able to reduce bias to only a few axons per image. Considering the complexity 
of our images and the variability from animal to animal in glaucoma models, we judged this level of bias to be 
acceptable.

Third, the linear bias correction equations determined in this study were suitable for countering systematic 
bias in our data set, but may not necessarily be accurate for other data sets, since the conditions which create 
these systematic biases may vary with experimental treatment, imaging protocols, or tissue processing protocols. 
However, we do not expect such effects to be severe, since we intentionally included these sources of variability 

https://doi.org/10.1038/s41598-020-64898-1


1 1Scientific Reports |         (2020) 10:8034  | https://doi.org/10.1038/s41598-020-64898-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

within the two image datasets used in this study and AxoNet still performed well. Nonetheless, it would be pru-
dent to calibrate AxoNet for each new application, which can be done through using correction equations like 
those created with our validation subsets or network retraining with a new dataset according to the training 
protocol detailed above.

A fourth limitation is that all manual counts were conducted by members of one lab, and it is possible that 
manual counts generated in different research groups could be slightly different from ours since manual counting 
itself is not entirely unambiguous. This uncertainty is inherent in axon quantification and cannot be avoided, 
although to enhance repeatability we have explicitly described our definition of “normal”-appearing axons and 
have made the training data publicly available.

Presently, AxoNet regresses a pixelwise count density function which is integrated over the full image to 
return a count. Fitting the density function is accomplished through the minimization of a mean squared error 
loss function evaluated at each pixel (Eq. 2). This loss function may be overly sensitive to zero-mean noise and 
other variations in training images. Lempitsky et al.16 originally solved this problem through the Mesa loss func-
tion, which used a maximum subarray algorithm to find the image region with the largest difference between 
automated and manual counts and minimized count error over this region instead of at every pixel16. When 
we attempted to use this loss function during our training, the resulting method was far too computationally 
expensive and resulted in a prohibitively long training time (on the order of hours per training step). However, 
developing a new loss function which avoids computing the mean square error at every pixel per iteration but 
does so without the computational expense may improve AxoNet’s performance in terms of accurate axon count 
insensitive to image noise.

The successful use of the rat-trained AxoNet to count NHP images is indicative of the versatility of our 
method, even without re-training. However, the network can be easily re-trained on a new counting case if 
needed. If there is adequate training data in the new set, the deep learning framework can adapt itself to new 
applications without requiring any changes in handcrafted features. Data augmentations like those described in 
the methods can be applied to improve network learning from limited datasets, as was done in the first published 
application of the U-net architecture15.

We can also use AxoNet to count axons in full rat optic nerve images by subdividing the full image into 
tiles for individual processing. This tile-based processing was necessary because of the prohibitive computa-
tional expense involved in applying the U-net architecture to large images. However, tile-based processing has 
the potential to create edge artifacts by cutting off portions of cells on the borders of each tile. We correct for this 
potential error by padding the edges of each processing tile with bordering pixels from adjacent processing tiles. 
Including this information from bordering tiles meant that the resulting density map prediction was not affected 
by these potential tile cropping artifacts. Once processed, the resulting density map was cropped back to its orig-
inal tile size. This padding was not done when it would have required pixels from beyond the image boundaries. 
These padded tiles were then also mirrored, as described for model training above.

When running on the system used for this study (Windows Desktop, Intel i7–3770 CPU at 3.40 GHz, 16 GB 
RAM; Dell, Round Rock, TX), AxoNet counts the axons within a full rat optic nerve image in approximately 
15 minutes. For comparison, it took AxonJ and AxonMaster approximately 30 minutes and 1 hour, respectively, to 
count the axons within a full rat optic nerve image. Therefore, our tool can be applied to analyze full optic nerve 
images with runtimes comparable to, or better than, those of the existing automated tools.

Conclusion
We have successfully applied a deep learning method to accurately count “normal” axons in both rat and 
non-human primates, and in both healthy and experimentally glaucomatous optic nerve sections. Additionally, 
we have compared AxoNet to two previously published automated counting tools and shown that AxoNet per-
forms as well as or better than these two tools in counting healthy axons in these two datasets. Our tool is available 
online as an ImageJ plugin and can be installed by following the instructions at https://github.com/ethier-lab/
AxoNet-fiji. The code and data we used to train the model can be found at https://github.com/ethier-lab/AxoNet.

Data availability
The rat optic nerve image dataset generated and analyzed during the current study are available in the Github 
repository, https://github.com/ethier-lab/AxoNet. A spreadsheet containing the count data for each image in both 
the NHP and rat datasets is available on the same repository. The NHP optic nerve image dataset and AxonMaster 
software are the property of the Burgoyne Lab, where they are available upon reasonable request.

Received: 16 September 2019; Accepted: 21 April 2020;
Published: xx xx xxxx

References
	 1.	 Greco, A. et al. Emerging Concepts in Glaucoma and Review of the Literature. Am J Med 129, 1000.e7–1000.e13, https://doi.

org/10.1016/j.amjmed.2016.03.038 (2016).
	 2.	 Kwon, Y. H., Fingert, J. H., Kuehn, M. H. & Alward, W. L. Primary open-angle glaucoma. N Engl J Med 360, 1113–1124, https://doi.

org/10.1056/NEJMra0804630 (2009).
	 3.	 Mikelberg, F. S., Drance, S. M., Schulzer, M., Yidegiligne, H. M. & Weis, M. M. The normal human optic nerve. Axon count and axon 

diameter distribution. Ophthalmology 96, 1325–1328 (1989).
	 4.	 Morrison, J. C., Nylander, K. B., Lauer, A. K., Cepurna, W. O. & Johnson, E. Glaucoma drops control intraocular pressure and protect 

optic nerves in a rat model of glaucoma. Invest Ophthalmol Vis Sci 39, 526–531 (1998).
	 5.	 Marina, N., Bull, N. D. & Martin, K. R. A semiautomated targeted sampling method to assess optic nerve axonal loss in a rat model 

of glaucoma. Nat Protoc 5, 1642–1651, https://doi.org/10.1038/nprot.2010.128 (2010).

https://doi.org/10.1038/s41598-020-64898-1
https://github.com/ethier-lab/AxoNet-fiji
https://github.com/ethier-lab/AxoNet-fiji
https://github.com/ethier-lab/AxoNet
https://github.com/ethier-lab/AxoNet
https://doi.org/10.1016/j.amjmed.2016.03.038
https://doi.org/10.1016/j.amjmed.2016.03.038
https://doi.org/10.1056/NEJMra0804630
https://doi.org/10.1056/NEJMra0804630
https://doi.org/10.1038/nprot.2010.128


1 2Scientific Reports |         (2020) 10:8034  | https://doi.org/10.1038/s41598-020-64898-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

	 6.	 Cepurna, W. O., Kayton, R. J., Johnson, E. C. & Morrison, J. C. Age related optic nerve axonal loss in adult Brown Norway rats. Exp 
Eye Res 80, 877–884, https://doi.org/10.1016/j.exer.2004.12.021 (2005).

	 7.	 Sanchez, R. M., Dunkelberger, G. R. & Quigley, H. A. The number and diameter distribution of axons in the monkey optic nerve. 
Invest Ophthalmol Vis Sci 27, 1342–1350 (1986).

	 8.	 Chauhan, B. C. et al. Semiquantitative optic nerve grading scheme for determining axonal loss in experimental optic neuropathy. 
Invest Ophthalmol Vis Sci 47, 634–640, https://doi.org/10.1167/iovs.05-1206 (2006).

	 9.	 Jia, L., Cepurna, W. O., Johnson, E. C. & Morrison, J. C. Patterns of intraocular pressure elevation after aqueous humor outflow 
obstruction in rats. Invest Ophthalmol Vis Sci 41, 1380–1385 (2000).

	10.	 Koschade, S. E., Koch, M. A., Braunger, B. M. & Tamm, E. R. Efficient determination of axon number in the optic nerve: A 
stereological approach. Exp Eye Res 186, 107710, https://doi.org/10.1016/j.exer.2019.107710 (2019).

	11.	 Cull, G., Cioffi, G. A., Dong, J., Homer, L. & Wang, L. Estimating normal optic nerve axon numbers in non-human primate eyes. J 
Glaucoma 12, 301–306 (2003).

	12.	 Reynaud, J. et al. Automated quantification of optic nerve axons in primate glaucomatous and normal eyes–method and comparison 
to semi-automated manual quantification. Invest Ophthalmol Vis Sci 53, 2951–2959, https://doi.org/10.1167/iovs.11-9274 (2012).

	13.	 Zarei, K. et al. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ. Sci Rep 6, 26559, https://doi.org/10.1038/
srep26559 (2016).

	14.	 Samuels, B. C. et al. A Novel Tree Shrew (Tupaia belangeri) Model of Glaucoma. Invest Ophthalmol Vis Sci 59, 3136–3143, https://
doi.org/10.1167/iovs.18-24261 (2018).

	15.	 Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect Notes Comput Sc 
9351, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28 (2015).

	16.	 Lempitsky, V. & Zisserman, A. Learning To Count Objects in Images. Adv Neur In (2010).
	17.	 Johnson, T. V. & Tomarev, S. I. Rodent models of glaucoma. Brain Res Bull 81, 349–358, https://doi.org/10.1016/j.

brainresbull.2009.04.004 (2010).
	18.	 Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671–675 (2012).
	19.	 Samsel, P. A., Kisiswa, L., Erichsen, J. T., Cross, S. D. & Morgan, J. E. A novel method for the induction of experimental glaucoma 

using magnetic microspheres. Invest Ophthalmol Vis Sci 52, 1671–1675, https://doi.org/10.1167/iovs.09-3921 (2011).
	20.	 Bunker, S. et al. Experimental glaucoma induced by ocular injection of magnetic microspheres. J Vis Exp, https://doi.

org/10.3791/52400 (2015).
	21.	 Hannon, B. G. et al. Early Deficits in Visual and Retinal Function in the Rat Microbead Model of Glaucoma. In ISER Biennial 

Meeting (2018).
	22.	 Feola, A. J. et al. Menopause exacerbates visual dysfunction in experimental glaucoma. Exp Eye Res 186, 107706, https://doi.

org/10.1016/j.exer.2019.107706 (2019).
	23.	 Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682, https://doi.org/10.1038/

nmeth.2019 (2012).
	24.	 Ripley, B. D. Pattern recognition and neural networks. 354 (Cambridge University Press, 1996).
	25.	 Chollet, F. Keras, https://keras.io (2015).
	26.	 Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. ArXiv abs/1603.04467 (2015).
	27.	 Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. ArXiv abs/1412.6980 (2014).
	28.	 Bland, J. M. & Altman, D. G. Measuring agreement in method comparison studies. Stat Methods Med Res 8, 135–160, https://doi.

org/10.1177/096228029900800204 (1999).
	29.	 Williams, M. N., Grajales, C. A. G. & Kurkiewicz, D. Assumptions of multiple regression: correcting two misconceptions. Practical 

Assessment, Research & Evaluation 18 (2013).
	30.	 Osborne, J. W. & Waters, E. Four assumptions of multiple regression that researchers should always test. Practical Assessment, 

Research & Evaluation 8 (2002).
	31.	 Levkovitch-Verbin, H. et al. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest 

Ophthalmol Vis Sci 43, 402–410 (2002).
	32.	 Johnson, J. M. & Khoshgoftaar, T. M. Survey on deep learning with class imbalance. Journal of Big Data 6, 27, https://doi.org/10.1186/

s40537-019-0192-5 (2019).
	33.	 Neyshabur, B., Bhojanapalli, S., McAllester, D. & Srebro, N. Exploring Generalization in Deep Learning. Advances in Neural 

Information Processing Systems 30 (Nips 2017) 30 (2017).
	34.	 Anand, R., Mehrotra, K. G., Mohan, C. K. & Ranka, S. An Improved Algorithm for Neural-Network Classification of Imbalanced 

Training Sets. IEEE T Neural Networ 4, 962–969, https://doi.org/10.1109/72.286891 (1993).
	35.	 Krawczyk, B. Learning from imbalanced data: open challenges and future directions. Prog Artif Intell 5, 221–232, https://doi.

org/10.1007/s13748-016-0094-0 (2016).
	36.	 Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano 

to Macro. 230–233.
	37.	 Wang, L. G. et al. Crowd Counting with Density Adaption Networks. ArXiv, abs/1806.10040 (2018).
	38.	 Valloli, V. K. & Mehta, K. W-Net: Reinforced U-Net for Density Map Estimation. ArXiv, abs/1903.11249 (2019).
	39.	 Zaimi, A. et al. AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks. 

Sci Rep 8, 3816, https://doi.org/10.1038/s41598-018-22181-4 (2018).

Acknowledgements
We have greatly benefitted from stimulating discussions with Prof. Ernst Tamm and Dr. Sebastian Koschade. We 
acknowledge the following funding sources: National Institutes of Health (Bethesda, MD): R01 EY025286 (CRE), 
5T32 EY007092-32 (BGH), R01 EY010145 (JCM), P30 EY010572 (JCM), Department of Veteran Affiars R&D 
Service Career Development Award (RX002342; AJF), Research to Prevent Blindness (New York, NY) (JCM), and 
Georgia Research Alliance (CRE).

Author contributions
M.D.R., B.G.H., A.T.R. and A.J.F. created the rat optic nerve dataset. M.D.R. created the AxoNet software. G.A.C. 
and J.R. created the NHP optic nerve dataset and the AxonMaster software. M.D.R., B.G.H. and C.R.E. wrote the 
manuscript. All authors reviewed and edited the manuscript. J.C.M., C.F.B., M.T.P. and C.R.E. supervised and 
initiated the work.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1038/s41598-020-64898-1
https://doi.org/10.1016/j.exer.2004.12.021
https://doi.org/10.1167/iovs.05-1206
https://doi.org/10.1016/j.exer.2019.107710
https://doi.org/10.1167/iovs.11-9274
https://doi.org/10.1038/srep26559
https://doi.org/10.1038/srep26559
https://doi.org/10.1167/iovs.18-24261
https://doi.org/10.1167/iovs.18-24261
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.brainresbull.2009.04.004
https://doi.org/10.1016/j.brainresbull.2009.04.004
https://doi.org/10.1167/iovs.09-3921
https://doi.org/10.3791/52400
https://doi.org/10.3791/52400
https://doi.org/10.1016/j.exer.2019.107706
https://doi.org/10.1016/j.exer.2019.107706
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://keras.io
https://doi.org/10.1177/096228029900800204
https://doi.org/10.1177/096228029900800204
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1109/72.286891
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1038/s41598-018-22181-4


13Scientific Reports |         (2020) 10:8034  | https://doi.org/10.1038/s41598-020-64898-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-64898-1.
Correspondence and requests for materials should be addressed to C.R.E.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-64898-1
https://doi.org/10.1038/s41598-020-64898-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	AxoNet: A deep learning-based tool to count retinal ganglion cell axons

	Methods

	Rat optic nerve dataset. 
	Animals. 
	Tissue processing and imaging. 
	Annotated dataset construction. 
	Dataset subdivisions. 

	NHP dataset. 
	AxoNet development. 
	Implementation and network architecture. 
	Training. 

	Model Evaluation. 
	Correction equations. 
	Statistical analysis of tool performance on the rat image dataset. 
	statistical analysis of tool performance on the nhp image dataset. 


	Results

	Rat model dataset results. 
	NHP dataset results. 
	Bias. 

	Discussion

	Conclusion

	Acknowledgements

	Figure 1 Rat Dataset Image Variety.
	Figure 2 Histogram of Manual Count Variability for Rat Dataset.
	Figure 3 Comparison between automated and manual axon counts for the rat validation and testing subsets.
	Figure 4 Comparison of error distribution for the rat testing subset.
	Figure 5 Visualization of AxoNet Performance.
	Figure 6 Comparison between automated and manual axon counts for the NHP validation and testing subsets.
	Figure 7 Comparison of error distribution for the NHP testing subset.
	Figure 8 AxoNet Plugin Results.




