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A Method Based on Artificial 
Intelligence To Fully Automatize 
The Evaluation of Bovine Blastocyst 
Images
José Celso Rocha1, Felipe José Passalia1, Felipe Delestro Matos2, Maria Beatriz Takahashi1, 
Diego de Souza Ciniciato1, Marc Peter Maserati3, Mayra Fernanda Alves3, Tamie Guibu de 
Almeida3, Bruna Lopes Cardoso3, Andrea Cristina Basso3 & Marcelo Fábio Gouveia Nogueira   4

Morphological analysis is the standard method of assessing embryo quality; however, its inherent 
subjectivity tends to generate discrepancies among evaluators. Using genetic algorithms and 
artificial neural networks (ANNs), we developed a new method for embryo analysis that is more 
robust and reliable than standard methods. Bovine blastocysts produced in vitro were classified as 
grade 1 (excellent or good), 2 (fair), or 3 (poor) by three experienced embryologists according to the 
International Embryo Technology Society (IETS) standard. The images (n = 482) were subjected to 
automatic feature extraction, and the results were used as input for a supervised learning process. One 
part of the dataset (15%) was used for a blind test posterior to the fitting, for which the system had an 
accuracy of 76.4%. Interestingly, when the same embryologists evaluated a sub-sample (10%) of the 
dataset, there was only 54.0% agreement with the standard (mode for grades). However, when using 
the ANN to assess this sub-sample, there was 87.5% agreement with the modal values obtained by the 
evaluators. The presented methodology is covered by National Institute of Industrial Property (INPI) 
and World Intellectual Property Organization (WIPO) patents and is currently undergoing a commercial 
evaluation of its feasibility.

According to the Agriculture Administration, the Brazilian herd of cattle is currently estimated to be approxi-
mately 215 million livestock units. Brazil produces the second largest worldwide herd and has been the leader in 
meat exportations since 2004 and in sales in more than 180 countries. This activity occurs in all Brazilian terri-
tory, and the gross value of production shows the important social and economic role of cattle for the country1. 
Brazil also leads the global in vitro production of bovine embryos, a segment of the industry that is of utmost 
importance for international and national improvement in cattle genetics and productivity.

In a typical commercial production chain, cattle embryos are produced in vitro and transferred to synchro-
nized receptors when they reach the blastocyst stage2. The pregnancy rate (i.e., success rate) is directly dependent 
on the quality of the transferred embryos3. In the bovine species, there is an embryo classification system that is 
recommended by the International Embryo Technology Society (IETS), which is based on morphological evalu-
ation and establishes three quality grades: excellent or good, “1”; fair, “2”; or poor, “3”3.

This embryo morphological analysis is performed by optical microscopy, and the grading of the embryo 
depends on the accuracy and experience of the embryologist to evaluate the variables that affect the develop-
ment and pregnancy establishment potential of the embryo3, 4. Moreover, this morphological analysis does not 
measure any objective variables to determine the embryo classification; thus, it is subjective and has low repro-
ducibility5. Indeed, the same embryo can be classified with different degrees of quality by different embryologists 
(inter-evaluator error) or even by the same embryologist (intra-evaluator error), especially in cases when the 
quality grade is borderline6.
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Several methods have been or are being developed to provide a better solution for embryo classifica-
tion, including a semi-automatized image segmentation process with the use of artificial intelligence (AI) 
for human embryos7, an automatic segmentation procedure of bovine embryos, but without the use of AI8, a 
semi-automatized grading method of human blastocyst using a support vector machine9, embryo metabolism 
analysis, cellular respiration measurements, the use of zona pellucida birefringence, microRNA profile determi-
nation, analysis based on logistic regression and evaluation by time-lapse video (reviewed by ref. 10). However, 
none of these methods are totally effective, and, despite being subjective and old, visual morphological analysis 
is still widely used4, 6, 11.

Recently, there have been attempts at creating a method based on digital image processing to determine the 
viability of human embryos by detecting blastomeres12, 13 or trophectoderm14. Additionally, using processing and 
digital image analysis in the quality evaluation of mouse blastocysts, a previous study used an artificial neural 
network technique with significant success15. However, as far as we can determine from the studied literature, a 
classification method using digital image processing has not been applied to bovine blastocysts.

In brief, an artificial neural network (ANN) is a system that solves problems by simulating the operation of a 
set of biological neurons. In particular, this artificial intelligence technique is suitable for solving nonlinear prob-
lems by using interconnected variables16–18. Its use is recommended in tasks in which traditional computational 
methods are limited; that is, when a large power of adaptation and generalization is required for data classifi-
cation19. Therefore, the ANN is an intelligent system that can elucidate a complex problem through supervised 
learning. ANNs are already widely used in solving problems related to image processing20, 21. Thus, the technique 
is potentially suitable for blastocyst morphological classification from two-dimensional images, as previously 
described15.

However, there are some limitations in the classifiers that were developed based on ANNs; these barriers 
mainly include the development of the best network architecture (i.e., the number of layers and neurons as well 
as their weights)22.

Genetic algorithms (GAs) are computational methods based on natural mechanisms of evolution and genet-
ics, and are used to solve a combinatorial problem23. Studies such as ref. 24 have demonstrated the successful use 
of GAs to determine the most efficient ANN architecture configuration. Furthermore, the use of GA has been 
effective in prediction models25, 26.

In this work, we use digital image processing to assess bovine blastocyst characteristics based on artificial 
intelligence techniques such as GA and ANN. We aim to classify embryo quality objectively and reproducibly 
using mathematical variables extracted from digital images. With this method, classification errors obtained with 
current subjective classification methods should decrease and the predictive value of gestational success could 
increase if conjugated with a good choice of the recipient of that embryo.

Methods
Embryo image capture and embryologists’ classifications.  For the software development, a database 
containing 482 images captured at the company In Vitro Brasil (Mogi Mirim, SP, Brazil) of bovine blastocysts 
produced in vitro (7 days post-insemination) was used. The images were obtained using an inverted microscope 
Olympus IX71 at 32x magnification and the software Lucam Capture v6.30; images were stored in JPG format 
in 8-bit colour (RGB) at a resolution of 1280 × 1024 pixels. Each image contained only one embryo, which was 
approximately centred in the visual field. To capture the image, the position of the blastocyst was standardized 
such that the plane of focus was in the largest diameter of the embryo and the inner cell mass (ICM) was perpen-
dicular to the focal plane (e.g., Fig. S1 images b, d and f). We excluded any ICM image capture with a tangential 
or angled focal plane. An alternative capture was attempted in which the ICM was positioned parallel to and 
totally at the focal plane (Fig. S1 images a, c and e); however, in a pilot evaluation, this approach was shown to 
be disadvantageous in comparison to standard capture. Furthermore, a pilot experiment (data not shown) was 
conducted to evaluate the benefit of using two images captured from the same embryo in the ANN training (e.g., 
images a and b in Fig. S1). In this pilot experiment, the use of two images did not provide any benefit; therefore, 
this approach was standardized using a single image of the blastocyst and with the ICM perpendicular to the 
plane of focus.

Three experienced embryologists from the company (MFA, TGA and BLC), who were responsible for routine 
laboratory work, classified each image into three quality grades according to the IETS standards3. The blastocyst 
classification (n = 482) was distributed as follows: 113 images were classified as grade 1 (excellent/good); 175 were 
classified as grade 2 (fair); and 194 were classified as grade 3 (poor). After the blastocyst classification, the mode 
of the three evaluations was calculated as the main variable for use in the ANN training.

Image processing.  The digital image processing is an essential step to analyse and extract information from 
the blastocyst images. This information was used to obtain the input and output variables that were presented to 
the neural network during its training. The digital image processing comprised a series of techniques that have 
been widely used in solving several problems. This processing ranged from improving photographs to computer 
vision27.

Image standardization.  Each laboratory applies a different standard to capturing images; therefore, stand-
ardizing these methods has become indispensable. In addition to the resolution and formatting differences, dif-
ferent batches of images can have distinct lighting characteristics (Fig. S2).

For the segmentation and extraction of information to find similar conditions independently of the images’ 
original features, all the factors must be considered. All of the algorithms were developed using the MATLAB® 
platform28, 29 and enabled the automated analysis of the images without the need for user intervention.
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For standardization, the software consecutively followed the steps of image import, conversion to greyscale, 
resolution and proportion adjustment, and intensity adjustment (Supplementary Section 1).

Blastocyst image segmentation.  Once standardized, the images underwent a segmentation process, 
whereby the images were properly isolated from the background and were then subjected to the information 
extraction techniques. The steps used in the segmentation algorithm are described in detail in Supplementary 
Section 2.

Texture analysis.  The image texture was defined by repeated random regular patterns in a region of the 
image that provided information on the surface structure30. This variable is considered an important characteris-
tic that is used to identify the regions of interest in an image31.

Among the statistical methods used to analyse the textures in images, the Grey Level Co-occurrence Matrix 
(GLCM) is considered to be among the most efficient10, 30, 32. GLCM describes the spatial distribution of the 
intensity values of the pixels by considering a determined distance and angle, which makes it possible to recognize 
and classify textures. Each matrix is the probability of two neighbouring pixels (one with intensity i and another 
with intensity j) at a determined distance d and angle θ, which forms P = (i, j, d, θ). For the calculation of GLCM, 
the image intensity was adjusted to have only 8 shades of grey. The image seen in Fig. S5 was used to generate the 
GLCM values listed in Table S1.

Watershed Transform.  The image segmentation step has a substantial influence on the independent inter-
pretation of different regions. Two main approaches can be used for segmentation: detecting edges, which delim-
its a region, or searching for regions that have similar pixel intensities. The Watershed methodology searches the 
targeted image using the second strategy33. The Watershed transform proposes a morphological approach to the 
image segmentation problem through its interpretation of pixel intensities as surfaces, in which the grey levels of 
each pixel determine the height of a given region. Based on this concept, drainage basins, which are defined by 
regions of local minima and their domain regions, can be identified34.

Figure S9 shows an example of blastocyst segmentation by the Watershed transform. For visualization pur-
poses, each region was assigned a random colour. The ICM has the largest area after segmentation, probably 
because it is a relatively homogeneous dark region. Therefore, the largest segmented area was used as an ICM 
mask in the variable extraction steps.

Variable extraction.  Once the embryo was properly standardized and isolated, an information extraction 
step was conducted (i.e., a numerical vector that represents the original image). Then, the variables obtained were 
used as inputs for the ANN technique.

All of the information extraction steps were performed automatically and without the need for user inter-
vention. After the blastocyst image standardization and segmentation, the variables were extracted and used to 
determine the input vector for the ANN. To denominate the variables, the notation ER was used to refer to the 
blastocyst image version with an expanded radius by 5 pixels, RR was used to refer to the reduced radius by 40 
pixels, and TE was used to refer to the difference between the two radii (Fig. S8). For a complete description of the 
chosen variables, see Supplementary Section 3. The 36 chosen variables were sufficient to extract all of the relevant 
information for the representation of the analysed bovine blastocyst image.

Collinearity analysis.  After the variable extraction was performed as described above, collinearity analysis 
was performed. This variable analysis was used as the input for the ANN, which is a common and recommended 
practice22. Using this analysis, it was possible to eliminate those variables that were correlated with one another 
(i.e., redundant), a factor that could lead to an unwanted predisposition in favour of certain variables over others.

It was also possible to determine the Variance Inflation Factor (VIF), which represents the degree of inde-
pendent variable multi-collinearity when compared with the other independent variables. As a rule35, collinear 
variables can be considered to be those with higher VIF values than 10. The VIF value can be calculated per 
Equation 1, in which Ri is the determining coefficient of the regression of a variable i.

=
−

VIP
R

1
1 (1)i

2

In this case, 13 iterations were performed until all of the variables had a VIF value of less than or equal to 10. 
Thus, at the end of the collinearity analysis, 24 variables remained for use in the ANN (Correlation RR, Energy 
RR, Correlation TE, Homogeneity TE, C1, Mean C1, C2, Mean C2, C3, Mean C3, C4, Mean C4, Sum, Mean ER, 
Mode RR, Mean Count RR, Bright RR, Mode TE, Mean Count TE, Bright TE, WSN, Convex ICM, Eccen ICM, 
and Mean ICM). Their mathematical and biological aspects are described in Table S2 (Supplementary Section 5).

After the variables that model the bovine blastocyst images were defined, the techniques of ANN and GA were 
applied.

Artificial neural network.  For the ANN learning process, the Backpropagation algorithm was used16, 18. The 
database (n = 482 blastocysts images) was divided into training, validation and test, with, respectively, 70, 15 and 
15% of the images and following an already established validation standard36–40. Several transfer functions that 
perform the passage of information between neurons were used (logsig, purelin, tansig, hardlim, tribas, radbas 
and satlin28), training functions (trainrp, trainscg, traincgf, traingdx and traingdm28), hidden layers (between 1 
and 3), and the number of neurons in each layer (between 10 and 120, ref. 17).
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The accuracy of the obtained ANN was verified according to the error between the real values (the mode of the 
embryologists’ evaluation) and the values obtained by the ANN16, 17, 41, 42.

However, there is no standard method for obtaining the best architecture (the number of neurons in each 
layer, number of layers, training and transfer functions) of the ANN for a solution to a problem43. Thus, the GA 
technique was used to improve the efficiency of determining the best ANN architecture for our problem23.

Genetic algorithm.  In this study, we considered that the population to be studied by the GA was formed 
by different ANNs, and the goal was to obtain networks that had the lowest error in the blastocyst image classi-
fication. The GA technique developed in our study considered the creation of an ANN initial population with 
different architectures (individuals), which was randomly generated and composed of 100, 200 or 300 individuals.

Each one was defined by a “genetic code”, in other words, specification by 9 different genes (the number of 
neurons in the first, second and third hidden layer; the transfer function for the first, second and third hidden 
layer; the transfer function for the output layer; the training function to be used; and the quantity of hidden layers 
to be used). Each ANN was trained and tested, and their success percentage for the degree of classification was 
assessed. Therefore, the ANN architecture was defined in terms of its accuracy. A flowchart of the GA is shown 
in Fig. S10.

In the next step, a selection process according to elitism was used. In this process, individuals were organized 
based on the accuracy obtained by the ANN in the embryo classification of the test data. After the selection step, 
10% of the fittest individuals (i.e., with lower misclassification) were used in the next generation.

In the replication and replacement step, beyond the 10% of the fittest individuals from the previous genera-
tion, 60% of the population consisted of new individuals added from the technical application of crossing-over 
and mutation among the individuals of the population (which yielded a maximum of 5% for the mutation effect). 
The remaining individuals (30%) were generated randomly while respecting the conditions that stemmed from 
the initial population. After selection, replication, and replacement, there was a new population from which the 
best ANNs were saved. This cycle was termed a generation.

On average, 1000 generations were produced for each population created. When we determined the num-
ber of individuals in the initial population (100, 200 or 300 individuals), this number of individuals remained 
unchanged until the end of the 1000 generations. The entire procedure was performed 500 different times for 100, 
200 and 300 individuals.

Further statistical analysis.  Specific techniques were used to test whether the data obtained during the 
information extraction steps and database classification were correctly interpreted.

Receiver Operator Characteristic (ROC): One way to analyse the ANN results for pattern recognition is 
through a ROC curve. For ROC, two values are required: 1) the ratio of true test positives to total positives 
(TPR = True Positive Rate), or the Sensitivity; and 2) the ratio of false positives to the total negative (FPR = False 
Positive Rate), or the Specificity. The ROC curve is constructed using a diagram that represents the sensitivity 
values per the proportion of false positives given by (1 - specificity) for a diverse set of cut points44.

Confusion Matrix: This methodology is used to analyse the multiclass system results. Through this method, it 
is possible to observe the intersection between the data provided by the classifier (ANN system) and the original 
feedback rating (mode of the embryologists). Thus, we can obtain the overall accuracy of the system as well as the 
accuracy for each class (i.e., each quality grade)45.

Kappa index: The Kappa statistic, or coefficient, is often used for measuring the agreement between two or 
more evaluators when there is a degree of subjectivity in their interpretations. A Kappa index of 1 indicates a 
perfect agreement between the evaluators, and a value of 0 indicates that the evaluation by the observers is virtu-
ally random46–48. To evaluate the Kappa index, a sample of 10% of the image database (n = 48) was used twice in 
separate evaluations, and three embryologists reclassified the previously classified images in a blind test. Thereby, 
we measured the intra-evaluator disagreement rate, which, together with the rate of disagreement among evalu-
ators (classification of the total images database, n = 482), provided the profile of the embryologists’ subjectivity.

Results
From the analysis of 482 blastocyst images, the three best ANN architecture parameters obtained using the GA 
technique are presented in Table 1. The ANN was successful for grades 1, 2 and 3 of the embryo quality (Table 1) 
when referring to the test data (15% of the total sample), and they were not used for training the ANN (i.e., the 
test data were used in a blind test).

Considering only the test data, the confusion matrix for architecture 1 (Table 1) is shown in Fig. 1. In this 
image, the green and red cells represent the successes and errors in the ANN classification, respectively, compared 
to the mode of the embryologists’ evaluation.

In the confusion matrix, it can be observed that the ANN correctly classified 76.4% of the embryos in the test 
data (blue cell, Fig. 1). There were only four images that had serious classification errors (5.6% of 72 images); 
these errors occurred when the embryologist classified the embryo as grade 1 and the ANN classified the embryo 
as grade 3 (and vice versa). Nevertheless, the technique demonstrated robustness in the consistency of the 
classification.

The ROC curve obtained for the test data set (Fig. 2) showed excellent performance for the ANN; that is, the 
curve is well placed on the northwest region of the graph.

The performance of the ANN architecture 1 on the totality of the generations is shown in Fig. 3.
This work resulted in two different interfaces, which were an interface developed using the MATLAB® plat-

form and an interface developed using a multiplatform approach for online purposes. For both interfaces, we 
called the program “Blasto3Q”, which refers to the three qualities of the blastocyst evaluation. In the first case, a 
graphical user-friendly interface was created. In this way and in accordance with the recommendations for the 
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commercial use of the program, the potential user can interact with the program in a fast and intuitive way. This 
interface (Fig. 4) contains a description of the 24 variables that are extracted from the image and analysed by the 
ANNs; moreover, it classifies the same loaded image through the best three obtained ANNs (Architectures 1, 2 
and 3, Table 1).

In addition, there are three superior tabs that are available: in the first tab (Blasto3Q), there are options to 
clear the data or to close the interface; in the second tab (Examples), there are three images for standard models 
of grade 1 (excellent/good), 2 (fair) and 3 (poor); in the third tab (Help), one sub tab provides a nominal descrip-
tion of the variables that are used, and the other sub tab provides the authors’ names and corresponding e-mail 
addresses. Moreover, in the inferior region of the interface, there is a button (Load Image) with which the user can 
select an image from a personal file for the software analysis, and a button (Show Process) that makes available 
graphical representations of the Standard, ER, RR, TE, Intersection and Watershed variables of the selected image. 
Finally, by clicking the Calculate button, the software classifies the image of the selected blastocyst and the ANN 
provides a histogram, which appears at the bottom right of the open window. In Fig. 4, all of the tabs and buttons 
are shown. The performance of the three ANNs of the interface is shown in Fig. S11.

The second developed interface allows the on-line use of Blasto3Q via a cell phone (smartphone) or a PC. In 
these cases, a server PC receives the embryo image via upload and provides the results to the user (see Fig. S12 
and the link to Blasto3Q in Supplementary Section 6).

Parameters

ANN Architecture

1 2 3

Neurons 1st layer 80 95 59

Transfer function
between input and 1st layer tribas radbas Tribas

output layer purelin purelin Purelin

Training function trainscg traincgf Trainscg

Success grade 1 (%) 71.4 66.7 65.0

Success grade 2 (%) 71.4 78.3 70.8

Success grade 3 (%) 81.1 80.6 89.3

Total success (%) 76.4 76.4 76.4

mse (mean square error) 0.116 0.082 0.126

Table 1.  Parameters of the best ANN architectures obtained using the GA.

Figure 1.  Confusion matrix for the ANN test data with architecture 1.
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Discussion
From the general results obtained, the applied artificial intelligence technique which combined the ANN and GA 
methods, was successful (76.4% accuracy) in classifying the in vitro bovine blastocyst quality. The application 
of the GA aimed to select the ANN that had the best performance in bovine blastocyst classification using 1000 
generations. To emulate the Darwinian principle of natural selection via crossing-over, mutation and migration, 
there was an evolutionary convergence of all the selected ANNs (Table 1) because they had only one hidden layer, 
a transfer function for the first layer (tribas or radbas), only the purelin function for the output layer, and the 
training functions trainscg or traincgf.

In this work, the ANN training was considered to be the mode among the evaluation of three experienced 
embryologists of In Vitro Brasil. Thus, the output value from the ANN for a blastocyst image was compared to the 
mode from the embryologists’ evaluation of this same image. The option for the mode of the three evaluations 
(as a comparison standard) avoids the bias of using a single evaluation as the standard for the ANN training15, 49. 
Although the embryologists were experienced, the Kappa index was 0.571 (482 images, P < 0.001), which shows 
that there was a moderate or weak agreement among their evaluations; similar discrepancies have reported by 
others4, 11. In ref. 6, a Kappa index of 0.42 was reported (where 1.0 indicates complete agreement among the eval-
uators) for the image evaluations of bovine embryos produced in vitro. Thus, the result obtained using artificial 
intelligence methods (Table 1), in which the best ANNs had 76.4% accuracy, was even more satisfactory because 
the Kappa index of the three ANNs was 0.616 (482 images, P < 0.001) and there was a low percentage of serious 
errors (5.6%). This type of error (differing by ≥2 degrees of quality) has been reported to be 10%49 when two of 
five experienced embryologists evaluated images of bovine embryos.

In the interface provided to the user, the best three ANNs are made available. Although all of the ANNs had 
similar accuracy, they varied in the classification of the embryos in a manner that mimicked the variations among 
experienced embryologists. For example, there were subtle differences in the best result of a certain grade. Thus, 
the best ANNs to classify the quality grades 1, 2 and 3 were architectures 1, 2 and 3, respectively (Table 1). In this 
way, the interface mimicked the increase in the robustness of the classification when more than one embryologist 

Figure 2.  ROC curve for the ANN test data with architecture 1.
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assesses an embryo. When evaluating the same image with the three ANNs, the user can discover whether there 
is consensus among the ANNs or, in the absence of full agreement, opt for the classification that is provided from 
two of the three networks.

As a blind test to determine the intra-evaluator variation (i.e., the subjectivity of the evaluation by an embry-
ologist), 48 images were chosen (10% of the total sample and the more complex images, which were evaluated as 
borderline between two grades). In most of these images, the embryologists did not reach complete agreement 
regarding the blastocyst classification. After two new blind classifications of the 10% sample (three evaluations 
in total, considering the first sample with 482 images), a low intra-evaluator agreement was observed (35, 48 and 
52%) as well as Kappa indexes of 0.28, 0.41 and 0.47, respectively (P < 0.001). A similar event was reported by a 

Figure 4.  Tabs and buttons of the user-friendly interface. (a) Tab with options to clear the data or to close 
the interface; (b) tab with three images as standard models of excellent/good, fair, and poor; (c) tab with the 
variables and about the authors; (d) tab with the nominal description of the 24 variables; (e) tab with the 
authors’ details and e-mail correspondences; and (f) Standard, ER, RR, TE, Intersection and Watershed images 
of the selected embryo.
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previous study11, in which the investigators observed a non-optimal intra-embryologist Kappa index. When such 
a reclassification (a sample of 48 images) was compared to the original mode value used for the ANN training, 
there was a success rate of 54, 52 and 50% for the embryologists. However, the best obtained ANN reclassified the 
48 images with an accuracy of 87.5% compared to the original mode value. Additionally, when the intra-ANN 
agreement was evaluated, there was 100% agreement and a Kappa index of 1.0 when comparing the grade scored 
for the same image in each of the three analyses. Thus, these results support the robustness and low subjectivity in 
the grading of blastocyst images by the ANNs.

Both of the graphical interfaces that were created allow for friendly use of the program and differ from other 
attempts to semi- or fully automatize embryo evaluation7–9 in the absence of such an interface (Fig. 4).

In both interfaces, the result is shown as a histogram, which presents the relative magnitudes in each of the 
quality grades (excellent/good, fair, poor). Thus, the user can interact with the tool to check whether their per-
sonal evaluation of the same image is consistent with the results presented by the chosen ANN. Moreover, the 
subtle information provided by the histogram is the weight of the highest and second grades; that is, the reliability 
of the highest grade provided by the network or a decision on an intermediate grade when the weights for two 
grades are very close. Similarly, a user-friendly interface is available only on devices that have time-lapse embryo 
monitoring (Primo VisionTM, EevaTM Test and Embryoscope®) and built-in software for the evaluation of the 
kinetics and cleavage symmetry50.

As far as we can determine, this study is the first to develop a fully automated ANN-based software for the 
evaluation of mammalian embryos. Although ref. 7 used artificial intelligence (Levenberg-Marquardt neural net-
works) for oocyte and embryo classification, their method was semi-automated. In ref. 8, a non-supervised algo-
rithm for the automatic segmentation of bovine embryos was proposed, but this algorithm did not use artificial 
intelligence or classify the embryo quality according to the criteria of the IETS. In ref. 9,73 human blastocysts 
were evaluated by a Support Vector Machine classifier, and the authors developed a semi-automated classification 
system.

Finally, the developed program can be used as a mobile application, in which a provider performs the analysis 
themselves and only sends the results to the phone; this application is in accordance with the current trend toward 
software mobility. In ref. 51, the authors developed an application associated with a single-ball lens to increase the 
compatibility of the image for use on mobile phones. This device enabled the evaluation of human semen samples, 
and the results for the sensitivity and specificity when compared to the standard method (CASA) were 87.5% and 
90.9%, respectively.

The artificial intelligence technique that combines GA and ANN proved to be a powerful tool for the classifi-
cation of bovine blastocysts. After the training with the mode of the embryologists’ evaluation, the program had 
a high accuracy and less subjectivity than the embryologists themselves; that is, high reproducibility when they 
classified the same embryo image three separate times.

The robustness of the combined technique with the ease of using an interface created for an interaction 
between the embryologist and the software can become a tutorial technological tool to be used both for academic 
purposes and in commercial laboratories. In these areas, which work on a large scale with the in vitro production 
of bovine embryos, the program could add a quality label and better tracking for the embryo. Currently, the 
program is protected by national (BR 10 2012 0319535 A2, ref. 52) and international (WO/2014/089647, ref. 53) 
patents. We did not overlook the potential for the adaptation of the current version of the program (to the bovine 
species) to be applied to the classification of human embryos. This potential could open prospects for its incorpo-
ration (built-in) into the existing commercial equipment used in embryo time-lapse monitoring.
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