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Rapid industrialization and population explosion has resulted in the generation and

dumping of various contaminants into the environment. These harmful compounds

deteriorate the human health as well as the surrounding environments. Current research

aims to harness and enhance the natural ability of different microbes to metabolize these

toxic compounds. Microbial-mediated bioremediation offers great potential to reinstate

the contaminated environments in an ecologically acceptable approach. However, the

lack of the knowledge regarding the factors controlling and regulating the growth,

metabolism, and dynamics of diverse microbial communities in the contaminated

environments often limits its execution. In recent years the importance of advanced

tools such as genomics, proteomics, transcriptomics, metabolomics, and fluxomics

has increased to design the strategies to treat these contaminants in ecofriendly

manner. Previously researchers has largely focused on the environmental remediation

using single omics-approach, however the present review specifically addresses the

integrative role of the multi-omics approaches in microbial-mediated bioremediation.

Additionally, we discussed how the multi-omics approaches help to comprehend and

explore the structural and functional aspects of the microbial consortia in response to the

different environmental pollutants and presented some success stories by using these

approaches.

Keywords: environmental pollution, metagenomics, metatranscriptomics, proteomics, metabolomics, fluxomics,

bioremediation

INTRODUCTION

The quality of life on Earth is inevitably related to the overall quality of the environment. As human
activity has increased around the globe, the Earth has been contaminated with a large number of
toxic pollutants from multiple sources (Raghunandan et al., 2014, 2018). The shrinking of natural
resources, an increase in pollution and carbon emissions and other problems related to human
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health are the consequence of industrialization and have proven
disastrous for every global region (Ahuti, 2015). Industrialization
not only entails hi-tech innovations but also affects the economic
and social transformation of human societies (Mgbemene
et al., 2016). The industrial revolution, has resulted into
hazardous health problems that are amplified by the large-scale
environmental contaminations (Figure 1). The advancements in
the field of technology and industrialization, brings with them,
their obnoxious partners, pollution as well as degradation of the
environment. These revolutions have led to both intentional and
accidental discharges of toxic gases, chemicals, and xenobiotics
into the environment.

Environmental contamination is a pertinacious problem and
continues to be a burden to human health. While a number of
approaches have been used to monitor and reduce this problem,
it remains a difficult issue. Globally, both the environment
and humans are affected by these hazards. To safeguard both
humans and environment from the adverse consequences of
environmental pollution novel approaches must be designed, and
bioremediation is one such approach. Interest in the microbial-
based bioremediation of contaminants has increased in recent
years, as people endeavor to find sustainable ways of remediating
polluted environments (Raghunandan et al., 2014, 2018; Kumar
et al., 2016). The biotransformation and bioremediation-based
methods strive to harness the naturally occurring microbial
catabolic diversity to degrade, transform or accumulate vast
amounts of problematic compounds, including radionuclides,
metals, pharmaceutical substances, polyaromatic hydrocarbons
(PAHs), and polychlorinated biphenyls (PCBs). Advancements
in NGS (next generation sequencing) in recent years has

FIGURE 1 | Different sources of environmental contamination.

allowed detailed genomic, metagenomic, and bioinformatic
analyses of environmentally important microorganisms, thereby
providing unprecedented insights into key biodegradative
pathways. Mukherjee et al. (2017), studied the microbial
responses to hydrocarbon-contaminated environments and
suggested that substantial taxonomic and functional variation
occurs in different geographically and spatially isolated oil-
polluted sites. In addition to providing significant analytical
and visual methods for understanding the relation between
the soil microbiome and ecosystem functioning, their study
provided novel insights into the ecological dynamics of
hydrocarbon-contaminated sites. A study carried out by Luo
et al. (2014) revealed that soil microbial diversity varies in
response to heavy metal contamination. Hauptmann et al.
(2017) investigated microbial metagenomes from the ice sheets
of Greenland and isolated potential microbial genes for the
degradation and resistance to contaminants, such as heavy
metals (lead and mercury), polycyclic aromatic hydrocarbons
(PAHs), and polychlorinated biphenyls (PCBs). Similar studies
were carried out by Joshi et al. (2014) that investigated the
metagenomes isolated from petroleum muck, which revealed
the indigenous microbial communities inhabiting the petroleum-
contaminated sites. Recently, a number of research papers
(George et al., 2011; Kumavath and Deverapalli, 2013; Bell
et al., 2014; Pushpanathan et al., 2014; Ufarté et al., 2015;
Czaplicki and Gunsch, 2016; Chistoserdova, 2017) have been
published wherein different authors have emphasized individual
genomic or transcriptomic approaches in bioremediation of
environment. Previously researchers has largely focused on
the environmental remediation using single omics-approach,
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however the present review specifically addresses the integrative
role of the multi-omics approaches in microbial-mediated
bioremediation. Additionally, we discussed how the multi-omics
approaches help to comprehend and explore the structural and
functional aspects of the microbial consortia in response to the
different environmental pollutants and mentioned some success
stories by using these approaches.

MECHANISM OF THE BIOREMEDIATION
PROCESS

Bioremediation is the application of microbes to degrade
environmental pollution. It is an ecologically sound and state
of art practice that utilizes microbial processes to completely
remove the toxic contaminants. Microorganisms are not only
important in regulating the biogeochemical cycles (Griggs et al.,
2013), perpetuating the atmosphere (Morris et al., 2011), keeping
us healthy and suppressing the plant diseases and helping them
to grow (Pineda et al., 2017) but also play their part in cleaning
of environmental pollutants (Morris et al., 2011). Microbial
mediated bioremediation is of great significance because it
promises a cheaper, simpler and more environmentally friendly
method when compared to the more commonly employed
“muck, suck and truck” non-biological remedial methods, in
which the contaminants are simply pumped up or dug out and
are then shipped elsewhere (Lovley, 2003). However, the promise
of bioremediation is yet to be fully realized. One reason for
this is that bioremediation approaches that are successful at one
location may not be effective in other locations. Additionally,
the microbial processes that remediate pollutants under lab
conditions may fail to perform adequately in the field. The
reasons for such failures are, however, unclear, and as a result
many managers are unwilling to use bioremediation as an
option for environmental clean-up. Moreover, the mechanisms
that control the growth and activity of microorganisms in
contaminated environments are not well understood, thereby
limiting the implementation of bioremediation (Lovley, 2003).
Dynamic behavior, nutritional flexibility and knack of adapting
to extreme environmental conditions make microbes the most
suitable life forms for endurance. This feature of microbes
is advantageous and beneficial to the mankind particularly
when it comes to elimination of pollutants and other toxic
compounds from the environment. Microbes have the tendency
to degrade contaminants from the environments and do so
via diverse enzymatic process, thus mitigating or removing the
environmental contaminations (Lovley et al., 1991). An extensive
list of the microbes that carry out the bioremediation processes is
available (Satyanarayana et al., 2012; Prakash et al., 2013; Abou
Seeda et al., 2017). Microorganisms can carry out environmental
restoration through a diverse array of processes, such as binding,
oxidation, volatilization, and immobilization or by chemical
transformation of the pollutants. One of the most common types
of the bioremediation technique is the oxidation of the toxic
organic pollutants to the harmless products (Figure 2). Oxygen
the most common electron acceptor for microbial respiration as
well as the agent for the aerobic degradation of wide range of

organic pollutants ranging from arenes such as from benzene to
xenobiotics (pesticides) has been studied in detail (Wackett and
Hershberger, 2001). While a vast phylogenetic diversity is able
to degrade aerobic pollutants (Wackett and Hershberger, 2001),
but Pseudomonas species and its close associates are the most
intensively investigated organisms due to their ability to degrade
many different contaminants.

Ideally, bioremediation approaches should be designed based
on knowledge of the particular microorganisms inhabiting the
contaminated areas, including their metabolic processes and
how the microorganisms react to changes in the environmental
conditions. Unfortunately, in practice, this specialized knowledge
is not easily available, and the use of microbes in bioremediation
is extremely experimental rather than knowledge-based.
Although at present the science of bioremediation is still far from
ideal, it now seems achievable. Common terminologies used in
this article are given in Table S1.

STRATEGIES TO STUDY MICROBIAL
MECHANISMS WITH AN AIM TO EXPEDITE
THE BIOREMEDIATION PROCESS

Pre-genomics Access to Bioremediation:
Culture-Based Techniques
Microbes are the most diverse and profuse forms of life
on earth, and they emerge as key players in important
ecological processes, such as organic matter putrefaction, soil
structure formation, and the recycling of important chemical
elements. Thus, microbes play a vital role in regulating the
global biogeochemical cycles (Garbeva et al., 2004). Knowledge
regarding microbial dynamics and their interactions with
biotic and abiotic factors is an indispensable tool in the
fields of bioremediation, biotechnology, pharmacy and energy
production processes. Currently, the majority of studies that
are related to bioremediation processes rely on the “treatability
study,” in which samples from contaminated sites are typically
incubated under laboratory conditions, and the rates at which the
contaminants are immobilized or degraded are recorded (Head
et al., 2003). These studies provide an estimate regarding the
potential metabolic activities of the microbial consortia but give
little insight into the microbes responsible for bioremediation.
When bioremediation processes are studied more precisely,
an effort is made to isolate and characterize the organisms
that are responsible for remediation (Head et al., 2003).
The major drawback of culture-dependent techniques is that
greater than 99% of microbes that inhabit the diverse natural
environments are either uncultivable or are very difficult to
culture (Vartoukian et al., 2010; Dickson et al., 2014; Bursle
and Robson, 2016). The recovery of microbial isolates that are
responsible for bioremediation processes is invaluable because
the study of these isolates provides an opportunity to scrutinize
their biodegradation reactions, along with other physiological
aspects that are liable to control growth and other activities
in the polluted environments. To overcome these limitations
and drawbacks, a number of DNA-based molecular techniques
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FIGURE 2 | Microbial-based bioremediation mechanism.

have been devised to explore the microorganisms responsible for
bioremediation.

Molecular Approaches to Study Microbial
Bioremediation
For years microbiologists have sought a reliable technique to
ascertain the microbial diversity in environmental samples. A
number of molecular methods have been developed for this
purpose. The development of the analysis of 16S rRNA gene
sequences has significantly enhanced our ability to understand
and explore the microbial world (Armougom and Raoult, 2009;
Ju and Zhang, 2015). This has countered the idea that only
a small percentage of the bacteria are isolated using culturing
methods (Carroll and Patel, 2015). Denaturing gradient gel
electrophoresis is applied in the field of microbial ecology to
profile the complex microbial diversity and is devoid of the
biases inherent in culture analysis (Fakruddin and Mannan,
2013). Molecular-based approaches such as denaturing gradient
gel electrophoresis allows the separation of 16S rRNA genes
based on the decreased electrophoretic mobility of partially
melted double stranded DNA (dsDNA) in polyacrylamide gel
that contains either a linear gradient of temperature or a linear

gradient of DNA denaturant (a mixture of formamide and urea).
The primary advantage of this technique is that it generates
a profile of the entire diversity of the microbial community
by separating a mixed population of 16S rRNA gene products.
However, these techniques have several limitations, biases, and
drawbacks. For example, the dominant populations are better
revealed, and the bands obtained from multiple numbers of
species may be obscured behind a single band, thereby leading
to an underestimation of the microbial diversity (Satokari et al.,
2001; Gafan and Spratt, 2005; Green et al., 2010). Recently,
DGGE based analysis of 16S rRNA sequences has been used to
investigate and profile complex microbial diversity and to deduce
the phylogenetic affiliation among these microbial communities
(Nishimura et al., 2010).

ROLE OF OMICS-APPROACHES IN
MICROBIAL BIOREMEDIATION

Microbial-bioremediation process utilizes the indigenous
microbial communities to clean up the environmental
contaminations. The rate at which the contaminants are
detoxified depends on a number of factors such as the

Frontiers in Microbiology | www.frontiersin.org 4 June 2018 | Volume 9 | Article 1132

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Malla et al. Bioremediation of Environmental Contaminants

composition of the indigenous microbial communities, nature,
and extent of the pollutant and environmental conditions
(Chakraborty et al., 2012). Thus, the optimization of the
bioremediation process demands the combination of various
complex variables, to understand and envisage the fate of
environmental pollutants. Molecular approaches such as
genomics, proteomics, transcriptomics, metabolomics, and
fluxomics are now consistently finding their applications in
bioremediation process so as to understand the exact mechanism
involved. the advent of NGS methods and in silico analyses
have enabled the environmental microbiologists to address
these problems and has helped them to open up the microbial
“balckbox” in contaminated environments (Maphosa et al.,
2010). A number of microbes haves been reported that carry
out the degradation of different environmental contaminants
(Table 1). The application of omic-tools for the taxonomic
and functional aspects of the microbial communities from
contaminated sites has led to the discovery of some novel
bacteria that otherwise were not accessible by using the
traditional culturing techniques. Recently, high through-put
omics-approaches have been employed to explore the systems
biology of the microbial consortia in myriad of environments.
However, the successful implementations of these multifaceted
bioremediational approaches necessities a much detailed and
comprehensive understanding of the factors that govern the
growth, metabolism, structure, dynamics, and functions of
the indigenous microbial consortia of these sites. Here is
where the recent advances and breakthroughs in genomics,
metatranscriptomics, metaproteomics metabolomics, and
fluxomics along with in silico (bioinformatics) analysis play
their part by providing key in-sights in understanding and
exploring the microbial communities and their mechanisms
in the bioremediation of environmental contaminants.
These approaches have made it practically possible and
economically feasible to explore the metagenomes of
contaminated environmental samples, harboring diverse
microbial communities. This has not only provided an insight
regarding the diversity, but also putative information about
the meta-functionality of the microbial populations inhabiting
the contaminated environments. Even the combination of data
generated via different omic-approaches may be used to study
the microbial metabolism during the bioremediation processes.
Studies like these will provide an opportunity to develop
efficient strains of microbes, so as to improve metabolism
of different xenobiotics (Desai et al., 2010). The efficiency of
the bioremediation will definitely be increased if the precise
molecular approaches are properly used and scientifically
pursued.

Combined results from various “omics tools” has offered
key insights regarding the survival, metabolism, and interaction
of the microorganisms in their native environments including
gut microbiomes (Gill et al., 2006), deep-sea sediments (Hu
et al., 2010), groundwater and marine systems (DeLong,
2005; Benndorf et al., 2007; Hemme et al., 2010), and
extreme milieus (Baker and Banfield, 2003). In order
to expedite the complete remediation of contaminated
environments a comprehensive understanding of the physiology,

biochemistry, ecology, and phylogeny of the indigenous
microbial consortia of contaminated sites is warranted. The
application of genome-based techniques in the investigation
of both environmental samples and pure cultures makes it
possible to build the models that are required to predict the
activity of microbes under diverse bioremediation strategies
(Figure 3).

Culture-Independent Insight:
Metagenomics
The field of metagenomics is undergoing a rapid evolution
amid the arrival of next generation sequencing technologies. The
science of metagenomics has bypassed the need for cloning and
has facilitated a new approach of comparative metagenomics.
Advances in high-throughput technology have revolutionized
the field of microbiology. Metagenomics, a rapidly growing and
young field of research, aims to investigate uncultured organisms
in order to understand the true diversity of microbes, their
functions, cooperation, interactions, and evolution within diverse
environments. A relatively new approach of molecular biology,
metagenomics was used for the first time by Handelsman et al.
(1998) while studying the chemistry of unknown soil microbes.
Metagenomics involves a culture-independent sequencing-based
analysis of DNA that is isolated from the environmental
samples, i.e., metagenomes (Daniel, 2005). Sequence phylotyping
provides reliable information regarding both diversity (What
microorganisms are there?) and function (What can the
microorganisms do?). Metagenomics has helped us in closing the
gap left by culturing techniques and has provided insights into
in situ microbial structures, dynamics and functioning thereby
enhancing bioremediation processes.

APPROACHES TO METAGENOMIC
ANALYSIS

Metagenomic approaches generally fall into one of two
categories: function based or sequence-based. Together, these
approaches have increased our understanding of the unculturable
microbial world and have, therefore, also provided insights into
the prokaryotic world that is otherwise obscure.

Sequence-Based Analysis
Sequence-based metagenomic analysis provides microbial
information irrespective of culturing. In comparison to
functional screening, the sequence-based approach depends on
the sequence analysis to provide a basis for function prediction.
Substantial databases are catalogd in the “Environmental
Genome Sequence” database, and the sequencing assignments
become more instructive and informative over time because data
are continuously compiled from diverse sources. Sequence-based
metagenomic analysis can be used for gene identification,
genome assemblages, clarifying complete metabolic pathways
and comparing organisms from different communities.
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FIGURE 3 | Genome-based approaches that contribute toward the development of models of how microbes function in the polluted environments (a) Cells: the

isolated cells from the environmental samples gives an opportunity to furnish/obtain information on the gene composition as well as in-depth physiological analysis (b)

DNA: Genomic DNA extracted from the environmental samples provides information and knowledge regarding the genetic potential of the yet-unculturable

microorganisms (c) mRNA and Proteins: mRNA and proteins extracted from the environments furnishes information about the gene expression under varied

environmental conditions.

Function-Based Analysis
Functional metagenomics is a potent and powerful method
for studying the functional aspects of genes. Function-
based metagenomic analysis involves isolating DNA from
environmental samples to study the functions of the encoded
proteins (Lam et al., 2015). In functional-based metagenomic
analysis, DNA fragments are cloned, expressed in a laboratory
host and screened for enzymatic activities. The function-based
metagenomic approach allows the discovery of novel genes, and
metagenomic sequencing offers unique opportunities to explore
novel environments that have yet to be studied. Functional
analysis plays a pivotal role in these studies by giving important
information regarding the metabolic and functional diversity
(Prakash and Taylor, 2012).

METAGENOMICS IN BIOREMEDIATION

Environments where anthropogenic activities are widespread
have often been contaminated by various types of toxic
compounds (Pacwa-Płociniczak et al., 2011). This contamination
varies and affects the most important aspects of our ecosystem,
such as the air, water, and soil (Saharan et al., 2012).
The relationship between species diversity and ecosystem
function has long been an area of interest (Sutherland et al.,

2013). Disturbances caused by anthropogenic activities, such
as contamination by hydrocarbons (van Dorst et al., 2014)
and heavy metals (Pessoa-Filho et al., 2015), can strongly
affect the microbial diversity and structural composition. Next
generation sequencing provides an opportunity for extensive
analysis of environmental genomes. Metagenomics, along with
other molecular techniques, has revolutionized the field of
microbiology by focusing on microbial diversity, evolution and
adaption (Riesenfeld et al., 2004). Studies that have investigated
the microbial communities from diverse environments, such
as sediments and marine water (DeLong et al., 2006; Yooseph
et al., 2007), the human gut (Turnbaugh et al., 2007),
soils (Smets and Barkay, 2005), and acid mine drainage
(Tyson et al., 2005), have generated novel insights into the
metabolism, community structure, evolution, function, and
genetic makeup of these communities. Metagenomic analysis
presents an exceptional opportunity to comprehensively analyse
the response of an ecosystem to environmental changes; however,
as yet, there are no reported studies that have examined
the adaptation and response of microbial communities to
environmental pollutants. Metagenomics holds great promise
for the field of bioremediation, as it will help to shape the
approach to bioremediation in a number of interconnected
ways (Satyanarayana et al., 2012; Tripathi et al., 2018).
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Metagenomic bioremediation offers more positive results with
better degradation ratios when compared to other approaches
to bioremediation (Kosaric, 2001). First, metagenomics has
greatly increased our understanding of how microbes develop
“bucket-brigades” for the degradation of xenobiotic compounds,
thereby allowing the differentiation of contaminated sites into
areas where the native microbiota is able to remediate the
environmental status by using intensive ex situ treatment
or by in situ bioaugmentation. Second, it will help to
identify key microbial processes and will specify how the
community composition could best be complemented to
enable mineralization of a pollutant when metabolic cross-
talk among different species is necessary, and is, therefore,
carried out by bacterial consortia rather than by individual
species (Bedard et al., 2006; Supaphol et al., 2006; Thomas
et al., 2012). Third, metagenomics will provide appropriate
metagenomic databases that will offer a rich stock of genes
for the construction of novel microbial strains for targeted
use in bioremediation efforts. Microbiologists consider the
metagenomics-based bioremediation approach to be one of the
most important and potent tools for the eradication of pollutants
from the environment (Mazaheri Assadi and Tabatabaee, 2010;
Satpute et al., 2010; Chandran and Das, 2011).

METATRANSCRIPTOMICS AND
PROTEOMICS IN BIOREMEDIATION

Metagenomics is an enormously potent tool by which the genetic
makeup of the microorganisms inhabiting any environment can
be described. However, metagenomics offers limited functions in
elucidating gene expression and activity. The rapid development
of metatranscriptomics (Poretsky and Ann Moran, 2011) and
metaproteomics (Verberkmoes et al., 2009b) has made it possible
to predict the functional activities of the microbial consortia.
Metatranscriptomic studies can be used to ascertain the activity
of genes within a given environment. The expression of
the functional genomes within environmental samples can be
determined by metatranscriptomics. Metatranscriptomics is of
great interest for research related to environmental remediation.
Recently, transcriptomic studies have been applied to the tdfA
gene (an herbicide degrading gene), and the gene was successfully
quantified (Nicolaisen et al., 2008). Although a number of studies
have been carried out regarding the discovery and diversity of
the functional genes in environmental samples, few studies have
thoroughly compared their findings with actual bioremediation
rates calculated from real biodegradation events (Jørgensen,
2007; Winderl et al., 2007).

Environmental proteomics offers better results when
combined with other “omic” approaches, such as transcriptomics
and metabolomics. To date, protein profiling related to the
treatment of contaminated environments has primarily used
SDS–PAGE (1D) to characterize the microorganisms and
the ecology that is involved in the bioremediation process.
Since ecological studies primarily focus on the natural
adaptation of the microbes to the environments they inhabit,
proteomics has been applied in studies that have provided

insights into the mechanisms of adaptation, particularly to
thermophilic conditions. The proteins of hyperthermophilic
microorganisms are of great significance, as they possess an
improved conformational stability that allows the thermophiles
to remain active at elevated temperatures. By making the
use of this property, the molecular basis of protein folding
and conformational stability can be predicted. Proteomic
approaches have often been employed to gain a more complete
understanding of the physiological responses of microbes to
xenobiotics, temperature changes and other stressors (Lacerda
and Reardon, 2009). Proteomics approaches are also helpful
in analyzing the physiological changes that microbes undergo
during bioremediation. Despite lacking metagenomic sequences,
Wilmes and Bond (2004) were able to explore the microbial
mediated phosphorus removal from contaminated water by
utilizing a metaproteomic approach. Similarly, Lacerda et al.
(2007) used 2D gel electrophoresis in combination with mass
spectroscopy and de novo sequencing to identify more than
one hundred proteins from microbial communities that were
exposed to cadmium contaminated water. Advancements in
proteomics technology have led to the identification of novel
genes and proteins during the anaerobic degradation of ethyl-
benzene and toluene, as demonstrated in a study by Ebn et al.
(2005). During the anaerobic biodegradation of toluene, a
number of genes and associated proteins are expressed. The
proteomics approach has revealed novel pathways of aerobic and
anaerobic biodegradation of toxins, and therefore it provides a
basis for the identification of novel proteins. Regulated proteins
are in various metabolic categories, including the general stress
response, oxidative stress response, transcription regulation,
transport molecules, and energy metabolism (Santos et al., 2004).
Konopka and Wilkins (2012) utilized meta-transcriptomics and
meta-proteomics to identify and characterize a Geobacter spp.
in response to carbon biostimulation alterations. Doré et al.
(2015) investigated fungal response under various environmental
conditions and identified proteins and extracellular enzymes by
making use of “omic” approaches, along with combined liquid
chromatography and mass spectrometry techniques.

MICROBIAL METABOLOMICS AND
FLUXOMICS IN BIOREMEDIATION

Metabolomics, the study of the metabolite profiles of a
cell within a given set of conditions, is one of the most
recent entries to the “omics” family. In addition to genomics,
transcriptomics and proteomics, cutting-edge research is now
expanding toward the analysis of microbial cellular metabolites.
Metagenomics has already solidified its significance by playing
an important role in understanding the diversity and functional
aspects of the microbial consortia. Application of metabolome-
based approaches to the environmental samples has made it
possible to develop models that can envisage microbial activities
under different bioremediation strategies. Metabolomics allows
us to better understand the dynamic operations of the
microbial communities and their functional contributions to
the environments in which they live. When a microbial cell is
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subjected to an environmental stressor it releases a number of
primary and secondary metabolites. The metabolomics approach
explores the functional roles of these low-molecular weight
metabolites. Recently, a number of studies have made use of
microbial metabolome analysis to investigate the biodegradation
of anthropogenic pollutants. An example of this is the
comparative metabolome analysis of Sinorhizobium sp. during
phenanthrene degradation (Keum et al., 2008). In this study,
the intracellular metabolomes were compared with those from
the carbon sources, and the metabolite profiles (fatty acids,
polyhydroxy alkanoates, and polar metabolites) were analyzed
with an untargeted metabolome analysis. Studies such as these
show the importance of metabolomic data in bioremediation
research. Villas-Bôas and Bruheim, 2007 explored the role
of metabolomics in bioremediation research and described
various experimental and conceptual approaches that have
been developed for metabolomics and should be applied at
bioremediation studies. Tang et al. (2007) evaluated the fluxome
profile of Shewanella, a marine bacterial species known to possess
co-metabolic pathways for the biodegradation of toxic metals,
halogenated organic compounds and radionuclides. The analysis
was carried out using biochemical, GC-MS, and statistical and
genetic algorithms, and their results showed that Shewanella sp.
exhibits a comparatively flexible metabolism flux when subjected
to various carbon sources. Durand et al. (2010) performed a
metabolic analysis of Bacillus sp. to define themetabolic pathways
of this bacterial strain during the degradation of the herbicide
mesotrione. Their analysis, which used liquid chromatography
NMR and ex situ NMR, identified a total of six metabolites, of
which the structures of four metabolites were suggested. Wharfe
et al. (2010) applied FT-IR to monitor the biochemical and
phenotypic changes in bacterial communities that could degrade
aromatic compounds (i.e., phenol) that had been released from
industrial bioreactors.

METAGENOMICS IN PLANT-MICROBE
INTERACTIONS AND ITS SIGNIFICANCE
FOR BIOREMEDIATION

Plant-omics is one of the fastest growing fields of science,
due to the urgent need to address important questions faced
by humanity respecting environmental remediation, ecological
sustainability, medicine, biofuels, and agriculture (Gemperline
et al., 2016). Although the plant-microbe interaction has been
known for many years, its impact on the plant’s hardiness
and production was clarified only recently. Plant-microbe
associations are extremely diverse in nature, with microbes
prospering and thriving within the plant structures, both
underground and above ground (Vorholt, 2012; Bulgarelli et al.,
2015). Environmental pollution has increased over the past two
decades as a result of both natural events and anthropogenic
activities (Vácha et al., 2015). The widespread contamination of
ecosystems resulting from metallurgical and mining activities,
and atmospheric deposition from fossil fuel power plants has
led to the accumulation of harmful toxic chemicals in the
environment, such as PAHs. Long-term exposure to PAHs can

cause damage to the respiratory system, central nervous system,
and endocrine system, and can cause skin, liver, lung, bladder,
and kidney cancers (Singh et al., 2004; Locksley, 2011). Therefore,
the need to remediate PAH-contaminated environments is of
great importance to protect both humans and animals. Plant-
associated microbes can have phyllospheric, endophytic and
rhizospheric interactions, and the interaction between these
microbes and their host plants enables much of the plant growth
and survivability outcomes in polluted environments. Plants can
significantly improve bioremediation rates and outcomes, as they
provide habitat and exchange nutrients with their microbial
counterparts. In turn, the microbes improve the growth of
plants by reducing the toxicity of soils via the removal of
contaminants. Genome-enabled techniques offer a framework of
plant-microbe interactions during environmental remediation.
Metagenomic studies provide a way to unravel the plant-
associatedmicrobial diversity of the contaminated environments.
This knowledge will form a basis for understanding indigenous
microbial communities and will help to devise strategies for the
remediation of contaminated environments (Figure 4).

STANDARDIZATION IN BIOREMEDIATION
TO OVERCOME OBSTACLES AND TO
INCREASE AND ENHANCE
PREDICTABILITY

Globally, there are a number of environmental bioremediation
sites that are undergoing in situ or ex situ bioremediation. Among
these, many well-known cases involve the removal of both
organic (e.g., explosives, TCE, solvents, dyes, etc.) and inorganic
(e.g., nitrates, chlorides, uranium) pollutants (Nizzetto, 2010; He
and McMahon, 2011). Many of these operations are not only
examples for the elimination of environmental pollutants; they
also function as model systems to increase our understanding
of the biology within an ecosystem, including microbes, under
natural conditions. In addition to the remarkable successes
that are being achieved in the laboratory and, in some cases,
in the environment, there have also been several failures (de
Lorenzo, 2009). This demonstrates that it is not always easy to
transform lab-based research to the field and that novel and
pioneering attempts are necessary to increase the predictability
of bioremediation results. The use of biology alone will not
entirely eliminate pollution. It must be understood that successful
bioremediation also requires the consideration of engineering
aspects. Efforts are needed to minimize the operational start-up
time and to set up fast and reliable sensors to monitor conditions
that can lead to improved microbial effectiveness, when required
(van der Meer and Belkin, 2010; Ramos et al., 2018).

Over the past few decades, advances in bioremediation
have been largely achieved from culturable microbes that are
easily obtainable and possess well-defined catalytic activities.
However, much of the catabolic potential in nature remains
unexplored, in part because microbiologists have not been able
to replicate the very specific fundamental features (pH, nutrients,
temperature, osmotic conditions, etc.) of their environment.
Currently, “omics” technologies are being exploited to discover

Frontiers in Microbiology | www.frontiersin.org 10 June 2018 | Volume 9 | Article 1132

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Malla et al. Bioremediation of Environmental Contaminants

FIGURE 4 | Novel processes in order to improve bioremediation of polluted environments.

the hidden microbial potential prior to their cultivation,
with the intent of rescuing enzymatic activities related to
the degradation of environmental contaminants (Figure 4).
Metagenomic technology has changed the way in which
environmental microbiologists think, and intensive genome
mining will surely allow a greater exploration of microbes that
have biodegradation properties.

IN SILCO ANALYSIS IN BIOREMEDIATION

The metagenomic approaches described above have greatly
increased our understanding of the physiological capabilities
of microbes. However, to predict the functioning of
microorganisms within an environment, a more holistic
view of metabolism is required to illustrate the outcome of the
thousands of individual reactions occurring simultaneously
in a microbial cell. These descriptions are becoming possible
due to advances in the development of in silico analyses
(Cardoso et al., 2015). Bioinformatics, which has already made
novel discoveries in the field of microbial ecology, is now
expected to hasten the discovery of unexamined areas of the
microbial universe. The data deluge has made bioinformatics

an indispensable tool in modern day research; recent innovative
technologies are generating a large amount of data at an
unprecedented pace. The huge amount of data generated as
a result of sequencing has placed high demands and burdens
on computers and computational scientists. Bioinformatics
relies on genomics and proteomics, and it holds great promise
as a tool to address long-standing questions regarding the
molecular mechanisms involved in biodegradation pathways
(Fulekar, 2010). Bioinformatics has shown its novel capabilities
in the field of bioremediation Bioinformatics has shown its
novel capabilities in the field of bioremediation, however
the resources that are devoted toward the bioremediational
processes are still scarce. A number of novel and interesting
projects have been carried with the aim to organize the bulk
of data generated via multi-omics approaches. One prime
example of such projects is “The University of Minnesota
Biocatalysis/Biodegradation Database (UMBBD)” (Gao et al.,
2010). Another example is “The Environmental Contaminant
Biotransformation Pathway” (The enviPath tool) and was very
recently launched as the updated version of EAWAGBBD/ PPS
(Wicker et al., 2016). Some other prominent examples are those
BioCyc andMetaCyc databases by SRI International (Caspi et al.,
2016).
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SUCCESS STORIES:
OMICS-APPROACHES IN MICROBIAL
BIOREMEDIATION

Microbial-bioremediation is generally viewed as a sustainable
and cost effective technology, as it depends on microorganisms
to transform the contaminants into benign compounds.
Multi-omics techniques are capable of revolutionizing the
biological treatment of contaminated environments by
allowing highly sensitive characterization and functioning
of the yet-uncultured microorganisms. To elucidate how,
different omic-approaches can be applied to microbial-mediated
bioremediation applications, here in this section, we have tried
to mention some of the success stories of different “omic”
approaches in microbial bioremediation.

Environmental biologists deem microbial bioremediation
to be one of the potent tools to eliminate environmental
contaminants (Bell et al., 2014; Chemerys et al., 2014;
Roling, 2015). A number of review articles have recently
been published and provide a much detailed account
about the role of multi-omics (metagenomics, proteomics,
metatranscriptomics, metabolomics, and fluxomics) approaches
in microbial bioremediation. Recently “Omics”-based techniques
revitalized the study of polycyclic aromatic hydrocarbons
(PAH) catabolism by offering an integrative view regarding
the biochemical processes responsible for the degradation
of PAH in contaminated sites (El Amrani et al., 2015). In
the past few years, a number of detailed review articles have
been published based on various aspects of metagenomic
approach and have highlighted its pledge for bioremediation
(Sar and Islam, 2012; Bell et al., 2015; Nousiainen, 2015; Jung
et al., 2016; Techtmann and Hazen, 2016; Duarte et al., 2017;
Tripathi et al., 2018). Metagenomics indeed allowed the study of
microbial communities within their whole complexity, including
interactions among the community members. Since the complete
mineralization of any pollutant requires metabolic-crosstalk
between microbial communities and is hence performed by
microbial consortia rather than individual species. In contrast
to other bioremediational approaches (physical and chemical),
metagenomic bioremediation provides the best results with
better degrading ratios Recently a number of the studies have
been carried that provide an insight of how proteomics help in
bioremediation (Kim et al., 2003, 2004, 2007; Zhao et al., 2005).
Similarly (Jennings et al., 2009) while using the integrative omic-
approach of Proteomic and Transcriptomic revealed the genes
that are up regulated by cisdichloroethene (cDCE) a suspected
carcinogen in JS666 strain of Polaromonas sp. In another study
(Holmes et al., 2009), while using the whole-genome microarray
analysis decoded the transcriptome of Geobacter uraniireducens
strain capable of growing in uranium-contaminated subsurface
sediments. Many other prominent studies that discuss the
importance and breakthroughs of the metatranscriptomics and
proteomics in the field of microbial-mediated bioremediation
are those carried out (Singh, 2006; Lee et al., 2012; Shukla, 2017;
Niu et al., 2018). Now a days, it is a well-established fact that
metabolome analysis serves as a potent approach for discovering
novel metabolic pathways and networks (Weckwerth and
Fiehn, 2002; Villas-Bôas et al., 2007). Metabolomics approach

aims to quantify the functional role of the metabolites within
the microbial cells via separation and analytical techniques,
while as fluxomics aims at determining the metabolic fluxes.
Bargiela et al. (2015), applied metabolomics techniques to three
different chronically hydrocarbon (petroleum) polluted sites
and revealed the importance of the general aerobic processes
that were uncoupled with degradation. The results from their
study showed the presence of more than 4,776 metabolite
in these polluted sites, thereby revealing the high metabolic
heterogeneity within the study sites. A number of other studies
that have used metabolomic and fluxomics approaches to study
the biodegradation of anthropogenic environmental pollutants
were carried out by Villas-Bôas and Bruheim (2007), Wiechert
et al. (2007), Keum et al. (2008), Tang et al. (2009), Brune and
Bayer (2012).

SYSTEMS BIOLOGY APPROACHES TO
BIOREMEDIATION

Nature has its ways of cleaning the environments by eliminating
the contaminants in order to maintain a perfect balance; however
in this modern era of industrialization the rate at which the
pollutants are released into the environment has crossed the
threshold limit of the nature. Recently, the modern approaches
such as genomics, transcriptomics, proteomics, metabolomics,
and fluxomics have been applied to the systems biology
of microbial consortia with in diverse array environments.
Systems biology, an integrated research approach is used to
study the intricate biological systems by exploring interactions
and networks at different structural levels (molecular, cellular,
community, and ecosystem). Integration of the results from
various “omics-approaches” has offered crucial insights into the
survival, metabolism and interaction of microbial communities
within their native environments (Baker and Banfield, 2003;
Hemme et al., 2010; Hu et al., 2010). Systems biology approaches
are continuously being adopted to unravel key processes in
order to understand, predict, optimize and appraise the survival
strategies, and microbial function within the ecosystems of
interest. However, for this approach to be successful, it needs to
overcome some challenges, including the materials and reagents,
amount of samples, high cost of sample processing, technocrats
to process the samples, and data synthesis (Chakraborty et al.,
2012). In order to gain an understanding of intricate in
situ bioremediation processes, monitoring techniques, enzyme
probes, genomics, transcriptomics, proteomics, metabolomics,
and metabolomics provide unique insights into the important
microbial reactions.Microbes, are able to directly immobilize and
detoxify toxicants (Elias et al., 2003). As discussed, the multi-
omics approaches have been major breach in providing much
deeper insights both in the cellular function and gene products
interacting within the environment (VerBerkmoes et al., 2009a).
Immunomagnetic separations, a specific, efficient, rapid, and
technically simple technique has been applied for the separation
of the target microbes directly from microbial consortium
(Chakraborty et al., 2011). The technique holds a great
pledge in enabling the omic-based (proteomics, transcriptomics,
metabolomics) studies directly on cells collected from the
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environment. Integrating all these techniques along with insilco
analysis and modeling will enable novel break-through in the
field of environmental biotechnology. Since 2004, a number
of research groups all over the world have been involved
in the active implementation of the basic to understand and
comprehend the systems biology of contaminated environments
and predicting feasible and practicable remediation technologies.
Systems biology approaches have successfully been applied
to various environmental contaminants, some of the notable
reviews on systems biology approaches for radionuclides are
(Palumbo et al., 2004; Fields et al., 2006; Cardenas et al., 2008;
Conrad et al., 2010), for hydrocarbons (Harayama et al., 2004; de
Lorenzo, 2008; Fredrickson et al., 2008; Atlas and Hazen, 2011;
Zhou et al., 2011), for metals (Fredrickson et al., 2008; Hubbard
et al., 2008; Han et al., 2010; Liu et al., 2011), and for chlorinated
solvents (Song et al., 2002; Lehman et al., 2004; Erwin et al., 2005;
Scow and Hicks, 2005; Rahm et al., 2006; Cupples, 2008; Illman
and Alvarez, 2009; Werner et al., 2009; Conrad et al., 2010).

FUTURE PERSPECTIVES

Considering the present state of “omics,” future research in
microbe-based bioremediation may focus on the following:

1) Mining of the current data to provide additional insights into
bioremediation pathways (mechanisms).

2) Numerical modeling and simulation of the data, which
requires the advancement of novel algorithms.

3) Standardization of protocols for the collection, analysis,
reposition, and transmission of data.

4) Identification and characterization of novel indicators
(biomarkers). These indicators may help to determine the use
of particular bioremediation operations.

5) Integration of the data generated via a number of
the “omics” approaches. By integrating metagenomics
(functional), transcriptomics, proteomics and metabolomic
data, researchers may have a more clear and complete
understanding of microbe-based bioremediation pathways
and could provide a thorough and detailed perspective on the
microbial consortia needed for the bioremediation process.

CONCLUDING REMARKS

Considering the immense threat posed by widespread
environmental contamination by xenobiotics and other

toxic chemicals, novel methods for decontamination, and
clean-up are urgently required. Since, the interaction
between the microbial communities and the environmental

contaminants are far from being simple, and it is challenging
to understand and explore the extreme environments, these
microorganisms inhabit. Environmental contamination can
be viewed as an ecological malaise and for such a malaise;
bioremediation can be prescribed as a “perfect medicine.”
Toward a much deeper perceptive and understanding of the
microbial-mediated bioremediation, novel omic-approaches
(genomics, transcriptomics, proteomics, metabolomics, and
fluxomics) presents a remarkable pledge as tools to study the
mechanisms involved in various bioremediational pathways.
The integrative approach of these techniques in this era of
“omics” has paved way for the successful execution of the
efficient bioremediational strategies. The applications of these
approaches are still in their infancy; but the bulk of data that is
constantly being generated by the present day omic technocrats
needs to be organized within the informative databases. Omics-
approaches show great ability to predict organism’s metabolism
in polluted environments and to envisage the microbial-
mediated attenuation of the pollutants to fasten bioremediation.
The study of molecular mechanisms behind the microbial
transformations of the toxic pollutants using omic-approaches to
bioremediation would aid in tracking the responsible organisms
and in efficient elimination of the contaminants from the
environments.
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