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Abstract

Previous research has characterized a collection of neural regions which support social-cognitive processes. While this
‘social brain’ is often described as a cohesive unit, it has been largely assessed with univariate methodologies, which cannot
account for functional relationships ‘between’ brain regions, and therefore cannot test the idea of the social brain as a
network. In the present work, we utilized a multi-method approach to empirically assess the functional architecture of the
social brain. Fifty participants (ages 8–16) completed a social evaluation task during an functional imaging scan. Results
from three unique functional connectivity methodologies demonstrated that social brain regions show strong functional
relationships, while also interfacing with non-social regions, suggesting that future work should consider network
relationships between social brain regions in addition to traditional univariate approaches. We probed, but did not find
age-related differences in social brain network organization, demonstrating that this functional architecture is in place by
late childhood.

Key words: social brain; network; PPI; graph theory; ICA

Introduction
‘Man is by nature a social animal’ (Aristotle, translated 1944).
The capacity to understand the social world is supported by a
collection of brain regions often referred to as the social brain
(Brothers, 1990; Saxe, 2006; Dunbar and Shultz, 2007; Frith and
Frith, 2007; Lieberman, 2007; Adolphs, 2009; van Overwalle, 2009).
There has been a surge in work examining the developmen-
tal properties of the social brain, as structural and functional
brain development parallels dynamic changes in social orien-
tation during late childhood and adolescence (Nelson et al.,
2005; 2016; Blakemore, 2008; Blakemore and Mills, 2014; Mills
et al., 2014). Strikingly, the social brain is often described as
a cohesive entity, or network, despite most research utilizing
univariate, activity-based approaches that do not explicitly mea-
sure connections amongst social brain regions. In order to deter-

mine whether social brain regions act as a cohesive network, it is
critical to measure such connections. In addition to determining
whether the social brain acts as a network, it is important
to determine whether and how the network properties of the
social brain change during the transition between childhood and
adolescence. In the present work, we employed a multi-method
network approach to test the functional architecture of the
putative social brain network.

Social cognition enables individuals to recognize others and
evaluate their thoughts and feelings (i.e. mentalizing). A model
of the social brain (Blakemore, 2008; Blakemore and Mills, 2014)
in developmental neuroscience implicates amygdala, anterior
insula (AI), superior temporal sulcus (STS) and prefrontal
cortex (PFC) in the recognition of others’ emotions, and the
temporo-parietal junction (TPJ), anterior temporal poles (TP)
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Fig. 1. Functional connectivity approaches. (A) Whole-brain functional connectivity utilizing PPI is a voxel-wise method. The average time-series is extracted from the

seed region (blue), and then time-series from each voxel (e.g. red) are compared using time-series correlations (ρXY ). These correlation values are mapped onto the

whole-brain statistic map. (B) Graph construction involves calculating time-series correlations between each pair of nodes (either 18 or 282) to construct individual

subject correlation matrices. Individual matrices are then averaged together and community detection algorithms are applied to the group-level matrices to group

nodes into functional networks (indicated by red boxes). (C) ICA utilizes multivariate mixture modeling in order to group voxel time-series into functional units. Time-

series from all voxels in the brain are added to the mixture model and then decomposed into spatial maps of voxels which have similar time-series features. These

group-level maps (X) are then used in the Dual Regression analyses to extract component-specific time-series (β) from each individual’s functional volumes (Y).

and the medial PFC to be involved in mentalizing. Although it
remains contested whether the social brain is uniquely devoted
to social cognition (e.g. Decety and Lamm, 2007), previous
developmental work employing univariate methodologies
consistently supports the recruitment of social brain regions
in tasks that require social cognition from childhood into
adulthood (e.g. Blakemore et al., 2007; Burnett et al., 2009;
van den Bos et al., 2011; Gweon et al., 2012; Schurz et al., 2014;
van Hoorn et al., 2016).

Despite these univariate findings, oftentimes not ‘all’ regions
implicated in specific social cognition processes, such as men-
talizing, are engaged together even during tasks that specifically
implicate mentalizing (e.g. reciprocity, TPJ only [van den Bos
et al., 2011]; being observed by peers, mPFC only [Somerville
et al., 2013]), which questions the individual contributions of
each region within the larger social brain network. More recent
advances have started to investigate functional connectivity
between social brain regions and affective or cognitive con-
trol regions (e.g. mPFC–ventral striatum; Somerville et al., 2013;
Qu et al., 2015). However, to date, social brain regions have not
often been utilized as a seed region, and as such, connections
‘between’ regions of the putative social brain network have
largely been absent from the literature (but see Burnett and
Blakemore, 2009). Furthermore, no previous studies have consid-
ered multiple functional relationships between systems of social
brain regions simultaneously. Hence, taking a network approach
will allow us to make more specific predictions and increase our
understanding of the role of each social brain region within the
larger network.

In the present work, we utilized both theory- and data-
driven techniques to gain traction on the functional architecture
of the social brain network. During an fMRI scan, children
and adolescents (ages 8–16) completed a social evaluation
task, a context in which we expected the social brain to be
particularly engaged (van Hoorn et al., 2016). We first used
seed-based PPI, which assessed the whole-brain functional
connectivity profiles for all a priori social brain regions of interest

(Blakemore, 2008; Blakemore and Mills, 2014). This approach
allowed us to independently examine functional relationships
with each theoretically derived region. Next, in order to assess
the pattern of functional relationships between all regions of
the social brain simultaneously, we adopted a graph theory
approach which mapped the overall structure of the proposed
network. Finally, we took an entirely data-driven approach to
examine if the social brain network could be resolved through
automated multivariate mixture-modeling of the time-series
using independent and principle components analysis (see
Figure 1 for summary). This data-driven approach allowed us
to be more confident that results were not biased by decisions of
which seed regions to use or the particular morphology of any
given a priori region of interest (ROI). In each of these analyses,
we tested for potential linear and curvilinear developmental
changes in the functional architecture of the social brain
network, given previous evidence that activation in social brain
regions changes across development (e.g. Blakemore et al., 2007;
Burnett et al., 2009; van den Bos et al., 2011; Gweon et al., 2012;
van Hoorn et al., 2016; reviewed in Blakemore and Mills, 2014;
Nelson et al., 2016). Together, our multi-method approach
leveraged the different strengths of each type of analysis to
provide a comprehensive assessment of the social brain’s
functional architecture.

Methods
Participants

Fifty-one children and adolescents completed an fMRI scan. One
participant was excluded due to moving out of the field of view,
leaving a final sample of fifty youths (Mage = 13.51 years, SD =
2.66, range = 8.31–16.45; 29 males). Inclusion in the final sample
required less than 2 mm framewise displacement motion on
90% of volumes, however, no further participants were excluded
based on this criterion. Participants provided written assent,
and parents provided written consent in accordance with the
University’s Institutional Review Board.
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Fig. 2. Social brain regions of interest. We constructed 18 independent ROIs for each of the putative social brain regions. ROIs were combined into one map for

visualization.

Social evaluation task

During the scan session, participants completed a social
evaluation task in which they were asked to consider others’
thoughts about themselves. Previous research has shown a
univariate signature of the social brain during tasks in which
adolescents receive social evaluation (e.g. Pfeifer et al., 2009;
Somerville, 2013; van Hoorn et al., 2016). As such, we chose
this task to maximize the likelihood of observing connectivity
between social brain regions. In other words, if regions of the
social brain do not operate as a network under these conditions,
they would be unlikely to do so under other, less salient social
contexts. Adolescents and children saw a series of 72 peer faces
(ranging in age from 7–17 years; all smiling) and were asked
to judge whether they thought each peer would like or dislike
them by pressing one of two buttons for ‘Like’ and ‘Dislike’.
Aside from asking participants to judge whether the person
depicted in a given stimulus would ‘Like’ or ‘Dislike’ them,
participants were not given information about the identity or
characteristics of the individuals depicted, and participants
received no feedback based on their choices. Faces were
drawn from several databases, including the National Institute
of Mental Health Child Emotional Faces Picture Set (Egger
et al., 2011) and had of equal numbers of males and females.
Each face was presented for 3 s each, in random order, with a
gamma-distributed inter-trial jitter (Mduration = 2 s). Consistent
with similar tasks used previously, the main effect of the social
evaluation task showed increased activation in several social
brain regions, as well as in lateral PFC and ventral striatum
(see NeuroVault: https://neurovault.org/collections/FAPLBMIG/
for statistical map; see Supplementary Material for methods).

fMRI data acquisition

Imaging data were collected using a 3 Tesla Siemens Trio MRI
scanner. The Social Evaluation Task included T2∗-weighted
echoplanar images (EPI; 185 volumes; slice thickness = 3 mm;
38 slices; TR = 2 s; TE = 25 msec; matrix = 92 × 92; FOV =
230 mm; voxel size 2.5 × 2.5 × 3mm3). In addition, structural
scans consisted of a T2∗weighted, matched-bandwidth (MBW),
high-resolution, anatomical scan (TR = 4sec; TE = 64 msec;
FOV = 230; matrix = 192 × 192; slice thickness = 3 mm; 38 slices)
and a T1∗ magnetization-prepared rapid-acquisition gradient
echo (MPRAGE; TR = 1.9 s; TE = 2.3 msec; FOV = 230; matrix =

256 × 256; sagittal plane; slice thickness = 1 mm; 192 slices).
To maximize brain coverage, MBW and EPI scans were obtained
using an oblique axial orientation.

Preprocessing was completed using FSL FMRIBs Software
Library (FSL v6.0; https://fsl.fmrib.ox.ac.uk/fsl/). Preprocessing
steps included the following: correction for slice-to-slice
head motion using the MCFLIRT; spatial smoothing using a
6 mm Gaussian kernel, full-width-at-half maximum; high-pass
temporal filtering with a 128 s cutoff to remove low frequency
drift across the time-series; and skull stripping of all images
with BET. Functional images were re-sampled to a 2 × 2 ×
2 mm space and co-registered sequentially to the MBW and
the MPRAGE using FLIRT in order to warp them into the standard
stereotactic space defined by the Montreal Neurological Institute
and the International Consortium for Brain Mapping. Individual-
level independent component analysis (ICA) using MELODIC
combined with an automated component classifier (Tohka
et al., 2008; Neyman–Pearson threshold = 0.3) was applied to
remove artifact signal (e.g. motion, physiological noise).

The Social Evaluation Task was modeled using a block design
within the Statistical Parametric Mapping software package
(SPM8; Wellcome Department of Cognitive Neurology, Institute
of Neurology, London, UK). Each block was modeled using a
fixed onset of 4 s after the first slice acquisition and a duration
of 362 s (i.e. the remainder of the functional scan). Fixed-effects
models were created by including a general linear model for
the task. Volumes containing motion in excess of 2 mm slice-
to-slice were modeled in a separate regressor of no interest.
All participants in the final sample showed less than 2 mm of
framewise displacement for over 95% of total volumes.

Analytic approaches

ROI definition. In order to assess the social brain network,
we utilized pre-defined ROIs within the putative social brain
network, based on a theoretical model of the social brain
(Blakemore 2008; Blakemore and Mills, 2014). These ROIs
included bilateral masks of the TPJ, pSTS, IPS, TP, AI, amygdala,
FFA, mPFC, as well as masks of the ACC and precuneus (see
Figure 2). Masks were defined from a number of sources,
including the Harvard–Oxford (ACC, AI, amygdala; Harvard
Center for Morphometric Analysis) and SPM Anatomy toolbox
(IPS, TP, FFA; Eickhoff et al., 2005) probabilistic atlases, the Saxe
Lab social brain ROIs (TPJ, precuneus; Dufour et al., 2013) and
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the social brain ROIs defined by Mills et al. (2014; mPFC, pSTS).
The mPFC in particular refers to an area of medial frontal
cortex anterior to the cingulate cortex, extending primarily
through medial sections of BA11. Masks were evaluated using
the Marsbar toolbox in SPM (Brett et al., 2002) in order to ensure
that ROIs did not contain any voxels that overlapped with
another mask. A 3D, navigable image containing all masks
superimposed onto a single brain map is available on NeuroVault
(https://neurovault.org/collections/FAPLBMIG/).

Whole-brain functional connectivity analyses. First, to examine
neural connectivity in the social brain at the whole-brain level,
we employed psychophysiological interaction (PPI) analyses.
Importantly, PPI analyses were run separately for each ROI,
resulting in 18 independent iterations for each type of analysis
(detailed below). Prior to running analyses, we inspected
individual subjects’ whole-brain mask to ensure that all
included subjects had at least 90% coverage for each of the
18 ROI masks. We utilized a generalized form of the context-
dependent PPI analyses from the automated generalized PPI
(gPPI) toolbox in SPM (McLaren et al., 2012), in which deconvolved
time-series were extracted from each of the 18 ROI masks
for each participant to create the physiological variables.
Psychological regressors were created by convolving each
participants’ block contrast, which was constructed as a single
regressor spanning the entire task duration (duration = 361 s),
with canonical HRFs. PPI interaction terms were created by
multiplying the physiological variable with the psychological
regressor. This interaction term was applied at the whole-
brain level to identify regions that covary across the block
with the seed ROI (Figure 1A). Regressors computed for each
participant represented the deconvolved BOLD signal, and this
regressor was included alongside each psychological and PPI
term for the block event to create a gPPI model. Random effects,
group-level analyses were run for all contrasts using GLMFlex
(http://mrtools.mgh.harvard.edu/index.php/GLM_Flex), which
offers several advantages, including removing outliers and
sudden activation changes in brain, correcting for variance–
covariance inequality, partitioning error terms and analyzing
all voxels containing data. Main-effect, one-sample t-tests were
run for each of the 18 ROI seed regions to assess the whole-
brain pattern of functional connectivity for each seed region. In
order to examine whether connectivity within the social brain
changes across development, group-level regression analyses
were also performed for all 18 ROI seed regions by entering
participants’ age as a continuous covariate in whole-brain
regression analyses. To assess for higher-order age effects, we
also entered age2 as a continuous predictor in a whole-brain
regression analysis, controlling for linear age.

Given the large number of independent analyses, we applied
a two-step correction for multiple comparisons in our whole-
brain PPI analyses in order to control for an inflated Type I
error rate. First, for each individual analysis (e.g. main effect
or regression), we utilized the voxel-level correction estimated
through the SPM software package, which resulted in a voxel-
wise threshold of (P = 9.82 × 10-7, t = 5.40). However, because
we ran 18 independent tests each for the main effect and
both age and age2 regression analyses (54 total analyses), we
also applied a Bonferroni correction for multiple significance
tests (i.e. αadjusted = αunadjusted/54). These steps resulted in a
final voxel-wise threshold of P = 1.82 × 10-8 (t = 6.52). All
reported effects and inferences are based on this corrected
threshold, and unthresholded maps are available on NeuroVault
(https://neurovault.org/collections/FAPLBMIG/).

Finally, we created a composite map of the PPI analyses
across all 18 social brain seed regions. Importantly, this com-
posite was not intended as a formal, independent analysis, but
rather a convenient and succinct tool for summarizing find-
ings across the many independent analyses we conducted. We
created this map by averaging the t-statistics for connectivity
values for each voxel in the whole-brain mask across the 18 main
effect analyses. As such, larger values in the composite map
suggest that a given region is more strongly coactive consistently
across different social brain seeds, while smaller values suggest
a low average co-activation with the social brain. For descriptive
purposes, we applied the same corrected threshold parameters
used in the analyses described above for the composite map and
this composite map is similarly available on NeuroVault.

Graph construction. Second, we utilized graph theory techniques
to investigate the functional network structure of the social
brain. In order to construct a time-series for each ROI, we utilized
a beta-series correlation approach (Rissman et al., 2004). For all
participants, we estimated the magnitude of the task-related
BOLD response separately for each of the 72 trials during the
task; modeled as the activity evoked from stimulus onset to
the button press indicating participants’ choice. This approach
yields a set of parameter estimates (beta values) for each trial
in every voxel across the whole-brain. These beta values can
then be concatenated to form a time-series, known as a beta-
series. Beta-series were extracted from each ROI and individual
correlation matrices were constructed by computing time-series
correlations between each pair of nodes for each participant.
Each participant’s beta-series was reviewed to ensure that no
ROIs were subject to signal dropout, and all 50 included par-
ticipants had at least 90% coverage in all ROIs. Graphs were
created using connectivity matrices and tools from MATLAB
(MathWorks; https://www.mathworks.com) and the Brain Con-
nectivity Toolbox (www.brain-connectivity-toolbox.net; Rubinov
and Sporns, 2010).

We took two approaches to evaluate the graph network
structure of the social brain. First, we assessed the functional
relationships amongst theoretical nodes of the social brain in
isolation. Next, we evaluated the network organization of social
brain regions in the context of the larger functional architecture
of the whole brain. The steps we took to construct functional
network graphs were identical across both approaches, with
the one exception that for the first approach, we used 18-
node correlation matrices to construct graphs, whereas for
the second approach, we utilized a whole-brain parcellation to
construct 282-node correlation matrices. We used the Power
parcellation scheme (Power et al., 2011), a 264-node atlas
composed of 10 mm spherical parcels distributed throughout
the entire brain. To make our ROIs more compatible with this
atlas, we constructed 10 mm sphere versions of each of our 18
social brain masks located at the center-of-gravity coordinates
for individual ROIs. Similar to the full ROIs previously described,
a 3D, navigable image of these spherical ROIs is available
on NeuroVault (https://neurovault.org/collections/FAPLBMIG/).
Whole-brain network analyses were run using both full and
10 mm sphere versions of the social brain ROIs to ensure that
results were not dependent on the type of ROI used (i.e. full
versus sphere). As results were consistent across both types of
ROIs, we report analyses using the 10 mm sphere versions of our
social brain ROIs since they are consistent with the other parcels
in the Power atlas. For details related to graph construction and
community clustering, see supplement (Supplementary pp. 1–2).

https://neurovault.org/collections/FAPLBMIG
http://mrtools.mgh.harvard.edu/index.php/GLM_Flex)
https://neurovault.org/collections/FAPLBMIG
https://www.mathworks.com
http://www.brain-connectivity-toolbox.net
https://neurovault.org/collections/FAPLBMIG
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Network building and community clustering techniques. In order
to structure our correlation matrices, we first clustered nodes
within the larger network into functionally integrated and
distinct communities. For each participant, nodes within the
putative social brain network were assigned to communities
within the network using consensus clustering techniques
(Lancichinetti and Fortunato, 2012). Weighted edges (both
positive and negative) from the unthresholded correlation
matrices for each participant were passed through the Louvain
community detection algorithm, which assigned each node
into a larger community (Rubinov and Sporns, 2011) using a
resolution parameter (γ ) of 1.25, based on previous research
(Power et al., 2011; Cohen and D’Esposito, 2016). Due to
the stochastic nature of the Louvain algorithm, community
detection was iterated 150 times, and all derivations were passed
into an agreement matrix (Di,j) where each cell (i,j) within the
matrix indicated the proportion of iterations in which each pair
of nodes were assigned to the same community. Agreement
matrices were then thresholded at 0.5 to remove spurious or
accidental assignment of nodes to the same community. As
such, nodes that were not assigned to the same community in
at least 50% of the community detection algorithm iterations
were set to 0. A consensus partition for each participant was
created by applying the Louvain algorithm 100 times for the
participants’ agreement matrix (Di,j). Once consensus partitions
had been created for each individual participant, we created
a group consensus partition by creating a group agreement
matrix (D) using the community assignments from individuals
for each node pair. This matrix was then divided by the number
of participants in our sample such that each cell within the group
agreement matrix represented the proportion of individuals in
which a given node pair was assigned to the same community.
Finally, to compute a group network structure, this group
agreement matrix was passed into the consensus clustering
algorithm and iterated 1000 times until it converged on an
optimal community structure.

For both approaches, we examined whether there was a
significant relationship between age and the weight of each
functional edge. As results indicated no significant effect of age
(see Results for more detail), we collapsed across all participants
to construct the group-level correlation matrix by averaging par-
ticipants’ weight for each edge. Group-level correlation matrices
were created for both the 18- and 282-node graphs, and nodes
were reordered to reflect the optimal community structure
determined previously (visualized by red boundaries within
the group correlation matrices, Figure 1B). Finally, graphs were
thresholded in order to remove the effects of weak or spurious
connections between node pairs. Consistent with previous
research, we thresholded graphs at a range of costs (10–25%
of total edges, 5% increments) to ensure that results were not
due to chance perturbations at any one cost. These thresholds
have been previously shown to produce graphs with small-
world characteristics (Bullmore and Bassett, 2011; Cohen and
D’Esposito, 2016). Because of the relatively small number of
nodes in the 18-node analysis, we also explored costs from
25–35% (5% increments) as well for this approach specifically.
Reported results for network statistics are averaged across all
costs, however, for visualization purposes, we display graphs at
both a strict (10%) and a liberal (35% for 18-node graph; 25% for
282-node graph) threshold.

Graph metrics. We also calculated network-level variables for
each individual using their functional correlation matrix. All
graph metrics for individual-level networks were computed

using tools in MATLAB and the Brain Connectivity Toolbox. We
calculated network modularity, system segregation and global
efficiency (for details, see supplementary).

ICA. Third, we utilized group-level ICA to assess whether
similarities in the time-series of social brain regions could be
assessed using a model-free, multivariate analytic approach.
To do so, we pooled fMRI data from all 50 participants and ran
temporally concatenated ICA with probabilistic principle com-
ponent analysis (PCA; Beckmann and Smith, 2004; Beckmann
et al., 2009) using MELODIC’s Incremental Group-PCA (MIGP)
option for data reduction through FSL. This resulted in 40
independent components (see Supplementary or NeuroVault
for visualization of all 40 components) on the whole functional
time-series for the task. Group spatial maps were then examined
visually to check for components that were likely due to
physiological noise (e.g. motion or cardiovascular activity).
These components (N = 16) were characterized by activation
in white matter, ventricles or as slabs or bands of activation
around the outer rim of the brain (see Laird et al., 2011 for
examples; noise components noted in Supplementary). We then
took the group spatial maps generated in the ICA analysis and
used the spatial regression approach from FSL’s dual regression
function (Filippini et al., 2009) to extract individual time-series
from each of the group-level masks, resulting in 24 time-series
for each participant. These time-series were used to create
24 × 24 correlation matrices for each participant. We then ran
community detection and group-level analyses on the resulting
correlation matrices using the methods described in detail in
the supplement for graph construction (Supplementary pp. 1–2).

Motion. Because functional connectivity methods (including
graph construction and ICA) are particularly sensitive to motion
during scan acquisition (e.g. Power et al., 2012; Van Dijk et al.,
2012), we took several steps to reduce the impact of motion
on our data. First, as mentioned above, we subjected each
participants’ data to individual-level ICA in order to remove
motion-related signal from the time-series (mean framewise
displacement: M = 0.27 mm; range = 0.03–1.47 mm). We also
controlled for the 6 motion parameters generated during the
realignment step of preprocessing in all analyses. Finally, slices
with greater than 2 mm of motion were scrubbed from the time-
series to remove the effects of large, sudden movements on the
functional data. These strategies have been shown to reduce
the influence of motion on functional connectivity analyses (see
Ciric et al., 2017).

Results
Whole-brain PPI

We began our examination of the putative social brain by uti-
lizing seed-based connectivity analyses. We used each of the
18 a priori ROIs as seed regions in individual PPI analyses. This
approach allowed us to examine the whole-brain functional
relationships of each seed region independently.

Main effects. First, we ran whole-brain, one-sample t-test
analyses for each of the 18 a priori social brain seed regions
(for individual maps see Supplementary Tables S1–S18). While
there was variation in the distribution of co-activation between
seed regions, several consistent trends emerged. First, there
were strong functional relationships between bilateral com-
plements (e.g. left and right TPJ), suggesting that information

https://academic.oup.com/socafn/article-lookup/doi/10.1093/socafn/nsy064#supplementary-data
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Fig. 3. Composite PPI map. Regions showing heightened parameter statistics suggest that those regions are consistently co-activated with social brain ROIs across the

18 main-effect PPI analyses.

is highly shared between contralateral homologs during social
processing. Secondly, while there certainly was strong functional
connectivity between seed regions and other social brain areas,
these co-activations were often non-specific, as other regions
of the brain (e.g. lateral PFC, striatum) were similarly co-active
with many of the a priori seed regions. To quantify this overlap
in functional connectivity between regions, we constructed
a follow-up descriptive map where we summed t-statistics
from the individual seed maps (excluding the seed region for
each respective analysis) and scaled the values by dividing
the summed t-statistics by the number of seed regions (i.e.
18). This averaging approach allowed us to visualize which
regions at the whole-brain level are consistently co-active with
the different seed regions from the social brain. Regions which
showed the highest level of overlap in co-activation across seed
regions included the thalamus and striatum, dorsal portions
of the mPFC, PCC/precuneus, middle temporal gyrus, bilateral
angular gyrus and regions of the middle and inferior frontal gyri
(Figure 3; Supplementary Table S19 for full details).

Regressions with age. To examine developmental differences in
the functional connectivity of social brain regions, we utilized a
whole-brain regression approach for each seed region, entering
age as a continuous regressor. When correcting for multiple com-
parisons, no seed region showed significant linear or quadratic
developmental differences in co-activation at the whole-brain
level. This suggests that by childhood, the functional network
structure of the social brain may already be in place. Hence,
we combined data from all subjects for subsequent analyses.
In contrast, follow-up univariate analyses quantifying the main
effect of the task showed some regional changes in activation
with age (see Supplemental for regional effects).

Network analyses

Since both theoretical and empirical work has referred to the
social brain as a network, we formally examined the functional
relationships of putative social brain regions using a graph-
theory network approach. In contrast to PPI analyses, where
each seed region is considered independently, network analyses
assess functional relationships between all included regions
simultaneously, allowing us to assess an overall functional net-
work structure to the social brain.

Limited social brain graph. We first extracted the beta-series
from each of the 18 social brain seeds to construct individual
correlation matrices and created a group-level matrix by aver-
aging across all 50 participants. Data from this process were
then used to construct a graph of the 18 social brain ROIs.
Applying a strict threshold (e.g. 10%; Figure 4A) resulted in a
fractured graph, with a temporo-parietal group of regions, an

ACC/Insula group and bilateral pairs of regions otherwise (with
FFA being the exception). However, we can see these groupings
maintained in the full graph at more liberal thresholds (eg.
25%; Figure 4B), where temporo-parietal (purple) and temporo-
limbic (orange) regions are linked by medial frontal regions
(ACC & mPFC). Overall, these results suggest that while there
may be component modules within the social brain, there are
nevertheless important functional relationships linking these
disparate regions.

Age analyses. While results from the PPI analyses suggested that
there is limited development in the functional connectivity of
social brain regions, we wanted to confirm that our graph model
results were not being influenced by developmental effects. As
such, we ran bivariate correlations between age and individual
edge strength on the 35% threshold graph. Out of a total of 153
unique edges, only 10 (6.5%) showed age-associated change at
uncorrected significance (i.e. P < 0.05), and only 5 (3.3%) showed
significance at a more strict threshold (i.e. P < 0.01). When
correcting for multiple comparisons, none of these correlations
remained significant. We also conducted analyses to test for
age-related change in network-level variables. Neither network
modularity (r = 0.15, P = 0.31), system segregation (r = 0.13,
P = 0.37), nor global efficiency (r = −0.11, P = 0.46) were related
to age (see supplemental for definitions and equations). These
results corroborate the whole-brain PPI regression analyses with
age, suggesting that the social brain network does not differ
across age and is relatively in place by childhood.

Whole-brain graph. Next, we examined the network relation-
ships of the 18 social brain seeds with the rest of the brain
utilizing the whole-brain parcellation provided by Power et al.
(2011). We added the eighteen social brain ROIs (using 10 mm
sphere versions, centered within the anatomical ROIs for
consistency; see Methods for details) to the 264 spheres which
comprise the Power parcellation scheme and constructed
individual correlation matrices and ran the same graph-building
procedure as above. Results extended findings from the limited
social brain graph by demonstrating how these functional
nodes are distributed throughout the whole-brain network.
As expected, some functional subunits, such as the temporo-
parietal (purple) and salience (green) nodes, show tightly
integrated functional relationships, while other functional
subunits, such as the mPFC, amygdala and TP (orange) are more
marginalized from network centers (Figure 4C).

ICA

Finally, we wanted to ensure that our results were not being
driven by choices or models we were imposing on the data.
Therefore, we complemented our analyses with a data-driven

https://academic.oup.com/socafn/article-lookup/doi/10.1093/socafn/nsy064#supplementary-data
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Fig. 4. Network graphs. (A) When thresholding the 18-node social brain graph at a strict threshold, the graph is fractured with only a temporo-parietal and a salience

cluster linking disparate regions. (B) However, at a more liberal threshold, there appear to be three large clusters: a temporo-parietal cluster (purple), a temporo-limbic

cluster (orange) and a midline frontal cluster (green) linking them. (C) Within the context of the larger, whole-brain network, regions of the social brain are distributed

throughout network space. Some regions such as the temporo-parietal regions (purple) show strong, centralized connectivity patterns, whereas anterior temporal and

amygdala regions (orange) are located on the margins of the network.

approach using ICA on the whole-brain data. Because ICA uti-
lizes a multivariate approach to decompose spatial and temporal
components from the raw functional data, it removes the neces-
sity of specifying a model or parcellation scheme to structure
the data a priori. As such, we could investigate whether regions
of the social brain emerged as independent components from
the data.

Whole-brain components. We ran whole-brain ICA using the
automatic PCA option available in FSL’s MELODIC (known
as MIGP—MELODIC’s Incremental Group-PCA; Smith et al.,
2014) to constrain the number of meaningful independent
components. ICA resulted in 40 components (Figure 5), of which
24 were determined to be non-artefactual (for tables and maps
for all components, see Supplementary Tables S20–S43 and
NeuroVault, respectively; components determined to be noise
artefacts are noted). We then used a dual regression approach
to extract time-series information from each component’s
spatial maps in individual participants in order to run graph
analyses. Using these individual time-series for the 24 inde-
pendent components, we constructed individual and group
correlation matrices and then used these matrices to perform
community detection in order to find groups of components
that were functionally related. We found four broad groups
of components: (1) a four-component motor community; (2) a
three-component cerebellar community; (3) a nine-component
fronto-striatal community; and (4) an eight-component commu-
nity that included three visual components and five social brain
components (see Figure 6). Importantly, many regions of the
social brain were strongly clustered together, supporting the idea
that social brain regions share strong functional relationships.

Discussion

The concept of a social brain network has become prevalent
in the developmental neuroscience literature, encompassing
the neural structures that guide increasingly complex social
cognition across development. Indeed, a growing body of work
has revealed a collection of brain regions which are robustly
active when thinking about or making decisions regarding
others (Brothers, 1990; Saxe, 2006; Dunbar and Shultz, 2007; Frith
and Frith, 2007; Lieberman, 2007; Adolphs, 2009; van Overwalle,
2009), and patterns of activation in these regions continue to be
refined across late childhood and adolescence (e.g. Blakemore
et al., 2007; Burnett et al., 2009; van den Bos et al., 2011; Gweon
et al., 2012; Mills et al., 2014; Van Hoorn et al., 2016). However,
previous methodologies used to probe the social brain have not
evaluated the social brain as a ‘network’. To gain traction on
the network architecture of the social brain, the current work
investigated the functional relationships between regions of the
putative social brain network using seed-based connectivity,
graph theory and ICA techniques. As these techniques varied
in the amount of theoretical constraints imposed on the data,
they complemented each other to ensure that results are not
simply a product of modeling decisions particular to any one
type of analysis. While regions of the social brain network
do indeed show strong functional relationships between one
another, these relationships are not exclusive and other regions
emerged as important functional hubs. In contrast with findings
showing protracted development in social brain regions through
adolescence (e.g., Blakemore et al., 2007; Burnett et al., 2009;
van den Bos et al., 2011; Gweon et al., 2012; Mills et al., 2014;
Van Hoorn et al., 2016), results suggest that the underlying
functional architecture of the social brain appears to be in

https://academic.oup.com/socafn/article-lookup/doi/10.1093/socafn/nsy064#supplementary-data
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Fig. 5. Twenty-four independent components were decomposed through group-level ICA analysis. ICA maps were converted to z statistic images via normalized mixture

model fit, thresholded at z > 3.5. Slices of the most representative extent of the spatial maps are shown. Components identified as noise are not presented, but are

available for viewing on NeuroVault.

place relatively early in development. These findings highlight
the importance of considering functional relationships in
evaluating social cognition and embedding social-cognitive
neural processes in the context of the larger brain circuitry.

Functional architecture of the social brain network

Our multi-method approach uncovered several features of the
functional architecture of the social brain. PPI analyses revealed
that when considering the functional connectivity patterns of
each a priori seed region independently, other regions of the
putative social brain network consistently emerged. This pattern
can be seen in the robust co-activation of social brain regions
in our composite map across the 18 independent analyses.
These findings are corroborated by the ICA analyses, where
data-derived components show that social brain seeds are
grouped together. At the same time, our findings argue against
the idea of the social brain being an exclusive network, but rather
one that can integrate with other networks depending on task
demands. All three methods employed here suggest that regions
of the social brain are embedded within a larger functional
architecture encompassing regions outside the social brain.
The PPI analyses highlighted the striatum and lateral PFC as
being consistently co-active with social brain seeds and the ICA
network demonstrated that there are strong links between social
brain components and regions of the fronto-striatal cluster.

While the specific regions showing strong co-activation are
likely dependent on task demands, the current findings suggest
that regions non-specific to social cognition nevertheless show
high functional integration with social brain regions. Moreover,
the limited and whole-brain graphs demonstrated that regions
of the social brain are clustered into distinguishable modules,
which are widely distributed throughout network space, indi-
cating that the functional relationships between modules are
relatively weak. For instance, regions of the temporo-parietal
cluster (purple nodes, Figure 4C) are highly clustered in a rel-
atively central part of the whole-brain graph, whereas regions
such as the amygdala or temporal pole are peripheral in the
whole-brain graph. These network positions are also reflected in
the limited social brain graph, where, at strict thresholds, only
the temporo-parietal and salience regions show links outside
of bilateral counterparts. Taken together, given the complex-
ity of social-cognitive processes, whole-brain graph approaches
will likely provide more contextualized findings when assessing
functional relationships between distributed regions in the brain
than when restricting the nodes under consideration to social
brain regions.

Developmental changes in the social brain network

Despite theoretical reasons to expect that the network of social
brain regions would undergo functional changes across the
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Fig. 6. Network graphs were constructed using the ROI-specific time-series from the dual regression analysis. Components were clustered together using community

detection algorithms and nodal communities are indicated by separate colors. The strength of connectivity between components is indicated by the width of the edges

between them. Edge colors are a blend of the node colors that they connect. We identified four broad communities: (1) a motor cluster; (2) a cerebellum cluster; (3) a

fronto-striatal cluster; (4) and a cluster of components that related to the visual system and a broad collection of components related to the social brain.

transition from childhood to adolescence (Blakemore, 2008, 2012;
Blakemore and Mills, 2014), we did not find significant linear
or curvilinear age-related differences in any of our analyses.
These findings suggest that while there are refinements in social
brain regions across development, as highlighted by previously
observed changes in structural and univariate functional
measures (e.g. Blakemore et al., 2007; Burnett et al., 2009; Mills et
al., 2014; van den Bos et al., 2011; Gweon et al., 2012; Tamnes et al.,
2013; Van Hoorn et al., 2016), the underlying functional network
architecture may already be in place by late childhood. This
conclusion is supported by the recovery of independent compo-
nents in our task data which closely resemble those derived
from resting state analyses (e.g. default mode and fronto-
parietal networks; Laird et al., 2011). As resting state connections
are thought to reflect long-term, stable network relationships
(Fox and Raichle, 2007; Wang et al., 2011), their emergence in
task data is perhaps unsurprising since it is unlikely that short-
term, task-related organization of the brain would completely
eliminate these durable networks (e.g. Gratton et al., 2018). While
follow-up developmental studies are necessary to replicate
and extend the current work, it may be that pathways within
the brain that support communication between nodes within
networks emerge relatively early, whereas regional changes
(e.g. grey matter features, activation) continue to be refined
across longer time scales. We find tentative support for this
idea by showing that there are some (albeit relatively weak)

changes across age in univariate activation during the task in
social brain regions. Alternatively, an adult-like social network
may emerge earlier in development than other functional
brain networks, given its foundational importance to human
survival and development (e.g. Dunbar and Shultz, 2007).
Support for this idea can be found in research showing that
social cognitive regions such as the TPJ show early (e.g.
by 7 months) functional organization as related to social
cognition (Hyde et al., 2018). Extending these findings both
earlier in development and investigating how developmental
trajectories of this network relates to developmental trajectories
of other defined networks will be important for resolving
the tension between the current findings and the body of
literature showing regional changes across adolescence in the
social brain.

Notably, design considerations of the present study pose
some limitations and preclude our ability to rule out potential
developmental effects. First, the domain of social cogni-
tion is broad and comprises processing of social-affective
information, mentalizing about self and others and understand-
ing and acting on more complex social emotions, amongst other
processes (Blakemore and Mills, 2014). Future research should
build on the current work by utilizing these methods to tap
into different aspects of social cognition during the assessment
of the social brain’s functional architecture, which might
show different developmental patterns. Additionally, functional



828 Social Cognitive and Affective Neuroscience, 2018, Vol. 13, No. 8

connectivity between these regions could be investigated in a
task-free environment, allowing us to evaluate the functional
architecture of this system at rest without the constraints of any
one task design. It would also be useful for future research to
explore the relationship between the social brain network and
the default mode network (DMN). These two networks show
significant spatial overlap. Specifically, 72% of voxels within our
defined social brain network also fall within the mask of the
DMN as defined by Laird and colleagues (Laird et al., 2011; for a
discussion see Mars et al., 2012). However, functional connectivity
patterns of regions that do not overlap (such as the amygdala
and temporal pole) might serve to differentiate between these
two networks. These questions will be important for future
research to address.

Finally, we utilized a cross-sectional design, which, while
often useful for initial questions and exploratory analyses, has
been shown to be less sensitive in detecting developmental
effects compared with longitudinal approaches (Kraemer et al.,
2000; Crone and Elzinga, 2015). Utilizing repeated measures in
order to examine within-person changes across the transition
from childhood to adolescence could shed more light on
developmental processes. In addition to the substantive
question at hand, many analytic techniques utilized in the
current manuscript have yet to be applied to longitudinal neural
data, and as such will represent a methodological advance in
our ability to further probe developmental data.

Conclusions
Taken together, the methods and findings in the current
manuscript represent an important step forward in our
understanding of functional relationships between regions of
the social brain. Utilizing a multi-method analytic approach, we
were able to show that there are strong, but not exclusive, net-
works between regions previously implicated in social cognition.
These results highlight the need for applying methodologies
consistent with our theoretical understanding of how the brain
operates, namely that neural regions do not operate in isolation.
Rather, the brain executes cognition and behavior across a
broad network of regions that contribute computationally to
ultimate outcomes. Future research should therefore start
to integrate an understanding of functional connectivity to
the neurodevelopmental work on the social brain, which
has thus far largely focused on univariate activation. This
integration not only has implications for improving our ability
to propose and test more specific hypotheses of normative
development (Pfeifer and Allen, 2016), but also a prime place
to ask additional questions related to individual differences in
network architecture and how these might relate to typical and
atypical social and behavioral outcomes during development. In
short, the social brain shows many characteristics of a functional
network, suggesting a new framework where neuroscientists
consider regions of the social brain in concert, rather than in
isolation.

Supplementary data

Supplementary data are available at SCAN online.
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