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Simple Summary: Breast cancer (BC) is a serious threat to women’s health and metastasis is the
major cause of BC-associated mortality. Failure to detect and remove occult micrometastases limits
the control of tumor recurrences. More precise non-invasive strategy needs to be developed for the
detection of the tumor metastasis in lymph nodes and distant organs. Here, we suppose that the
metabolomic method can be used to achieve non-invasive and real-time monitoring of BC metastatic
status. We firstly described the metastatic status of BC mouse models with different tumor-bearing
times. Secondly, metabonomics analysis and metastasis-related changes in the tumor microenvi-
ronment (TME) were performed in tumor-bearing mice with different metastatic states. The results
showed that TME evolution can establish a link between metabolomics characteristics and tumor
metastatic status. Finally, the changes of differential metabolite levels were also preliminarily con-
firmed in clinical BC samples and found that metabolite lysoPC (16:0) can be used for clinical N-stage
diagnosis, and the possible causes of its changes was analyzed through bioinformatics technology.

Abstract: Breast cancer (BC) is a serious threat to women’s health and metastasis is the major cause
of BC-associated mortality. Various techniques are currently used to preoperatively describe the
metastatic status of tumors, based on which a comprehensive treatment protocol was determined.
However, accurately staging a tumor before surgery remains a challenge, which may lead to the miss
of optimal treatment options. More severely, the failure to detect and remove occult micrometastases
often causes tumor recurrences. There is an urgent need to develop a more precise and non-invasive
strategy for the detection of the tumor metastasis in lymph nodes and distant organs. Based on
the facts that tumor metastasis is closely related to the primary tumor microenvironment (TME)
evolutions and that metabolomics profiling of the circulatory system can precisely reflect subtle
changes within TME, we suppose whether metabolomic technology can be used to achieve non-
invasive and real-time monitoring of BC metastatic status. In this study, the metastasis status
of BC mouse models with different tumor-bearing times was firstly depicted to mimic clinical
anatomic TNM staging system. Metabolomic profiling together with metastasis-related changes
in TME among tumor-bearing mice with different metastatic status was conducted. A range of
differential metabolites reflecting tumor metastatic states were screened and in vivo experiments
proved that two main metastasis-driving factors in TME, TGF-β and hypoxia, were closely related
to the regular changes of these metabolites. The differential metabolites level changes were also
preliminarily confirmed in a limited number of clinical BC samples. Metabolite lysoPC (16:0) was
found to be useful for clinical N stage diagnosis and the possible cause of its changes was analyzed
by bioinformatics techniques.
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1. Introduction

Breast cancer (BC) ranks first in the diagnosis rate and second in mortality among
female cancer patients [1], and metastasis is the leading cause of death in BC patients [2–4].
According to estrogen receptor (ER), progesterone receptor (PR), HER2, Ki-67, and other
breast cancer molecular and genetic markers, four primary subtypes of breast cancer,
including Lumial A, Lumial B, Erb-B2 overexpression type, and triple negative type are
identified. Among them, triple negative breast cancer is more metastatic and invasive [5,6].
Basically, two major forms of tumor metastasis are regional lymph node infiltration (N) and
distant metastasis (M) [7–9], which together with primary tumor volume (T) constitute the
TNM stage system [10–12]. In clinical settings, TNM stages are the main basis of clinical
tumor treatment strategy selection [10,13–15], especially neoadjuvant treatment before
tumor surgery. However, in most cases, the TNM stages are usually defined only after
surgery, mainly because it is difficult to preoperatively describe the degree of lymph node
metastasis which needs to be determined depending on the direct pathology analysis after
lymph node dissection [16–19]. Moreover, the detection of occult micrometastases in distal
organs remains a challenge for current techniques [20,21]. The failure to remove these
disseminated malignant cells in lymph nodes or distant organs is the major reason for
tumor recurrences and metastatic spread [22,23].

For the past decades, investigators have tried to combine multiple techniques, includ-
ing PET-CT, tumor biomarkers, circulating tumor cells, and other methods, in an attempt
to accurately describe the tumor metastasis state before surgery, but limited strategies suc-
ceeded in balancing sensitivity and specificity [24]. Of the techniques that were mentioned
above, PET-CT is currently the most powerful non-invasive technique for even detecting
lymph node metastasis [25,26], whereas the detection principle of PET-CT relying on the
metabolic level of tumor cells [27] may make its application restricted when tumor mi-
crometastatic foci are in a dormant status, which always happens in BC [28]. Furthermore,
BC is recognized as one of the most heterogeneous tumors [29], which also poses challenges
to the accuracy of PET-CT [30]. Hence, there is an urgent need to develop a more precise
and non-invasive strategy for the detection of the tumor metastasis in lymph nodes and
distant organs.

Tumor metastasis is a sequential multi-step process [31], which is closely related to
the primary tumor microenvironment (TME) evolutions. TME evolution during cancer
progression is the main force driving tumor cells to detach from the primary site, migrate
through basement membrane and extracellular matrix, and invade lymphatic and/or blood
systems [32,33]. Moreover, these variations in the primary tumor can also alter the distant
microenvironment to facilitate tumor cell seeding or metastatic foci growth [34]. In addition,
there is a close interaction at the metabolic level between tumor and normal tissues includ-
ing the circulatory system [35], and metabolomics profiling is, therefore, able to precisely
reflect subtle changes within the TME [36,37]. Consequently, based on the correlation of
TME evolution with the alteration of metastatic status and metabolomics characteristics
during tumor progression, we suppose that whether a link can be established between
metabolomics characteristics and tumor metastatic status, i.e., to achieve non-invasive and
real-time monitoring the degree of tumor metastasis via metabolomics profiling (Figure 1).
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Figure 1. Correlations between tumor microenvironment (TME) evolution, tumor metastatic status,
and metabolomics characteristics. TME will lead to tumor metastasis and invasion, and changes in
the TME will also lead to changes in serum metabolite levels. The correlation between the content
of metabolites and the degree of tumor metastasis was intended to be established based on the
above correlations.

To test this hypothesis, a 4T1 mouse model of BC was used in this work. We first
confirmed that the tumor entity growth trend was in a logistic growth law during progres-
sion, clearly exhibited the three growth phases (delayed, logarithmic growth and plateau
phase, respectively defined as ‘T1’, ‘T2’, and ‘T3’ stage), which was mainly related with
the dynamic change of oxygen and nutrients supply from the circulatory system [38]. And
then, the tumor metastasis status in lymph nodes and distant organs of the three growth
phases was depicted through H&E staining, according to which the ‘N’ and ‘M’ stages
were determined to mimic the clinical anatomic TNM staging system of BC [39]. After-
wards, metabolomic profiling among tumor-bearing mice with different ‘N&M’ stages
was conducted and a range of differential metabolites reflecting tumor metastatic states
were screened. In order to determine that TME evolution can establish a link between
metabolomics characteristics and tumor metastatic status, metastasis-related changes in
TME during tumor progression were analyzed, followed by correlation analysis between dif-
ferential metabolites and these changes. Of note, two widely reported metastasis-promoting
factors, TGF-β [40] and hypoxia [41], were closely related to these regular changes. Further,
a designed in vivo experiment confirmed that the TGF-β level and hypoxia degree in the
primary tumor could also cause expected changes in the level of the screened differential
metabolites. At the same time, the level of differential metabolites in clinical BC samples
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was analyzed. A metabolite that can be used for clinical N stage diagnosis was found and
the possible cause of its changes was analyzed by bioinformatics techniques.

2. Materials and Methods
2.1. Cell Lines and Culture Conditions

4T1 murine breast cancer cells were cultured in DMEM (Dulbecco’s modified eagle’s
medium) that was supplemented with 10% fetal bovine serum at 37 ◦C in an atmosphere
containing 5% CO2.

2.2. Mouse Model and Treatment

Female BALB/c mice that were six to eight weeks-old were used in this study. The mice
were acclimated at least 1 week before experimental manipulation. During this time, they
were observed for health. The 4T1 breast tumor model was established by subcutaneous
injection of 5 × 105 viable 4T1 cells in 50µL of PBS into the right mammary fat pad. All
animal experiments were performed according to the protocol that was approved by the
National Institutes of Health Clinical Center Animal Care and Use Committee.

For the analysis of the relationship among metastasis-related metabolites and the
TGF-β contents in tumor and intra-tumoral hypoxia, BALB/c mice with tumor volume
of 100 mm3 and 400 mm3 were used as the oxygen-enriched group ‘T1’ and the hypoxia
group ‘T2’, respectively, which ensures the oxygen enrichment and hypoxia of the tumor
during 14 days of administration. Group ‘T1’ were randomly divided into four groups
(n = 5/group), including CoCl2 group (25 µg/kg CoCl2, once), TGF-β group (recombinant
human TGF-β, a dosage of 5 µg/kg, once), TGF-β & CoCl2 group (recombinant human
TGF-β and CoCl2, the same dosage as above), and control (20 µL saline once). Group ‘T2’
were also divided into 4 groups (n = 5/group), including MnO2 group (MnO2 NPs [42], a
dosage of 3 mg/kg, once), LY group (LY2109761, a potent inhibitor of TGF-β signaling, a
dosage of 1 mg/kg, once), LY&MnO2 group (LY2109761 and MnO2, the same dosage as
above), and control (20 µL saline once). All the mice were injected intratumorally once
every other day for a total of four administrations. The day after the last injection, the mice
were sacrificed.

When the tumor diameter of the mouse exceeded 2 cm in any one dimension, or the
mice show abnormal abdominal expansion, dyspnea, and other symptoms, the animal
humanitarian end point was implemented.

2.3. Ultrasound Imaging and Doppler Imaging

The mice were anesthetized using 2% isoflurane in oxygen and anesthesia was main-
tained during imaging. The mice were fixed on the board in a supine position with the
paws taped over the ECG electrodes. Ultrasound coupling gel was applied between the
depilated skin and the probe to remove air bubbles. A three-dimensional ultrasound
imaging scan was performed using Vevo2100 LAZR high frequency US imaging system
(FUJIFILM Visual Sonics Inc., Toronto, ON, Canada) that was equipped with a linear array
transducer (LZ-550, 32–55 MHz center frequency linear array with integrated light source).
2D and 3D images of the mouse breast tumor were acquired in B-mode. By delineating
the tumor margins on 3D B-mode images, the tumor volumes were obtained [43]. Growth
curves were fit by logistic regression using Origin and the images of the distribution of
tumor vessels were obtained in Color Doppler mode.

2.4. Logistic Curve Fitting and Leave-One-Out Cross Validation

The leave-one-out cross validation was used to test the growth curve [44]. Leave-one-
out cross validation is a practical and important algorithm which estimates the predictive
performance of a multivariable calibration model. The idea behind it is to predict the
probability of each sample in turn with the calibration model that is developed with the
other samples. In detail, the prediction procedure was performed n times. In each time,
one sample was selected and used as the test set and a regression model is fitted to the
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remaining (n − 1) samples. The selected sample was then predicted with the obtained
regression model. At last, a regression curve was made between the predicted value and
the actual value, and the prediction error of the samples was calculated.

2.5. Immunohistochemistry (IHC) and Immunofluorescence (IF)

The tissue sampling in this study was fixed with formalin and then embedded in
paraffin. The paraffin-embedded tissue was placed in formalin buffer and cut into 3–5 µm
sections. Then, the section was deparaffinized and H&E stained.

For immunohistochemical analysis, the paraffin-embedded tissue was deparaffinized,
hydrated, and placed in a citrate buffer for antigen retrieval. The slides were washed
three times with PBS and incubated with 3% hydrogen peroxide at room temperature for
5–10 min to remove endogenous catalase. After adding 5% BSA blocking solution dropwise,
the sections were mixed with the primary antibodies against α-SMA (1:200, Cell Signaling
Technology, Danvers, MA, USA), Ki-67 (1:400, Cell Signaling Technology), Collagen I
(1:50, Abcam, Cambridge, UK) CD105 (1:100, Abcam, Cambridge, UK), and Smad2 (1:100,
Abcam, Cambridge, UK) and incubated at 4 ◦C overnight. Biotinylated goat anti-rabbit
antibodies were used as secondary antibodies at 1:150 for 30 min at room temperature
(EnVision + System HRP anti rabbit (K4002, Dako, Tokyo, Japan)). The intra-tumoral MVD
quantification was performed under light microscopy in accordance with the procedure
that was reported by Elvir [45] and the average optical density (AOD) of α-SMA, Ki-67,
Collagen I, and Smad2 were scaled with each image by Image-Pro Plus 6.0 software (Media
Cybernetics, Bethesda, MD, USA).

Immunofluorescence staining was performed to assess the hypoxic area in tumors
with Hypoxyprobe™ Plus Kit. The mice were intraperitoneally injected with pimonidazole
solution at a dosage of 60 mg/kg body weight [46]. After 90 min of circulation in vivo,
the mice were sacrificed and the tumors were harvested. The tumors were immediately
fixed in 10% neutral buffered formalin, embedded in paraffin and cut into 10 µm-thick
sections, which were placed on microscope slides for staining. Frozen tissue sections were
then interrogated with FITC conjugated to anti-pimonidazole mouse IgG1 monoclonal
antibody for 60 min. Then, the slides were washed with TBS-0.2% Brij 35, stained with
DAPI for 10 min, rinsed with PBS and had a coverslip applied. The tissue sections were
analyzed using a fluorescent confocal microscope LSM800 with 40× magnification and
ImageJ software.

2.6. Metabolomics
2.6.1. Sample Storage and Preparation

Blood was collected from the mice through the eyeball method. The blood sam-
ples were coagulated in the test tubes, and then centrifuged at 3500 r/min for 15 min
to get the supernatant which was used as serum. The serum samples were stored in
cryo-plastic straws at −80 ◦C and were prepared as previously described with some im-
provements before acquisition of the data [47]. Specifically, 100 µL serum was mixed with
400 µL methanol containing 12.5 µg/mL (ultra-high performance liquid chromatography
coupled with quadrupole-time of flight mass spectrometry (UHPLC-Q/TOF-MS) analy-
ses) or 0.125 µg/mL (ultra-high performance liquid chromatography coupled with triple
quadrupole mass spectrometry (UHPLC-QqQ-MS) analyses) L-2-chlorophenylalanine (in-
ternal standard). After rotating for 1 min and incubating on ice for 30 min, the mixture was
centrifuged at 14,000× g at 4 ◦C for 15 min and the supernatant was used as the test solution.
The mixed solution of the same volume of each sample was used as the quality control
(QC) to participate in the analyses. Each standard compound was accurately weighed
by an analytical balance or pipettor, dissolved, and mixed to obtain a mixed standard
stock solution.
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2.6.2. Instrumentation and Conditions

Chromatographic separation was performed by an ACQUITY UPLC HSS T3 C18
column (2.1 mm × 100 mm, 1.8 µm, Waters, Milford, MA, USA) coupled with a C18
pre-column (2.1 mm × 5 mm, 1.8 µm, VanGuard, Waters, Milford, MA, USA) at 35 ◦C.
The flow rate was 0.4 mL/min and the injection volume was 5 µL. The mobile phase A
consisted of 95% high purity water and 5% acetonitrile (containing 0.1% formic acid) and
the mobile phase B was acetonitrile modified with 0.1% formic acid, using an elution
gradient of 0% B at 0–2 min, 0–68.4% B at 2–16 min, 68.4–94.7% B at 16–17 min, 94.7% B at
17–19 min, 94.7–0% B at 19–21 min, 0% B at 21–24 min [48]. A total of 15 QC samples were
detected in each experiment: 5 quality control solutions were continuously analyzed before
sample analysis, and the other 10 were randomly inserted into the analysis sequence of all
samples. The order of sample analysis was randomly generated by Excel. Blank analysis
was inserted after analysis of each sample (including quality control solution) to avoid
cross contamination.

The UHPLC-Q/TOF-MS analysis was conducted on an Agilent 6545 Quadrupole
Time-of-Flight (Q-TOF) mass spectrometer (Agilent, Santa Clara, CA, USA) coupled to
Agilent 1290 Infinity LC system with AJS-ESI ion source in the study. Mass spectrometry
(MS) data were collected in both positive and negative mode and the mass range was from
100 to 1100 m/z. The detailed mass spectrometric conditions were carried out as follows:
capillary voltage: 3.5 kV in positive ion mode and 3.2 kV in negative ion mode; drying gas
flow rate, 11 L/min; gas temperature, 350 ◦C; fragmentor, 120 V; and nebulizer, 45 psi. The
collision energy was set at 10 V, 20 V, and 40 V for fragmentation.

The UHPLC–QqQ-MS analysis was performed on a Thermo Scientific Dionex UltiMate
3000 with triple quadrupole mass spectrometer (Thermo Finnigan TSQ Quantum) in
electrospray ionization (ESI (-)) mode. The acquisition conditions were spray voltage
4000 V, sheath gas pressure 30 Arb, Aux Gas Pressure 45 Arb. Other details are shown in
Supplementary Table S4.

2.6.3. Data Processing and Analysis

The chromatographic data were converted to mzData format by Agilent MassHunter
and XCMS chromatographic peaks were extracted by Rgui. The output data matrix con-
sisted of a set of values (m/z, retention time, peak area (relative content of metabolites)).
Groups where the number of samples containing metabolites is more than 80% of the
total number were retained. The resulting data matrix was then standardized using the
peak area of the internal standard. Partial least square discriminant analysis (PLS-DA)
was conducted to get the separation trend between two or more groups using SIMCA-P
software. Model validation was used on PLS-DA to avoid over-fitting. In order to select the
differential metabolites, VIP values of all the data were imported into the internal standard
standardized dataset. A non-parametric test was used to calculate significance of the altered
level of metabolites in different groups. Metabolites with p < 0.05, fold change > 2, and
VIP > 1 between the two groups were differential metabolites [49]. These metabolites were
structurally confirmed by subjecting the accurate m/z to database searches in the public
databases HMDB. The qualitative analysis was completed by comparing the spectra in
the database with the spectra of the differential metabolites. The receiver operative curve
analyses (ROC) and logistic regression analysis were performed using SPSS.

2.7. Clinical Study Participants

Plasma samples were collected from BC patients (n = 32) (14 at N0; 8 at N1; 10 at
N2 or N3). The BC patients were recruited from the Taian City Central Hospital. The BC
stage was built in accordance with the Tumor Nodes Metastasis (TNM) staging system and
promulgated by the American Joint Committee on Cancer (AJCC). For all the BC subjects,
the diagnosis was based on clinical and histopathological criteria. All of the subjects agreed
to serve as plasma donors for the experiments.
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2.8. Method of STRING and TCGA Database

The network prediction of Lecithin-cholesterol acyltransferase (LCAT), Lysophospholi-
pase D (GDPD1), TGF-β (TGFB1), HIF1-α (HIF1A), collagen I (COL1A1), α-SMA (ACTA2),
and CD105 (ENG) with other molecules that were associated with them were performed in
the STRING database (https://string-db.org, accessed on 15 September 2021). The mRNA
expressions of LCAT and GDPD1 in BC cases and normal cases were forecast in the GEPIA
database (http://gepia.cancer-pku.cn/index.html, accessed on 13 September 2021).

The cancer clinical profiles of patients with BC were obtained from TCGA with an
integrative analysis using cBioPortal bioinformatics tools (https://www.cbio-portal.org/,
accessed on 26 September 2020) [50]. Information of BC patients with different TNM stages
was acquired, as well as the expression level of Ki-67 (MKI67), collagen I (COL1A1), α-SMA
(ACTA2), and CD105 (ENG). The correlations between the mRNA expression levels and
TNM stages were analyzed.

3. Results
3.1. Measurement of Tumor Volume by Ultrasound Imaging and Fitting of Tumor Growth Curve

The tumor volumes of the 4T1 breast tumor model were measured by using ultrasound
imaging. Ultrasound imaging provides a more accurate method to measure tumor volume
and detects small tumors that cannot be measured with vernier calipers [51]. The changes of
tumor volume were detected during tumor progression. Figure 2a depicts the representative
3D images and the 2D images from 3D scans are shown in Supplementary Figure S1; the
tumor outlines were drawn manually. The logistic growth curve of tumor was fitted with
the days after tumor cell inoculation as abscissa and tumor volume as ordinate (Figure 2b).
By observing the curve, we found that the tumor was in a delayed period within 15 days
after inoculation, followed by the logarithmic growth phase from 15 to 40 days, and
entered the plateau stage after 40 days. Leave-one-out cross validation was used to test the
fitness of the growth curve, and the results indicated that the curve fits well (R2 = 0.999)
(Supplementary Figure S2).
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Figure 2. Division of ‘TNM’ stage at the animal level. (a) Three-dimensional reconstructions of
ultrasound imaging data for tumors that were evaluated in the study. The segmented volume
is shown in blue. (b) Tumor logistic growth curve with high fitting degree (R2 = 0.978, n = 6).
(c) Immunohistochemistry with anti-Ki-67 antibody in tumor tissues of ‘T1’ (n = 15), ‘T2’ (n = 15)
and ‘T3’ (n = 15) stages BC mouse model. The average optical density (AOD) in the ‘T2’ stage was
significantly higher than that in the ‘T1’ and ‘T3’ stages, (* p < 0.05, *** p < 0.001) (d) Typical H&E
staining of lung tissues. Non-metastatic lung tissue (d1) and metastatic lung tissue (d2). (e) Typical
H&E staining of lymph nodes. Non-metastatic popliteal lymph nodes (e1), metastatic popliteal
lymph nodes (e2), non-metastatic contralateral inguinal lymph node (e3), metastatic contralateral
inguinal lymph node (e4), non-metastatic axillary lymph nodes (e5), and metastatic axillary lymph
nodes (e6). (f) ‘TNM’ stages of BC mouse model.

3.2. Division of ‘T’ Stage at the Animal Level According to Ki-67 Immunohistochemical and
TCGA Database

The clinical T category is based primarily on the size of the invasive component of the
cancer. According to American Joint Committee on Cancer (AJCC), the definitions of T1, T2,
and T3 are differentiated on the basis of the greatest dimension of the tumor, and a tumor
of any size with direct extension to the chest wall and/or to the skin is classified as T4. In
order to define the ‘T’ stage at the animal level, we firstly analyzed the expression level
of MKI67 mRNA in different T stages of clinical samples from the TCGA database. Ki-67
is a nuclear protein that is widely expressed in proliferating cells, but hardly expressed
in quiescent cells. It is used to assess the activity of tumor cell proliferation because of its
short half-life [52]. The results showed that the expression of Ki-67 was the highest in T2
BC patients, which means that tumor proliferation is fastest at this stage (Supplementary
Figure S3). In combination with the tumor growth curve of the mouse model, the tumors at
the logarithmic growth phase (15 to 40 days/200 to 750 mm3) were defined as ‘T2’ stage.
Afterwards, tumors in a delayed period (less than 15 days/200 mm3) were ‘T1’ stage and
those in the plateau stage (more than 40 days/750 mm3) were ‘T3’ stage. To confirm our
definition of ‘T’ stages at the animal level, immunohistochemical analysis of Ki-67 was
performed in animal models with tumor volume of 25, 400, and 900 mm3 and the results
were consistent with the expectation (Figure 2c).
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3.3. Division of ‘N&M’ Stage at the Animal Level According to H&E Staining of Lymph Nodes
and Lung Tissues

The clinical classification of N and M stages is based on the status of lymph nodes
and distant metastasis. Therefore, lymph nodes and lung tissues of mouse models were
harvested and stained with H&E to analyze whether the transfer occurs. The analyzed
lymph nodes included the popliteal, contralateral inguinal, and axillary lymph nodes.
H&E staining showed metastatic tumor cells that were visible in the lymph nodes, which
were larger than the surrounding lymphocytes, and have malformed nuclei and more
vacuoles [53,54]. Furthermore, we found that the number of cells in the metastatic tumor
was lower than that in the surrounding lymphatic tissue (Figure 2e). Moreover, an obvious
aggregation of tumor foci was found in the metastatic lung tissue (Figure 2d).

According to H&E staining of lymph nodes and lung tissues, ‘N&M’ stages of the
animal model were defined as: (1) Stage ‘N0’: no metastasis in the lymph nodes. (2) Stage
‘N1’: metastasis in the axillary lymph nodes. (3) Stage ‘N2’: metastasis in the popliteal
lymph nodes or the contralateral inguinal lymph nodes. (4) Stage ‘M0’: no metastasis in the
lung. (5) Stage ‘M1′: metastasis in the lung. The results showed that the degree of metastasis
increased with the progression of the tumor, and there were differences in the degree of
tumor metastasis among mice with the same progression time. (Figure 2f, Supplementary
Table S1). Then, the mice were grouped according to their stages as (1) group ‘N0’ (no
metastasis in lymph nodes nor lung); (2) group ‘N1’ (metastasis in axillary lymph nodes
but no metastasis in the lung); (3) group ‘N2’ (metastasis in the popliteal lymph nodes
or the contralateral inguinal lymph nodes but no metastasis in the lung); (4) group ‘M0’
(groups ‘N0’, ‘N1’, and ‘N2’ are collectively called group ‘M0’); (5) group ‘M1’ (metastasis
in the lung).

3.4. Metabolic Variations Associated with Tumor Metastasis

Metabolomic analysis was performed on the serum of BC mice in different groups
(‘N0’, ‘N1’, ‘N2’, ‘M0’, and ‘M1’) to find out the differential metabolites. Metabolic profiling
of each mouse was acquired using UPLC-Q/TOF-MS. PLS-DA models were established
respectively to classify the mouse at different ‘N’ or ‘M’ groups to screen potential biomark-
ers for lymph gland or lung metastases. It was found that the negative ion mode had
a better grouping effect. Specifically, the mice were divided into ‘M0’ and ‘M1’ groups
according to lung metastasis firstly. We observed a clear discrimination between ‘M0’ and
‘M1’ groups, as illustrated in Figure 3(a1), assessed by high values of goodness-of-fit model
parameters R2 and Q2 that related respectively to the explained and predicted variance
in the model (R2(Y) = 0.902; Q2 = 0.686). Next, mice in the ‘M0’ group were subdivided
into ‘N0’, ‘N1’, and ‘N2’ groups according to the ‘N’ stages. As shown in Figure 3(b1),
the PLS-DA model revealed the segregation of groups by R2(Y) = 0.856 and Q2 = 0.671
among ‘N0’, ‘N1’, and ‘N2’ cohorts, and R2(Y) = 0.538 and Q2 = 0.425 among ‘N0’, ‘N1’,
‘N2’, and ‘M1’ groups (Supplementary Figure S4A). The discrimination robustness was
further validated by re-sampling 200 times the model under the null hypothesis showing a
clear decrease of R2 and Q2 with the correlation between the original and permuted class
information Y matrices (Figure 3(a2,b2), Supplementary Figure S4B).

To identify the metabolites that contributed to the metabolic distinctions, they were
firstly filtered based on the threshold values of variable importance in the projection
(VIP) (>1) that was generated from PLS-DA model as well as the fold change (>2) and
p-value (<0.05) between the ‘M0’ and ‘M1’ groups. According to these criterions, a total
of 34 metabolites were identified and confirmed and were considered as lung metastasis-
related metabolites. It should be noted that the multiple difference of taurocholic acid
in ‘M0’ vs. ‘M1’ group was as high as 12 times. To validate whether the changes in the
content of metabolites were related to the degree of tumor metastasis, we summarized the
relative content of the selected metabolites in ‘N0’, ‘N1’, ‘N2’, and ‘M1’ groups (Figure 3c,
Supplementary Figure S5). We found that most of the metabolites showed a gradual
increase or decrease with the degree of tumor metastasis, and the fold changes and p-values
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of the metabolites are shown in Supplementary Table S2. The pathway analysis of the
34 metabolites by metaboAnalyst 3.0 showed their association with different metabolic
pathways. However, the results of pathway enrichment were not good enough, only two
major pathways, including arachidonic acid metabolism and pyrimidine metabolism were
associated with the pathway impact of more than 0.1. (Supplementary Figure S6).
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Figure 3. Metabolic profiling analysis among ‘N0’, ‘N1’, ‘N2’, and ‘M1’ groups. (a1) The score plot
for PLS-DA to discriminate ‘M0’ (n = 30) and ‘M1’ (n = 12). (a2) Validation plot of the ‘M0’ and ‘M1’
groups that were obtained from 200 permutation tests. (b1) The score plot for PLS-DA to discriminate
‘N0’ (n = 11), ‘N1’ (n = 8), and ‘N2’ (n = 11). (b2) Validation plot of the ‘N0’, ‘N1’, and ‘N2’ groups that
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were obtained from 200 permutation tests. (c) Fold changes of the relative contents of different
metabolites among ‘N0’, ‘N1’, ‘N2’, and ‘M1’ groups, blue indicates that the content of metabolites de-
creases with the increase of the degree of metastasis, and red indicates that the content of metabolites
increases with the increase of the degree of metastasis. The darker the color, the greater the degree.
(d) ROC curves of metabolites.

To evaluate the performance of each selected metabolite on grouping, the diagnostic
accuracy was analyzed through receiver operating characteristic (ROC) curves analysis [55].
The diagnostic accuracy in the form of area under the ROC curve (AUC) was evaluated in
the datasets of ‘N0’ vs. ‘N1/2’, ‘N1’ vs. ‘N2’ and ‘M0’ vs. ‘M1’. We found that lysoPC (16:0)
performed good diagnostic potential with the AUC score 1.0 in ‘N0’ group compared with
‘N1’ group and also many of the metabolites showed good abilities to differentiate between
groups with different degrees of metastasis (Figure 3d, Supplementary Tables S2 and S3).

Next, according to the results of ROC curves analysis, nine metabolites with higher
AUC values were selected from the above 34 metabolites for quantitative analysis by UPLC-
QqQ-MS. The quantitative regression equations of metabolite standards are shown in
Supplementary Table S4 and the quantitative results showed that the contents of taurocholic
acid, chenodeoxycholic acid, thymidine, deoxyuridine, β-hydroxyisovaleric acid, and
γ-Aminobutyric acid increased with the degree of tumor metastasis whereas those of
arachidonic acid, lysoPC (16:0), and xanthosine decreased (Supplementary Table S4).

Then, logistic regression analysis was performed on the quantitative data of nine
metabolites in the datasets of ‘N0’ vs. ‘N1/2’, ‘N1’ vs. ‘N2’, and ‘M0’ vs. ‘M1’. The
model equations were established as Logit (P ‘N0’ vs. ‘N1/2’) = 227.386 – 0.605 X1, Logit
(P ‘N1’ vs. ‘N2’) = −739.373 + 154.679 X2 + 328.086 X3 + 102.216 X4 and Logit (P ‘M0’ vs. ‘M1’) =
−42.482 + 1.265 X5, where X1, X2, X3, X4 and X5 were the serum levels of lysoPC (16:0), γ-
Aminobutyric acid, thymidine, β-hydroxyisovaleric acid, and taurocholic acid, respectively.
So far, through statistical analysis, we have screened five metabolites with the strongest
correlation with metastasis, which required further in vivo experimental verification.

3.5. Correlations between Metabolomics Characteristics, Tumor Metastatic Status, and
TME Evolution

In order to certificate that TME evolution can establish a link between metabolomics
characteristics and tumor metastatic status, metastasis-related changes in TME during
tumor progression were analyzed. TME is mainly composed of extracellular matrix (ECM),
stromal cells, and vessels. Collagens, the major component of ECM could inhibit cell adhe-
sion by activating FAK as well as promote metastasis and diffusion of tumor cells [56,57].
Fibroblasts are the main cell components in TME. By expressing α-smooth muscle actin (α-
SMA), fibroblasts produce a phenotype called cancer-associated fibroblasts (CAFs), which
make the tumor cells tend to metastasize [58]. The formation of new vessels contributes
to tumor growth and metastasis. CD105 is highly expressed in tumor-related neovascular
endothelial cells, but not in normal vascular endothelial cells [59]. Therefore, CD105 takes
the advantages in the evaluation of tumor micro-vessel density (MVD).

The expression levels of collagen I and α-SMA, as well as MVD of animal model in ‘N0’,
‘N1’, ‘N2’, and ‘M1’ groups and clinical samples in different N&M stages were analyzed
by immunohistochemistry and TCGA database. As illustrated in Figure 4(a,b1–b3), with
the deepening of metastasis degree, the expression of collagen I and α-SMA as well as the
MVD increased. At the same time, the expression levels of COL1A1 (collagen I), ACTA2
(α-SMA), and ENG (CD105) in BC clinical samples in the TCGA database were also in
direct proportion to the degree of metastasis (Supplementary Figure S7).
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Figure 4. (a) Immunohistochemistry with anti-collagen I, anti-α-SMA, and anti-CD105 antibody in
tumor tissues of ‘N0’ (n = 11), ‘N1’ (n = 8), ‘N2’ (n = 14) and ‘M1’ (n = 12) stages BC mouse model.
With the deepening of the degree of tumor metastasis, the expression of collagen I and α-SMA as well
as the MVD increased. (b1–b3) The expression of collagen I (b1) and α-SMA (b2) were shown by the
average optical density (AOD). CD105 (b3) is used to label MVD, (* p < 0.05, ** p < 0.01, **** p < 0.0001)
(c) Correlation analysis between differential metabolites contents and protein expression in the
TME. (d) Histopathologic staining of tumor tissues with different ‘T’ stages. (e) Observation of the
distribution of blood vessels of BC mouse model with different ‘T’ stages by color doppler imaging.

The correlation analysis between the content of five differential metabolites and the
collagen I and α-SMA expression, as well as MVD in TME was carried out. As shown in
Figure 4c, the numbers inside the circles indicate the magnitude of the correlation, and
the colors indicate positive or negative correlations (blue for positive correlations and red
for negative correlations). The larger the absolute value of the number, the greater the
correlation, and greater than 0.3 was considered to be correlated. The results showed that
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there was a correlation between the metabolites content and collagen I and α-SMA expres-
sion, as well as MVD. Therefore, TME evolution can establish a link between metabolomics
characteristics and tumor metastatic status.

3.6. Relationship among Intratumoral Hypoxia, TGF-β Contents in Tumor, and Metastasis-Related
Metabolites Level

In the previous experiments, the relationship between the TME evolution and the
metabolomics characteristics is based on statistical results, so we further designed in vivo
experiments for validation.

In addition to the above characteristics, TME also has the characteristics of hypoxia.
At the same time, the difference of hypoxia in different sizes of tumors will also lead to the
difference of vascular distribution. As shown in Figure 4d, in the ‘T1’ stage, an obvious
glandular ring and cavity appeared in the middle. After that, the cells of circle wall gradu-
ally grew inward and became thicker and smaller. Then, the whole gland circle was filled
with cancer cells, the cavity disappeared, and the cells arranged irregularly (‘T2’ stage).
In the ‘T3’ stage, central necrosis was observed, which is caused by hypoxia. Doppler
ultrasound imaging was also employed to observe the distribution of blood vessels and
hypoxia in tumors of different ‘T’ stages. The tumor volumes of the representative mice
were 8.6, 321.2, and 834.4 mm3, and the percentage of vascularity were 2.17%, 22.41%,
and 4.83%, respectively (Figure 4e). The tumor in delayed phase (‘T1’) was avascular
tumor nodule, while the tumor in logarithmic growth phase (‘T2’) was vascularized tumor.
However, the plateau stage (‘T3’) appeared as a vascularized tumor with central necrosis,
out of the excessive volume of the tumor and hypoxia. Furthermore, transforming growth
factor beta (TGF-β) plays an important role in BC metastasis and TME remodeling. At the
same time, collagen remodeling, cancer-associated fibroblasts formation, and MVD genera-
tion are closely related with intra-tumoral hypoxia and TGF-β contents in tumors [60–65].
Therefore, we further constructed a 4T1 BC mouse model and intervened in the hypoxia
and transforming growth factor beta (TGF-β) expression of the tumor to further verify the
correlation between metabolite content and TME.

The mice with a tumor volume of 100 mm3 served as the oxygen-enriched group
(‘T1’) while those with a tumor volume of 400 mm3 were chosen as the hypoxia group
(‘T2’), which ensures the oxygen enrichment and hypoxia of the tumor during 14 days of
administration. Then, we detected the levels of TGF-β and hypoxia in mice tumor through
a series of strict controls, including the up-regulation of TGF-β and hypoxia stimulation of
oxygen rich tumors (‘T1’) as well as the down-regulation of TGF-β and oxygen supply to
hypoxic tumors (‘T2’), and analyzed the mutual regulation relationship between TGF-β and
hypoxia. Finally, the contents of tumor-related metabolites in each group were quantified
to demonstrate their correlation with changes in the TME.

TGF-β levels in tumor homogenates were determined with ELISA (Figure 5a). Staining
for pSmad2 served for examining the status of TGF-β signaling in tumor tissues (Supple-
mentary Figure S8). The activation rate of TGF-β1 and the expression of pSmad2 in the
TGF-β group, CoCl2 group, and TGF-β&CoCl2 group were higher than that in the control
group (p < 0.05). The LY group, MnO2 group, and LY&MnO2 group all had a lower TGF-β1
activation rate and expression of pSmad2 than the control group (p < 0.05). Moreover, these
two indicators were higher or lower in the group that was given both drugs than in the
group that was injected with one drug, although these differences were not significant.
The results showed that hypoxia up-regulated TGF-β levels in TME and promoted TGF-β
downstream signaling.
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Figure 5. (a) TGF-β levels in tumor were determined by ELISA. The value of the activation rate
is the ratio of the active TGF-β to the latent TGF-β (n = 5/group). (b1,b2) Pimonidazole staining
of tumors in stage ‘T1’ (b1) and stage ‘T2’ (b2) (n = 5/group). (c) Hypoxic region that was stained
by pimonidazole is shown in green fluorescence signal. The values represent the ratio of the sum
of green pixels to the total tumor area in each image (n = 5/group). (d1–d5) Fold changes of the
contents of lysoPC (16:0) (d1), γ-Aminobutyric acid (d2), thymidine (d3), β-hydroxyisovaleric acid
(d4), and taurocholic acid (d5) in the serum of mice after administration (n = 5/group). Fold changes
referred to the contents of corresponding metabolites after administration divided by the content
before administration. Greater than one indicated an increase and less than one indicated a decrease,
(* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).



Cancers 2022, 14, 5589 15 of 22

The degree of hypoxia in different groups was shown in Figure 5(b1,b2,c). All micro-
scopic images were adjusted with the same parameters. Thus, the intensity of the green
signal and the size of the area directly reflected the degree of tumor hypoxia. As shown in
Figure 5(b1), the order of fluorescence intensity from weak to strong was control group,
TGF-β group, CoCl2 group, and TGF-β&CoCl2 group. In the hypoxic tumors (Figure 5(b2)),
the control group showed a relatively high hypoxic area, exhibiting intense green spots. The
fluorescence intensity gradually decreases with the injection of LY, MnO2, and LY&MnO2,
respectively. The same trend was also observed for the area fraction of positive staining
areas (Figure 5c). The results showed that TGF-β increased the degree of tumor hypoxia.

To demonstrate whether the changes of metabolite contents could reflect the TGF-β
level and hypoxia, the contents of metabolites in serum of each mouse were acquired using
UPLC-QqQ-MS. In order to eliminate the effects of individual differences in mice on the
experimental results, we collected the blood sample before and after the administration
process and measured the fold changes of the metabolites individually. Figure 5(d1–d5)
showed that hypoxia and the up-regulation of TGF-β could promote metastasis to a certain
extent and will aggravate the changes of metabolites content. Meanwhile, the oxygen
supply and inhibition of TGF-β could reverse the change process of metabolites. The
results showed that there are correlations between TME evolution and the metabolomics
characteristics at the level of in vivo experiments. TME evolution can establish a link
between metabolomics characteristics and tumor metastatic status.

3.7. Level of Metastasis-Related Metabolites in Plasma of Clinical Patients with Different N Stages

In order to further explore the clinical application of the selected five differential
metabolites, we collected plasma samples from patients with different N stages of BC.
The contents of the five metabolites in the plasma of each sample was acquired using
UPLC-QqQ-MS. The results indicated that the level of lysoPC (16:0) in clinical patients
decreased with the degree of lymph node infiltration significantly and might be helpful
for the clinical N stage diagnosis of BC. As for the other four metabolites, although the
content level increased with the deepening of metastasis, there was no significant difference
(Figure 6a). A limited sample size may be the reason for this result.

3.8. Analysis of the Regulatory Relationship between Metastasis-Related Proteins and Metabolic
Enzymes by Bioinformatics Analysis

The level of lysoPC (16:0) in BC patients decreased significantly when the degree
of metastasis deepened. Therefore, we believe that it is meaningful to study the regula-
tory relationship between the expression of the metabolic enzymes of lysoPC (16:0) and
metastasis-related proteins.
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Figure 6. (a) Expression of metastasis-related metabolites in the plasma of clinical BC patients,
(* p < 0.05, ** p < 0.01), (N0: n = 14; N1: n = 8; N2 or N3: n = 10) (b1,b2) LCAT (b1) and GDPD1
(b2) expressions in BC compared with normal control, (*, p < 0.01). (c) LCAT, GDPD1, TGFB1, HIF1A,
COL1A1, ACTA2, and ENG proteins interaction networks in STRING database.

Lecithin-cholesterol acyltransferase and lysophospholipase D play an important role in
phospholipid metabolism. Lecithin-cholesterol acyltransferase can transform phosphatidyl-
cholines (PCs) into lysophosphatidylcholines (lysoPCs) and cholesterol ester. Lysophos-
pholipase D can transform lysoPCs into lysophosphatidic acids. The decrease of lysoPC
(16:0) may be due to the enhancement of the activity of lysophospholipase D and the
inhibition of the activity of Lecithin-cholesterol acyltransferase [66]. Hence, we analyzed
the expression of LCAT (Lecithin-cholesterol acyltransferase) and GDPD1 (lysophospho-
lipase D) in BC cases and normal cases. As shown in Figure 6(b1,b2), LCAT expression
was down-regulated significantly while GDPD1 expression was up-regulated in BC cases
compared with normal cases. To explore the possible molecular mechanisms of the rela-
tionships of the decreasing level of lysoPC (16:0) with tumor metastasis, we performed
network prediction of LCAT, GDPD1, TGFB1 (TGF-β), HIF1A (hypoxia-inducible factor
1 (HIF1-α)), COL1A1, ACTA2, and ENG with proteins that were related to the above
seven proteins in the STRING database. The proteins interaction network is shown in
Figure 6c. The network was clustered to three clusters through the kmeans clustering
method, distinguished by the color of the node. The green clusters are metastasis-related
proteins, and the blue (GDPD1-related proteins) and red clusters (LCAT-related proteins)
are lysoPC (16:0) metabolism-related proteins. The dotted line indicates the interconnected
relationship of each cluster. It can be found that LCAT-related protein (apolipoprotein-A1
(APOA1), apolipoprotein-A2 (APOA2), apolipoprotein B (APOB), and apolipoproteinE
(APOE)) is associated with metastasis-related proteins. The expression of LCAT was pos-
itively correlated with APOA1, APOA2, and APOE [67], and negatively correlated with
APOB [68]. APOB is necessary for the interaction between decorin (DCN) and collagen
I [69], and decorin is required for collagen fiber orientation [70], which is crucial for cancer
metastasis. The increase of APOB expression may promote the interaction between DCN
and COL1A1, so as to promote tumor metastasis. Furthermore, APOB is positively corre-
lated with secreted protein acidic and rich in cysteine (SPARC) [71], which expression is
frequently associated with the excessive deposition of collagen [72] and in BC, SPARC could
promote TGF-β-induced epithelial-mesenchymal transition (EMT), and further promote
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the tumor metastasis [73]. The overexpression of HIF1A and TGFB1 were observed in
APOE knockout mice [74,75]. In addition, NOTCH1 signaling drives metastasis through
TGF-β-dependent neutrophil recruitment [76] and crosstalk between NOTCH1 and HIF-1α
has been implicated in metastasis development [77]. The decrease in APOE expression may
promote tumor metastasis through NOTCH1, HIF1A, and TGFB1. APOA1 and APOA2
were observed to be associated with E1A binding protein p300 (EP300) and CREB binding
protein (CREBBP) which play an important role in tumor metastasis [78]. However, few
people have studied the relationship between APOA1, APOA2, and EP300, CREBBP, they
were found to be related in the reactome database (score 0.900).

4. Discussion

BC is a serious threat to women’s health. With the discovery of tumor heterogeneity,
precision medicine has been widely used in the diagnosis and treatment of BC. There is
an urgent need to develop more precise non-invasive strategies for the detection of BC
metastasis in lymph nodes and distant organs.

We firstly divided the ‘TNM’ stage of each mouse at the anatomical level. By analyzing
the expression of Ki-67 in the TCGA database combined with the tumor growth curve that
was drawn by ultrasound imaging, the ‘T’ stages of the BC mouse model were defined. For
the confirmation of ‘N&M’ staging, the H&E staining method was employed to determine
whether there were metastatic tumor cells in specific lymph nodes and lung tissues. Finally,
combining the ‘TNM’ staging, we found individual differences in ‘N&M’ staging in mice
at the same stage of progression. Actually, researchers found that individual differences
exist in genetically uniform inbred mouse strains, and these individual differences are
truly in much of the biological and psychiatric experimentation [79,80], while they are
perhaps more recognized in clinical trials and clinical experimentation. A similar situation
occurred in the tumor-bearing mouse model, researchers found that not all mice were
consistent in the degree of tumor metastasis, although tumor models were constructed
in parallel, researchers will use the concept that the proportion of mice metastasis in the
treatment group is lower than that in the control group [81]. Our experimental results also
demonstrate the existence of individual differences.

Next, metabolomic profiling among tumor-bearing mice with different ‘N&M’ stages
was conducted, and the correlations between metabolomics characteristics, tumor metastatic
status, and TME evolution were analyzed. The results showed that TME evolution can
establish a link between metabolomics characteristics and tumor metastatic status. More-
over, the main reason why mass spectrometry was chosen to establish the liquid biopsy
method is that less blood is needed for mass spectrometry quantification, which can solve
the contradiction that mice cannot get too much serum while living, and the experimental
period of mass quantification is short, thus there is no delay in diagnosis.

Furthermore, we focused on the clinical application value of our research. In clinical
practice, TNM staging is the important basis for the selection of treatment strategies
for breast cancer. However, it is usually difficult to describe the degree of lymph node
metastasis before surgery. In our research, we found that lysoPC (16:0) in clinical patients
was found to significantly decrease with the degree of lymph node infiltration and might
be helpful for clinical N stage diagnosis of BC. However, there was no obvious trend in
the other four metabolites, which may be due to the individual differences of breast cancer
patients in clinic, including the age, disease, and drug use of patients. The interaction
between metabolic enzymes that are related to lysoPC (16:0) and metastasis-related proteins
was analyzed by the STRING database. The results indicated that the decrease of LCAT will
lower the level of lysoPC (16:0) and promote tumor metastasis in different ways. Moreover,
the detection of occult micrometastasis in distal organs remains a challenge for current
techniques. TME plays an important role in tumor metastasis, including the formation
of tumor micrometastasis. Although our system directly reflected the degree of lymph
node and distal metastasis, it actually reflected the changes of TME. Therefore, our research
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may have practical value for the prediction of micrometastasis. However, the relationship
between the formation of micrometastases and metabonomics needs further verification.

5. Conclusions and Limitations

In conclusion, we established a link between metabolomics characteristics and tumor
metastatic status through TME and achieved non-invasive and real-time monitoring of the
degree of BC metastasis via metabolomics profiling. In addition, we analyzed the clinical
application of the five different metabolites that were screened and found that lysoPC
(16:0) may become a biomarker of clinical lymph node metastasis. The decrease of LCAT
expression may be the reason for the decrease of lysoPC (16:0) content and the increase of
tumor metastasis. However, our study also has several limitations. First of all, because of
the difference of lymph node distribution between mice and humans, the selection principle
of lymph nodes for evaluating ‘N’ stages mainly referred to the location of the lymph node
from the tumor, as well as the ipsilateral or heterolateral distribution of lymph node and
tumor. Although it may not be accurate enough, we chose the most reasonable lymph
node in mice as far as possible. Moreover, although the screened differential metabolites
have been further analyzed in clinical samples, most of the differential metabolites may not
show significant differences due to the insufficient number of clinical samples that were
collected; a large number of clinical samples could be collected for further analysis.
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